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Let X = {Xα
t , t ≥ 0} a real symmetric stable Lévy process of index α ∈ (1, 2], viz. a process with

stationary and independent increments whose Fourier transformation is given by

E
[
eiλXt

]
= e−κ|λ|α λ ∈ R, t ≥ 0,

for some normalisation constant κ > 0. We are interested in the integrated process

At =
∫ t

0

Xs ds, t ≥ 0

and more specifically in the lower tails of its unilateral supremum, i.e. in the behavior of

P

[
sup

t∈[0,1]

At < ε

]
when ε → 0. By o(1) we will mean any real function which tends to 0 when ε → 0. Our main result is the

following

Theorem When ε → 0,

P

[
sup

t∈[0,1]

At < ε

]
= εβ/2+o(1)

where β = β(α) := (α− 1)/(α + 1).

Sketch of the proof of the upper bound. Since α ∈ (1, 2], it has been known since Boylan [3] that

X possesses a jointly continuous local time process L = {L(t, x), t ≥ 0, x ∈ R} in the sense that for any

non-negative Borel function f , ∫ t

0

f(Xs) ds =
∫

R
f(x)L(t, x) dx.

Let

τu(x) := inf [t ≥ 0 : L(t, x) > u] , u ≥ 0,

be the (càdlàg version of the) inverse local time at x ∈ R, and set τu := τu(0) for simplicity. It is easy to

see from the scaling and the strong Markov properties of X that {τt, t ≥ 0} is a stable subordinator with

index (α−1)/α and that the process Y := {Yu = Aτu , u ≥ 0} is a symmetric stable Lévy process with index

β = (α− 1)/(α + 1). In particular, it follows from Proposition VIII.2 in [1] that

(0.1) P
[∫ τu

0

Xs ds ≤ ε, ∀u ∈ [0, 1]
]
∼ c1 εβ/2 ε → 0,
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for some constant c1 ∈ (0,∞), which readily implies that

(0.2) P

[
sup

t∈[0,τ1]

At ≤ ε

]
≤ εβ/2+o(1), ε → 0.

This is not enough to obtain directly the upper bound because of the big values of τ1. However, we can show

that β/2 is actually the right upper exponent, in working under the law of the stable pseudo-bridge

(0.3) X#
t :=

Xtτ1

τ
1/α
1

, t ∈ [0, 1],

through an absolute continuity relation with respect to the standard stable bridge, and partitionning the

values of τ1.

Sketch of the proof of the lower bound. In the case of Brownian motion X = W (α = 2), it is easy to

see that β/2 = 1/6 is also the right lower exponent, since by continuity W keeps the same sign during the

excursion intervals [τu−, τu], u > 0, so that

sup
0≤t≤τ1

∫ t

0

Ws ds = sup
0≤u≤1

∫ τu

0

Ws ds,

from which (0.1) entails

(0.4) P

[
sup

t∈[0,τ1]

At ≤ ε

]
≥ εβ/2+o(1), ε → 0

and, since the lower tails of τ1 are exponentially small, we see that there is no hindrance in replacing τ1 by

1 in (0.4). Let us notice that a much more precise result:

lim
ε→0

ε−1/6 P
[∫ t

0

Ws ds ≤ ε, ∀t ∈ [0, 1]
]

=
3Γ(5/4)

4π
√

2
√

2π

with Γ the Gamma function, is actually already implicit in Mc Kean [9] - after simple computations using

the last formula p. 229 and the closed formula 6 p. 231 therein. More recently, Sinai [13] proved that

P

[
sup

t∈[0,T ]

∫ T

0

Wt dt < 1

]
∼ T−1/4

when T → +∞, which is equivalent to McKean’s result, save for the existence and computation of the

constant. He also proved that the convergence speed T−1/4 remains unchanged in replacing the fixed barrier

1 by a linear or quadratic barrier.

When α ∈ (1, 2), the lower bound (0.4) is significantly more delicate to obtain because of the jumps: here

X does not keep necessarily the same sign during the excursion interval (τu−, τu) anymore, so that we just

have the inequality

sup
0≤t≤τ1

∫ t

0

Xs ds ≥ sup
0≤u≤1

∫ τu

0

Xs ds,
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and actually the difference may be quite large if X has big jumps during its excursion intervals. We overcome

the difficulties in reducing the problem, by scaling, to

P [At ≤ 1, t ∈ [0, τN ]] ≥ N−1/2+o(1), N → +∞,

which is then shown to hold true, first in proving the following reinforcement of (0.1):

P
[
u1/β−δ ≤ Aτu

≤ u1/β+δ, ∀u ∈ [1, N ]
]
≥ N−(1/2)+o(1), N → +∞,

second in examining carefully the small probabilities that the area process makes a round trip in time

(τk+1 − τk) between xk ≥ k1/β−δ, yk < 0 and zk ≥ (k + 1)1/β−δ, when k → +∞.

Some open questions

• Prove that the critical exponent is zero when α ≤ 1 and then compute the exact speed of convergence.

• The lower tails of fractional Brownian motion were recently studied by Molchan et al. [10], who also gave

in this conference a conjecture for the critical exponent of the integrated fractional Brownian motion. These

processes are related to Riemann-Liouville process. For bilateral small deviations, the critical exponents are

known to be equal for these two classes of processes [8]. Can we say the same things for unilateral small

deviations?

• (A harder problem) Compute the critical exponent for n-times integrated symmetric stable process. This

problem is probably already difficult when n = α = 2 (the double integral of Brownian motion). As shown

in a recent paper of Li & Shao [7], in the Brownian case the asymptotics of these critical exponents when

n → +∞ are tightly related to those of P [Nn = 0] , where Nn denotes the number of zeros of a real polynomial

of degree n with i.i.d. Gaussian coefficients. The latter asymptotic is a long-time challenging problem in

random polynomials - see [5] and the references therein.
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