
A non-finitely based systems of polynomial identities
in associative nil-algebras

E. V. Aladova (Moscow, Russia)

Let F be a field, let A be a free associative algebra (without 1) over
F on free generators x1, x2, . . . and let G be an associative F-algebra.
Let f(x1, . . . , xn) ∈ A. We say that f(x1, . . . , xn) = 0 is a polynomial
identity (or an identity) in G if f(g1, . . . , gn) = 0 for all g1, . . . , gn ∈ G.
Two systems of polynomial identities are equivalent if every associative
F-algebra satisfying all the identities of the first system satisfies all the
identities of the second system and vice versa. If a system of polynomial
identities is equivalent to some finite system we say that the system
is finitely based or has a finite basis. If F is a field of characteristic 0
then every system of polynomial identities in associative F-algebras has
a finite basis (Kemer, 1987). On the other hand, if F is a field of a prime
characteristic then there exist non-finitely based systems of polynomial
identities (Belov, 1999; Grishin, 1999; Shchigolev, 1999).

We study the following
Problem. Find the smallest positive integer n = n(F) such that the

identity xn = 0 can be included in the non-finitely based system of poly-
nomial identities in associative algebras over a field F of a prime char-
acteristic.

Note that, if a system of polynomial identities in associative algebras
over a field F of a characteristic p contains the identity xn = 0 with n < p
then the system is finitely based. Indeed, according to Nagata-Higman-
Dubnov-Ivanov theorem the identity xn = 0 (n < p) implies over F the
identity of nilpotency x1x2 . . . xk = 0 for some k = k(n) ∈ N and every
system containing the latter identity is finitely based.

In 1999 Grishin constructed a system of polynomial identities in nil-
algebras over a field of characteristic 2 which contains the identity x32 =
0. Similar system with the identity x6 = 0 was constructed by Gupta
and Krasilnikov in 2002. Over a field of a prime characteristic p > 3
Shchigolev (2002) constructed a system of polynomial identities contain-
ing the identity x2p3+p2+1 = 0. In 2003 authors constructed a system of
polynomial identities in nil-algebras over a field of characteristic p > 3
which contains the identity x6p = 0. The aim of the present talk is to
improve the our late result.
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Let F be a field of characteristic p > 3, let [x, y] = xy−yx, f(x1, x2) =
xp−1

1 xp−1
2 [x1, x2] and let wn = [[x1, x2], x3]f(x3, y3) · · ·

· · · f(xn, yn)[[y1, y2], y3]([[x3, x1], x2][[y3, y1], y2])p−1. Our main result
is as follows.

Theorem (E.V.Aladova, A.N.Krasilnikov). Over a field F of charac-
teristic p > 3 the system of polynomial identities

{x2p = 0} ∪ {wn = 0 | n = 3, 4, . . . }
is not equivalent to any finite system of identities in associative F-algebras.

On the proper class generated by supplement
submodules

Rafail Alizade (Izmir, Turkey)

Let R be an associative ring with identity. A submodule N of an R-
module M has a supplement in M if N + K = M for some submodule
K of M and K is minimal with respect to this equality. We will consider
the class of all short exact sequences 0 → N

f→ M → L → 0 where
Imf has a supplement in M (see [3]) and its relationship with the class
Suppl of short exact sequences 0 → K

f→ M → L → 0 where Imf is a
supplement of some submodule N of M (see [1], [2]).
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Triply factorized groups and nearrings

Bernhard Amberg (Mainz, Germany)

In the theory of factorized groups G = AB with subgroups A and
B one often has to deal with groups of the following form G = AB =
AM = BM , where the normal subgroup M of G satisfies the intersection
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property A∩M = B ∩M = 1. Such triply factorized groups - even with
nonabelian M - may be constructed by using (local) nearrings.

A nearring R is an algebraic structure with two operations "+"and
"."such that R is a not necessary abelian group under the operation
"+"and R is a semigroup under the operation "."so that a one-sided
distributive law holds. A nearring R with a unit element 1 is called local
if the set of all invertible elements forms a subgroup of the additive group
of R.

If L is the subgroup of all non-invertible elements of the local nearring
R, then the set 1 + L is a subgroup of the multiplicative group of R
acting on L, such that the semidirect product of (1 + L) with L is a
triply factorized group G, where M is isomorphic to L and A and B are
both isomorphic to 1 + L.

Conversely, it can be shown that for every triply factorized group G
with A ∩ B = 1 there exists a sub-nearring of the nearring of all map-
pings from M into itself, such that the given triply factorized group can
be obtained via this construction.

Derived equivalences and flips on CW-complexes

M. A. Antipov (St. Petersburg, Russia)

We introduce Brauer complex of symmetric special biserial algebra
(SB-algebra). We reformulate in terms of Brauer complex the so far
known invariants of stable and derived equivalence of symmetric SB-
algebras. In particular, the genus of Brauer complex turns out to be in-
variant under derived equivalence. We study transformations of Brauer
complexes which preserve class of derived equivalence. Additionally, we
establish a new invariant of derived equivalence of symmetric SB-algebras.
As a consequence, we obtain a classification of symmetric SB-algebras
with Brauer complex of genus 0 and a partial classification of symmetric
SB-algebras of genus 1.
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Projective embeddings of homogeneous spaces with
small boundary

I. V. Arzhantsev (Moscow, Russia)

Let G be a connected algebraic group over an algebraically closed
field of characteristic zero, and H a closed subgroup of G. An embedding
G/H ↪→ X of the homogeneous space G/H is an irreducible normal
algebraic G-variety X with an open G-equivariant embedding of G/H.
We say that an embedding G/H ↪→ X has small boundary if codimX(X\
G/H) > 2. For example, the diagonal SL(n + 1)-action on Pn × Pn

provides a non-trivial embedding of the open orbit, where the boundary
has codimension n.

In this talk we shall study emdeddings with small boundary in the
case when X is a projective variety. A criterion of existence of such an
embedding for G/H will be given. Moreover, a given homogeneous space
G/H admits only finitely many projective embeddings with small bound-
ary. This result is based on realization of embeddings in the framework
of Geometric Invariant Theory.

Under some mild technical conditions we prove in [1] that projective
embeddings with small boundary and equivariant morphisms between
them are parametrized by the so-called GIT-fan in the space generated
by the character lattice of H. An explicit description of all projective
embeddings with small boundary for some concrete homogeneous spaces
G/H with G = SL(n) and Sp(2n) will be given.

Supported by INTAS YS 05-109-4958
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Estimates for weight multiplicities in representations
of classical algebraic groups

A. A. Baranov, A. A. Osinovskaya, and I. D. Suprunenko
(Minsk, Belarus)

Lower estimates for the maximal weight multiplicities in irreducible
representations of the classical algebraic groups in positive characteristic
p are found under some minor restrictions on p. Modular representations
of classical groups with all weight spaces of dimension 1 were classified
in [1, 2]. That result was used in the description of maximal subgroups
of classical algebraic groups in [1]. In this paper we indicate irreducible
representations with relatively small weight multiplicities with respect
to the group rank. For groups of type An the estimates obtained imply
that if n is large enough with respect to p, then the maximal weight
multiplicity in a "typical"irreducible representation grows with growth
of n (for fixed p). Exceptional classes of representations are indicated.
For other classical groups the situation is much easier. If n > 8, p > 2
for groups of types Bn and Dn and p > 7 for type Cn, then either the
maximal weight multiplicity for an irreducible representation ϕ of G is
at least n−8, or all its weight multiplicities are equal to 1. For the natu-
ral embeddings of classical groups, inductive systems of representations
with totally bounded weight multiplicities are classified. For indecompos-
able inductive systems an analogue of the well-known Steinberg tensor
product theorem is proved.
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On abelian groups which centers of the
endomorphism rings are isomorphic

T. S. Barry, A. M. Sebeldin, and A. L. Sylla (Conakry,
Guinea)

The abelian groups with isomorphic centers of the endomorphism
rings are considered (see [1],[2]). This problem is resolved for some class
of abelian groups.
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Some linear groups of degree 2n containing a
representation of the special linear group of degree n

E. L. Bashkirov (Minsk, Belarus)

Let R be an associative ring with the identity 1, n an integer, n > 2.
A transvection in the general linear group GLn(R) is any element in

GLn(R) conjugate in GLn(R) to the matrix diag
( (

1 1
0 1

)
, 1, . . . , 1

)
.

By the special linear group SLn(R) we mean the subgroup of GLn(R)
generated by all transvections in GLn(R). Suppose R is a ring with
involution σ. If Φ is a σ-skew-Hermitian form in n variables over R
and if Un(R, Φ, σ) is the unitary group of Φ, then SUn(R, Φ, σ) is the
normal subgroup of Un(R, Φ, σ) generated by the set of all transvections
in Un(R, Φ, σ). Assume R is commutative, n is even. If Ψ is an arbitrary
alternating matrix of degree n over R, then the symplectic group Spn(R)
is the group of all g ∈ GLn(R) such that tgΨg = Ψ, where tg is the
transpose of g.

Let P/k be an algebraic extension of fields of degree l > 2. There is
a regular embedding P ∗ → AutkP, a → fa of the multiplicative group
P ∗ of P into the group of all k-linear automorphisms of P considered
as a k-vector space, where fa(x) = ax, x ∈ P . So, if G 6 GLn(P ), and
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if we pick a k-basis a1, a2, . . . , al in P , then G can be treated as be-
ing a subgroup of the group GLnl(k). Specifically, if G = Xn(P ) is a
classical linear group over P , then the subgroup of GLnl(k) identified
with Xn(P ) is denoted by Xn(k(a1, a2, . . . , al)/k). Thus we are led to
the problem about the description of subgroups of GLnl(k) that con-
tain some classical linear group Xn(P ) over P realized as the group
Xn(k(a1, . . . , al)/k) 6 GLnl(k). When X is either one of the groups
SL, Sp, SU , or the commutant Ωn(P, f) of the orthogonal group of a
symmetric bilinear form f , this problem is examined by Li Shang Zhi [6],
[7] and R. H. Dye [4], [5]. Another approach in this area has been devel-
oped by F. G. Timmesfield [8].

Here we restrict ourselves to the case when P is a quadratic extension
of k but study overgroups of Xn(P ) in the group GL2n(K), where K is
an algebraic field extension of k. So, assume that the polynomial x2− b,
where x is a variable and b ∈ k, defines P as a quadratic extension of k.
Let

√
b be a root of x2−b and pick the set {1,

√
b} as a basis of P over k.

We write SLn(k(
√

b)/k) = SLn(k(1,
√

b)/k). Now let K be a field which
is an algebraic extension of k. The goal of this talk is to study subgroups
of GL2n(K) that contain SLn(k(

√
b)/k).

Theorem. Let K be a field which is algebraic extension of a subfield k.
Suppose char k 6= 2, k is infinite, and k contains an element b such that
b is not a square in K. Let n be an integer, n > 2. If SLn(k(

√
b)/k) 6

X 6 GL2n(K), then X contains a normal subgroup G for which one of
the following assertions holds:

1) n = 2, G ∼= SU2(L,Φ, σ), where L is a quaternion division ring
such that L contains a subfield which is isomorphic to the field
k(
√

b), the center of L contains k, L is an algebra with involution
σ either of orthogonal or of unitary type, Φ is a non-degenerate
σ-skew-Hermitian form with Witt index 1.

2) n > 2, G ∼= SLn(L), where L is either a quaternion division ring
as in item 1), or L is a subfield of the field K(

√
b) containing

the subfield k(
√

b).
3) n > 2, G is conjugate in GL2n(K) to the group SL2n(L), where

L is a subfield of K containing k.
4) n = 2, G is conjugate in GL4(K) to the group Sp4(L), where L

is a subfield of K containing k.
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5) n = 2, G is conjugate in GL4(K) to the group SU4(L, Φ, σ),
where L is a subfield of K containing k, σ is an involution de-
fined on L, Φ is a non-degenerate σ-skew-Hermitian form in
four variables over L with Witt index 2.

The concept of a transvection parameter set introduced and used
in [1], [2], [3] is meaningful to the proof of Theorem.
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Cohomological birational invariants of algebraic tori

L. A. Belova (Samara, Russia)

Let k be a field, T an algebraic k-torus, G the Galois group of the
minimal splitting field of T . Then the module T̂ of rational characters of
T is a torsion-free Z[G]-module of finite rank. Any G-module T̂ admits
the following exact sequence

0 −→ T̂ −→ Ŝ −→ N̂ −→ 0 (1)

here Ŝ is a permutation G-module, N̂ is a flasque G-module, i.e.
H−1(π, N̂) = 0 for any subgroup π of G. The resolvent (1) plays a
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significant role in the birational geometry of algebraic torus, because the
class of equivalence [N̂ ] of a module N̂ is the main birational invariant
of T . It was introduced by Prof. V.E.Voskresenskii, who called the se-
quence (1) the canonical resolvent. The class [N̂ ] is called the Picard
class since one of the representative of this class is geometrical Picard
module PicX of a smooth projective model X of T . In fact, one can
construct (1) for any G-module T̂ using standard algorithms but rk N̂

is large even if rk T̂ is small. We calculate induced birational invariants
of T so called cohomological invariants {H1(π, N̂)}π<G. It is the result
of Prof. A.A. Klyachko [1]

H1(π, N̂) = Ker(H2(G, T̂ ) →
∏

g∈G

H2(< g >, T̂ ))

which allows to calculate these invariants without calculation of N̂ in
terms of the group H2. We develop his idea in the case of four Klein’s
group G = Z2 ⊕ Z2 and obtain the following formula

H1(π, N̂) =
Ker(a + e)(b + e)

Ker(a + e) + Ker(b + e) + ker(c + e)
(2)

here a, b are generators of G considering as operators on T̂ and c = a · b.
Using this formula and the classification of all indecomposable Z2 ⊕

Z2-modules by Nazarova [2] we calculate the cohomological birational
invariants of algebraic tori with biquadratic splitting field of dimT̂ 6 8.
The following Z2⊕Z2-modules have nontrivial cohomological birational
invariants (we use the notifications introduced in [2]).

(1) T̂ = C6(E3
11, E

2
22), H1(G, T̂ ) = Z2

(2) T̂ = C6(E3
12, E

2
21), H1(G, T̂ ) = Z2

(3) T̂ = C6(E1
21, E

4
12), H1(G, T̂ ) = Z2

(4) T̂ = C6(E4
11, E

1
22), H1(G, T̂ ) = Z2

(5) T̂ = C8(E5
11), H1(G, T̂ ) = Z2

(6) T̂ = C8(E5
12), H1(G, T̂ ) = Z2

(7) T̂ = C8(E5
21), H1(G, T̂ ) = Z2 ⊕ Z2

(8) T̂ = C8(E5
22), H1(G, T̂ ) = Z2 ⊕ Z2

(9) T̂ = Φ(f(t)), f(t) = t2 + t + 1, H1(G, T̂ ) = Z2 ⊕ Z2

We also find the series of such nonrational algebraic tori.
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On trivial zeros of p-adic L-functions

Denis Benois (Besançon, France)

In [3], Perrin-Riou generalized Iwasawa construction of the p-adic zeta
function to any motif M over Q having good reduction at p. She conjec-
tured that this Iwasawa L-function LIw(M, s) coincides with the p-adic
L-function of M up to a unity in the Iwasawa algebra Λ. This conjecture
can be seen as a vaste generalisation of the Iwasawa main conjecture. She
proved that if the Euler factor Ep(M, s) of M at p is not 0 at s = 0, 1
then the special value of LIw(M, s) at s = 0 satisfies the Bloch-Kato
conjecture up to a p-adic unity.

The phenomena of trivial zeros appears if the Euler factor Ep(M, s)
vanishes at 0 or 1. In this case the order of zero of the p-adic L-function
can be greater that the order of zero of the complex L-function L(M, s).

If M is ordinary at p, Greenberg [1] defined an important invariant
`p(M), the so-called `-invariant, and conjectured that it appears as ad-
ditional factor in the usual formula relating special values of complex
and p-adic L-functions:

de

dse
Lp(M, 0) = `p(M)

L(M, 0)
ΩM

.

In this talk we show how using the theory of (ϕ,Γ)-modules [2], gener-
alise Greenberg’s construction of the `-invariant to the semi-stable case
and prove that it appears as additional factor in the Bloch-Kato type
formula for the special value of LIw(M, s) at s = 0.
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On endomorphism rings of a class of torsion-free
abelian groups

E. A. Blagoveshchenskaya (St. Petersburg, Russia)

Definition 1. A torsion-free abelian group X belongs to the class D
if it contains a completely decomposable subgroup R(X) =

⊕
τ∈Tcr(R(X))

Aτ

such that the following conditions are satisfied:
(1) Tcr(R(X)) is a finite or countable set of pairwise incomparable

types;
(2) Aτ is a pure subgroup of X of finite rank for each τ ∈ Tcr(R(X));
(3) X/R(X) =

⊕
p∈PX

TX
p for a finite or countable set of primes PX

and finite cyclic p-groups TX
p ;

(4) for every p ∈ PX the set {q ∈ PX : [TX
p ] ∩ [TX

q ] 6= ∅} is finite;
here [TX

p ] is the minimal subset Tp ⊂ Tcr(R(X)) satisfying TX
p ⊆

((
⊕

τ∈Tp
Aτ )X

∗ + R(X))/R(X).

If the set Tcr(R(X)) is finite then X ∈ D is a crq-group of finite rank
(that is an almost completely decomposable group with cyclic regulator
quotient X/R(X)). If Tcr(R(X)) is countable then we say that X is a
local crq-group of countable rank since all its fully invariant pure sub-
groups of finite rank are crq-groups. In both cases the endomorphism
ring EndX of a group X can be considered as a subring of the direct
product

∏
τ∈Tcr(R(X)) EndAτ

∼= EndR(X), then any element of EndX

is recorded as F 0 = (. . . , F 0
τ , . . .)τ∈Tcr(R(X)) with F 0

τ ∈ EndAτ . For each
τ denote the image of EndX in EndAτ under the canonical projection
as follows, Eτ (X) = {Fτ : there exists F 0 = (. . . , F 0

τ , . . .)τ∈Tcr(R(X)) ∈
EndX with Fτ = F 0

τ }. Automorphism group of EndX is described by
Theorem 1. Let X ∈ D. Then

Aut(EndX) ∼=
∏

τ∈Tcr(R(X))

Aut(Eτ (X))
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and any automorphism of EndX uniquely extends to an automorphism
of the ring EndR(X).

Generalizing the near isomorphism equivalence to torsion-free abelian
groups of infinite ranks we introduce

Definition 2. Let X and Y be torsion-free abelian groups. Then X
and Y are called nearly isomorphic, X ∼=nr Y , if for every prime p
there exist monomorphisms Φp : X → Y and Ψp : Y → X such that

(1) Y/XΦp and X/Y Ψp are torsion groups with p-components
(Y/XΦp)p = 0 = (X/Y Ψp)p;

(2) for every finite rank pure subgroups X ′ ⊆ X and Y ′ ⊆ Y the
quotients (X ′Φp)Y

∗ /X ′Φp and (Y ′Ψp)X
∗ /Y ′Ψp are finite.

This equivalence, which is the usual near isomorphism in case of finite
rank groups, preserves decomposability properties of local crq-groups
similarly to [2, Corollary 12.9(b)]. It leads to the following extension of
the main result of [2].

Theorem 2. Let X,Y ∈ D. Then X ∼=nr Y if and only if EndX ∼=
EndY .
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Relative Gröbner-Shirshov Bases for Algebras and
Groups

L.A. Bokut (Novosibirsk, Russia), K.P. Shum (Shatin, Hong Kong,
China)

We introduce the notion of relative Gröbner-Shirshov bases for alge-
bras and groups. The relative composition lemma and relative (composi-
tion-) diamond lemma are established. In particular, we show that the
relative normal forms of certain groups arise from the Malcev’s embed-
ding problem can be expressible as the irreducible normal forms of these
groups with respect to their relative Gröbner-Shirshov bases. Other ex-
amples of such groups are given by showing that any group G in a Tits



93

system (G,B, N, S) has a relative (B−) Gröbner-Shirshov basis such
that the irreducible words are the Bruhat words of G.

Supported by the RFBR (05–01–00230) and the Integration grant of
the SB RAS (1.9).

Orthogonal decompositions of the Lie algebra sl(n)
and harmonic analysis on graphs

A. I. Bondal and I. Yu. Zhdanovsky (Moscow, Russia)

1. Introduction

We study decompositions of the Lie algebra sl(n) into the direct sum
of Cartan subalgebras orthogonal with respect to the Killing form. The
famous Winnie-the-Pooh conjecture states that such decompositions ex-
ist only when n is a power of a prime. A relation of this problem to rep-
resentation theory of Hecke algebras of some (multi-connected) graphs Γ
was found by the first author about 20 years ago (cf. [1]). Here we factor-
ize Hecke algebra and its representations through some smaller algebras
B(Γ). These are (reduced) Temperley-Lieb algebras related to graphs,
which firstly appeared in studying the percolation problem in physics
([2]).

We found that it is useful to regard graphs as topological spaces,
because representations of B(Γ) are parameterized by local systems on
these spaces. This is the place where harmonic analysis on graphs comes
into the play. It turns out that representations related to orthogonal
decompositions are those for which the Laplace operator of the graph
which acts on sections of the local system is annihilated by a polynomial
of low degree.

The problem of finding local systems on graphs with low degree min-
imal polynomial appeared to be very interesting and hard. Coefficients
of the characteristic polynomial of the Laplacian are functions on the
moduli space of local systems.We prove that if the minimal polynomial
has degree less than the minimal length of cycles in the graph, then
the local system is a critical point of all coefficients of the characteristic
polynomial of the Laplacian.
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2. Orthogonal decompositions and algebra B(Γ).

Let k be an algebraically closed field of characteristic zero. Let L be
a simple Lie algebra over k and K the Killing form on L.

A pair (H1, H2) of Cartan subalgebras is called orthogonal if K(h1, h2)
= 0, for all h1 ∈ H1, h2 ∈ H2.

A decomposition of the Lie algebra L into the direct sum of Cartan
subalgebras L = ⊕h+1

i=1 Hi is called orthogonal decomposition (OD) if
K(Hi,Hj) = 0 for i 6= j.

Winnie-the-Pooh Conjecture 1. (see [1]) A simple Lie algebra L =
sl(n) has an orthogonal decomposition if and only if n = pm − 1 .

We will study OD by means of representation theory of some algebras
related to graphs. Let Γ be a simply laced connected graph. We define
(reduced) Temperley-Lieb algebra B(Γ) as a unital algebra over k[r, r−1]
as follows. Generators xv of B(Γ) are numbered by all vertices v of Γ.
They subject to relations:

1. x2
v = xv for any v in Γ,

2. xvxwxv = rxv, xwxvxw = rxw, if v, w are adjacent in Γ,
3. xvxw = xwxv = 0, if there is no edge connecting v and w in Γ.
Note that the standard Temperley-Lieb algebra TL(Γ) is defined sim-

ilarly with the last relation replaced by xvxw = xwxv when there is no
edge connecting v and w. Algebra B(Γ) is a quotient of TL(Γ).

Any automorphism of the graph Γ induces an automorphism of the
algebra B(Γ). For a fixed r ∈ k∗ we denote by Br(Γ) the algebra over
k obtained from B(Γ) by specialization. The representation ψ of Br(Γ)
is the hight 1 representation if rk ψ(xv) = 1 for some (then for all)
v. A genuine representation ψ of Br(Γ) is a representation for which
ψ(xv) 6= ψ(xw) for v 6= w. The relation with Winnie-the-Pooh conjecture
is given via the following graphs. Let Γm(n) be the graph with m rows
and n vertices in each row, such that any two vertices from different rows
are connected by an edge and any two vertices lying in the same row are
disconnected.

Theorem 2. 1. Orthogonal decompositions of sl(n) taken up to auto-
morphism of the Lie algebra are in bijective correspondence with
Aut(Γn+1(n)) - orbits of genuine height 1 n-dimensional modules over
B1/n(Γn+1(n)).
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2. Orthogonal pairs of Cartan subalgebras of sl(n) are in bijective cor-
respondence with Aut(Γ2(n)) - orbits of genuine height 1 n-dimensional
modules over B1/n(Γ2(n)).

3. The path algebras and Laplacians of graphs.

Consider the graph Γ as a topological space. Let k[Γ] be the path al-
gebra of Γ. Generators of this algebra correspond to homotopy classes of
paths connecting vertices in Γ. Multiplication comes from juxtaposition
of paths.

We denote by ev the element in k[Γ] corresponding to the constant
path in the vertex v. Any oriented edge (ij) in Γ can be interpreted as
element lij in k[Γ]. The element in k[Γ]

∆ =
∑

lij ,

where the sum is taken over all oriented edges in Γ, will be called the
Laplacian of the graph. Fix a vertex v0 in Γ. Denote by π(Γ) = π(Γ, v0)
the fundamental group of Γ, i.e. homotopy classes of loops in Γ with ori-
gin in v0. Let A−mod denote the category of finite dimensional modules
over algebra A. The categories k[Γ] − mod and π(Γ) − mod are easily
seen to be equivalent.

Fix an r ∈ k∗. Let t be an element in k∗ such that t2 = r. There is a
homomorphism ϕ : Br(Γ) → k[Γ] given by the formula

(∗) xv 7→ ev(1 + t∆).

This homomorphism is the clue to relating the representations of
Br(Γ) to the harmonic analysis on graphs. It induces natural functors
between categories k[Γ]−mod and Br(Γ)−mod. When composed with
the equivalence between k[Γ]−mod and π(Γ) −mod we obtain adjoint
functors: ϕ∗ : π(Γ) − mod → Br(Γ) − mod and ϕ∗ : Br(Γ) − mod →
π(Γ)−mod. The functor ϕ∗ transforms genuine height 1 Br(Γ)-modules
into 1-dimensional representations of π(Γ). The functor ϕ∗ transforms
1-dimensional representations into genuine height 1 Br(Γ)-modules. But
this module can differ from the original one. Any irreducible genuine
height 1 module can be obtained from a 1-dimensional representation
M of π(Γ) by factorizing ϕ∗M by the maximal trivial submodule. This
gives a parametrization of the moduli space of irreducible genuine height
1 representations by the characters of the fundamental group of the
graph. Let us go back to the graphs Γm(n). By theorem 2 orthogonal
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decompositions/pairs correspond to irreducible genuine height 1 repre-
sentations which are of dimension n. Our problem now is to determine
which characters of the fundamental group of the graph correspond to
these representations. We can describe them in terms of the action of the
Laplacian on the corresponding representation of k[Γ]. This representa-
tion is the space of functions on the vertices of the graph ‘twisted’ by the
character of the fundamental group. They have the geometric meaning
of the horizontal sections of the local system on the graph defined by the
character.

One can check that the character of the fundamental group of the
graph Γm(n) defines a representation of B1/n(Γm(n)) of dimension n if
and only if ∆ in the corresponding representation of k[Γm(n)] satisfies
the relation:

(†) (∆ +
√

n)(∆− (m− 1)
√

n) = 0.

Theorem 3. The character of the fundamental group of the graph
Γn+1(n) defines an orthogonal decompositions of the Lie algebra sl(n) iff
and only if the corresponding representation of k[Γn+1(n)] the Laplacian
satisfies the relation (∆+

√
n)(∆−n

√
n) = 0. Similarly, orthogonal pairs

in sl(n) correspond to representations of k[Γ2(n)], where the Laplacian
satisfies the relation ∆2 − n = 0.

Using ϕ from (∗) we obtain the following bound on the homological
dimension of the category Br(Γ)−mod.

Theorem 4. Homological dimension of the category Br(Γ)−mod is less
than or equal to 2, for any r ∈ k∗.

Let Γ be a graph, ∆ the Laplacian of Γ. Every character induces
a representation of k[Γ]. Hence, the trace fs = Tr∆s is, for any s, a
function on the variety X(Γ) of π(Γ)-characters.

Theorem 5. Let h be the minimal length of non-trivial reduced cycle
in graph Γ, p the polynomial of degree strictly less than h. Suppose that
a character x ∈ X(Γ) of π(Γ) corresponds to a representation of k[Γ]
which satisfies the relation p(∆) = 0. Then dfs = 0 at point x, for any s.

Since the minimal length of cycles on graphs Γn+1(n) and Γ2(n) are,
respectively, 3 and 4, we obtain that orthogonal decompositions and
orthogonal pairs are described by critical points of trace functions fs for
corresponding graphs.
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Weights for cohomology: weight structures,
filtrations, spectral sequences, and weight complexes

(for motives and spectra)
M. V. Bondarko (St. Petersburg, Russia)

Our basic notion is those of a weight structure for a triangulated C. A
weight structure defines Postnikov towers of objects of C; these towers
are canonical and functorial "up to cohomology zero". For Hw being the
heart of the weight structure there exists a canonical conservative weakly
exact functor t from C to a certain weak category of complexes Kw(Hw).
For any (co)homological functor H : C → A for an abelian A we con-
struct a weight spectral sequence T : H(Xi[j]) =⇒ H(X[i + j]) where
(Xi) = t(X); it is canonical and functorial starting from E2. This spec-
tral sequences specializes to the usual weight spectral sequences for "clas-
sical"realizations of (Voevodsky’s) motives. Besides, K0(C) ∼= K0(Hw)
in the bounded case if Hw is idempotent complete. Under certain re-
strictions, a similar equality is valid for K0(End C).

These result give us a better understanding of Voevodsky’s motives
and also of the stable homotopy category SH. In particular, we calculate
very explicitly the groups K0(SHfin) and K0(End SHfin) (and also cer-
tain K0(Endn SHfin) for n ∈ n). In this case we also have Kw(Hw) =
K(Hw) ∼= K(Abfin.fr). Besides we obtain a certain "weight filtration"on
homotopy groups of spectra (and the corresponding "weight"spectral se-
quence).

The definition of a weight structure for a triangulated category C is
almost dual to those of a t-structure; yet some properties of these def-
initions are surprisingly distinct. Under certain conditions for a weight
structure w one can construct a certain t-structure which is adjacent to
w. Vice versa, for a t-structure one can often construct adjacent weight
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structures (such that either Cw60 = Ct60 or Cw>0 = Ct>0). In partic-
ular, this is the case for the Voevodsky’s category DMeff

− (one obtains
certain Chow weight and t-structures) and for the stable homotopy cat-
egory. The hearts of adjacent structures are dual in a very interesting
sense.

Generating of prime numbers based on the
multidimensional matrices

M. Bulat, A. Zgureanu, I. Ciobanu, and L. Bivol (Chisinau,
Moldova)

There are given n sets X1 = {x11, ..., x1m1}, X2 = {x21, ..., x2m2},
. . . ,Xn = {xn1 , ..., xnmn

} under which, using elements of set Ω =
= {ω1, ..., ωt}, g relations RXi1Xi2 ...Xid

are defined, where 2 6 d 6 n,
and indices i1, i2, .., id=1,2,...,n. These relations form a set R1. Accord-
ing to [1,2], using a transformation Φ( ~R1) we can build a n-dimensional
matrix A = Φ( ~R1). If Ω = {0, 1, 2, . . . , m − 1}, g = n, d = 2, m1 =
m2 = · · · = mn = t = m then the elements of this matrix are non-
negative integer numbers and prime numbers are replaced on the lines
which depend on the value of the parameter m. Using the properties of
this matrix a generator of prime number BUZGUCIBI PRIM 1 was
elaborated. This generator builds prime numbers of kind p = b ·m + r,
where m = pλ1

1 · pλ2
2 · · · · · pλs

s , b = qβ1
1 · qβ2

2 · · · · · qβk

k , r = 1 and pi, qj

are prime numbers. The generator consists of three modules. The first
module gives prime numbers pi and their exponents λi provided that p
contains a given number c of decimal digits. The numbers pi are chosen
from a set P of known prime numbers and exponents λi are functions of
nonnegative integer argument ni (λi = fi(ni)) . The second module gives
numbers qj and their exponents βj provided that m is defined by the
first module. On the one of lines of matrix A this module choses a num-
ber p with founded values of m and b. Thus, we obtain a factory number
p− 1 = qβ1

1 · · · · · qβk

k · pλ1
1 · · · · · pλs

s which allows to apply easily a Lucas-
Lehmer criterium of primality of number p. This work is done by the
third module. To obtain a number p it is sufficient to introduce a single
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parameter c of decimal digits which must to contain number p. A gen-
erator can build also a set P

∗
of prime numbers with the given decimal

digits. For this purpose we must indicate a number of elements of set P
∗
.

If necessary, we can chose a value s, change elements of set P
∗
, change

functions fi(ni). A generator allows to build the prime numbers which
contain ten of thousands of decimal digits. Each module can be used to
solve the problems for which they are elaborated. We bring some infor-
mation about this generator. To build the sets P

∗
each of them consisting

of 10 numbers of length 200, 500, and 1000 of decimal digits, a computer
(processor Athlon 3200) needs respectively about 1.7, 18.8 and 92.4 sec.
Having a value of m, the second module (working separately) has con-
structed this prime number: p = (22 ·72 ·31) · (797512048017273358771×
×793207819539153918901· 790748260408799953261×
×787673811495857496211·787058921713269004801×
× 775990905626676159421·765537779322671805451×
×760618661061963874171· 758773991714198399941×
×755699542801255942891·754469763236078960071×
× 736637959541012709181)130 +1 which contains 32589 decimal digits.
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The spectra of the finite simple classical groups

A. A.Buturlakin (Novosibirsk, Russia)

The spectrum w(G) of a finite group G is the set of all of its element
orders. Many problems concerning finite simple groups lead us to the
situation when we need to know whether the given natural number is in
w(G) or not. This problem can be easily solved in the case of alternating
groups. The spectra of sporadic groups is known. The conjugacy classes
of each finite simple exceptional group of Lie type are described, thus
the spectra is also known. But there is no convenient description of the
spectra for the remaining class of the classical simple groups of Lie type.
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In the current talk we present the description of the spectra of finite
classical groups of Lie type and as a conclusion we receive an arithmetical
criterion for determining whether the given natural number in in the
spectrum of a given classical simple group.

Let G be a finite group of Lie type over a field of characteristic p. The
spectrum w(G) of G divides in natural way into three subsets: the set
wp(G) of orders of p-elements, the set wp′(G) of orders of p′-elements,
and the set wm(G) of orders of the rest elements. According to this
division, the problem of describing the spectrum of a finite group of Lie
type can be considered as three independent problems. A description
of wp(G) can be found in [1]. In [2] the author and M.A. Grechkoseeva
determined the cyclic structure of maximal tori in all finite classical
simple groups, and therefore found wp′(G). Thus to finish the description
we must describe wm(G) for all classical simple groups. Such descriptions
were obtained and as a example we give the theorem concerning linear
groups.

The set ω(G) is ordered by divisibility relation and we denote by µ(G)
the set of its elements that are maximal under this relation. Obviously,
ω(G) is uniquely determined by µ(G). Denote by µm(G) the set µ(G) ∩
wm(G); denote by lcm{m1, m2, . . . ,ms} the least common multiple of
natural numbers m1,m2, . . . , ms.

Theorem. Let G = Ln(q), n > 2, and q be a power of a prime
p. Put d = (n, q − 1). Suppose that for every k > 1 such that n0 =
pk−1 + 1 < n and every partition n − n0 = n1 + n2 + · · · + ns, the
set η(G) contains the number pk(qn1 − 1)/d if s = 1, and the number
pk lcm{qn1 − 1, qn2 − 1, . . . , qns − 1} if s > 1, and the set η(G) has no
other elements. Then µm(G) ⊆ η(G) ⊆ ωm(G).

Supported by RFBR grant Nos. 05-01-00797.
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Supplemented Modules over non-Noetherian
Domains

Engin Büyükaşık, Yılmaz Mehmet Demirci (Urla, Izmir, Turkey)

Supplemented modules over Dedekind domains are characterized by
H. Zöschinger [3, Theorem 3.1]. Rudlof[2] extended these results over
commutative Noetherian rings. We use Zöschinger’ s ideas to obtain
characterization of these modules over some non-Noetherian commuta-
tive domains, in particular over h-local domains. It is shown that:

Theorem 1 (Theorem). Over a non-local h-local domain a module M
is supplemented if and only if it is torsion and every primary-component
is supplemented.

This result is an extension of Zöschinger’ s result over Dedekind do-
mains.
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Counting Hopf-Galois Structures on Field
Extensions

Nigel Byott (Exeter, United Kingdom)

Hopf-Galois theory provides a generalisation of classical Galois the-
ory of field extensions. In particular, there may be many Hopf algebras
which act on a given field extension, giving rise to different Hopf-Galois
structures. This talk will describe all Hopf-Galois structures on a class
of extensions of degree 2n, n > 3, which includes all such extensions
which are cyclic or radical. This complements work of T. Kohl on simple
radical extensions of degree pn for an odd prime p. In contrast to the
odd p case, however, for p = 2 the Hopf algebras concerned need not be
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commutative; indeed, they can be forms of the group algebra of a cyclic,
dihedral or quaternion group.

Recent applications of Hamburger-Noether
expansions

Antonio Campillo (Valladolid, Spain)

Hamburger-Noether expansions are useful for studying singularities of
algebraic curves in any characteristic. In particular, they provide param-
eterizations in terms of parameters which are rational functions. This fact
provides a way to do symbolic computations for parameterizations and
equations at the same time, in such a way that expansions are replaced
by symbolic expressions. It avoids difficulties of dealing with power series,
and gives rise to efficient calculations. For instance, adjoint divisors and
Weierstarss semigroups of points of projective plane curves can be nat-
urally computed in that way. Also, deformations of Hamburger-Noether
expansions become significant in deformation theory.

In recent joint work with G. M. Greuel and Ch. Lossen a theory of
equisingular deformations for plane curve singularities in arbitrary char-
acteristic is established. The functor of equisingular deformations of a
parameterization is not isomorphic to the functor of deformations of the
curve itself. Non trivial equisingular deformations of the parameteriza-
tion which are trivial as deformations of the equations play a key role in
the context. Such objects do not exist in characteristic zero, but they do
exist in positive characteristic. The same behaviour occurs for equitrivial
deformations.

In particular, we show how the tangent space T to the functor of
equisingular (resp. equitrivial) deformations of the parameterization is
the obstruction of having a theory of equisingular deformations free of
pathologies. In general, in positive characteristic, one may have defor-
mations of the equation which become induced ones from equisingular
deformations of the parameterization after some finite base change. Such
deformations are called weakly equingular. Among them, the strongly eq-
uisingular deformations are those of them which do not need such finite
base change.
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Each (non equisingular) deformation has a well defined weakly equi-
singular stratum. Such stratum becomes smooth if the original deforma-
tion is a versal one of a plane curve singularitiy. Using those strata we
show how one has T= (0) if and only if all weakly equisingular (resp.
trivial) deformations are strong ones. Finally, using calculations with
Hamburger-Noether symbolic expressions, we show that the condition
T= (0) is true for generic moduli.

Invariants of symmetric bundles

Ph. Cassou-Noguès (Bordeaux, France)

This is a joint work with M. J. Taylor and B. Erez. We establish
comparison results between the Hasse-Witt invariants wt(E) of a sym-
metric bundle E over a scheme and the invariants of one of its twists
Eα. For general twists we describe the difference between wt(E) and
wt(Eα) up to terms of degree 3. Next we consider a special kind of
twist, which has been studied by A. Fröhlich. This arises from twist-
ing by a cocycle obtained from an orthogonal representation. A simple
important example of this twisting procedure is the bilinear trace form
of an étale algebra, which is obtained by twisting the standard/sum of
squares form by the orthogonal representation attached to the algebra.
We show how to explicitly describe the twist for representations arising
from very general tame actions. This involves the “square root of the
inverse different” which Serre, Esnault, Kahn, Viehweg and ourselves
had studied before. For torsors we show that, in our geometric set-up,
Jardine’s generalization of Fröhlich’s formula holds. Namely let (X,G)
be a torsor with quotient Y , let E be a symmetric bundle over Y , let
ρ : G → O(E) be an orthogonal representation and let Eρ,X be the
corresponding twist of E, then we verify up to degree 3 that the formula
wt(Eρ,X)spt(ρ) = wt(E)wt(ρ) holds. Here spt(ρ) and wt(ρ) are respec-
tively the spinor invariant and the Stiefel-Whitney class of ρ. The case
of genuinely tamely ramified actions is geometrically more involved and
leads us to introduce an invariant of ramification, which in a sense gives
a decomposition in terms of representations of the inertia groups of the
invariant introduced by Serre for curves. The comparison result in the
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tamely ramified case proceeds by reduction to the case of a torsor. Fi-
nally we will indicate how some of the previous results can be generalized
to the case where G is a non constant group scheme.

Rings in which elements are uniquely the sum of an
idempotent and a unit that commute

Jianlong Chen, Zhou Wang, and Yiqiang Zhou (Nanjing,
P.R.China)

A ring is called uniquely clean if every element is uniquely the sum
of an idempotent and a unit. The rings described by the title include
uniquely clean rings, and they arise as triangular matrix rings over com-
mutative uniquely clean rings. Various basic properties of these rings are
proved and many examples are given.

On Divisible and Torsionfree Modules

Nanqing Ding (Nanjing, China)

This talk is a report on joint work with Lixin Mao.
Let R be a ring. A left R-module M is said to be divisible (or P -

injective) if Ext1(R/Ra, M) = 0 for all a ∈ R. A right R-module N is
called torsionfree if Tor1(N, R/Ra) = 0 for all a ∈ R. The definitions
of divisible and torsionfree modules coincide with the classical ones in
case R is a commutative domain. It is clear that a right R-module N
is torsionfree if and only if the character module N+ is divisible by the
standard isomorphism Ext1(R/Ra,N+) ∼= Tor1(N,R/Ra)+ for every
a ∈ R.

In this paper, a ring R is called left P -coherent in case each principal
left ideal of R is finitely presented. A left R-module M (resp. right R-
module N) is called D-injective (resp. D-flat) if Ext1(G,M) = 0 (resp.
Tor1(N, G) = 0) for every divisible left R-module G. It is shown that
every left R-module over a left P -coherent ring R has a divisible cover; a
left R-module M is D-injective if and only if M is the kernel of a divisible
precover A → B with A injective; a finitely presented right R-module L
over a left P -coherent ring R is D-flat if and only if L is the cokernel of a
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torsionfree preenvelope K → F with F flat. We also study the divisible
and torsionfree dimensions of modules and rings. As applications, some
new characterizations of von Neumann regular rings and PP rings are
given.

Derived tame and derived wild algebras

Y. A. Drozd (Kiev, Ukraina)

Let Λ be a finite dimensional algebra over an algebraically closed field
k. We consider the bounded derived category of the category of finitely
generated Λ-modules, which can be identified with the category of finite
complexes of finitely generated projective Λ-modules modulo homotopy.
Similarly to [2] we define derived tame and derived wild algebras. Non-
formally, Λ is called derived tame if, for any fixed dimensions of the
components of such a complex, the non-isomorphic indecomposble com-
plexes form at most one-parameter families; it is called derived wild if
the classification problem for such complexes contains the classification
problem for all representations of any finitely generated k-algebra. (The
formal definitions can be found in [1, 3, 5].) The following main result
has been proved by V.Bekkert and the author [1, 3, 5].

Theorem. Every finite dimensional algebra over an algebraically closed
field is either derived tame or derived wild (never both).

We also introduce the parameter number defining a complex with the
prescribed dimensions of the components and prove the following result
[3, 4, 5].

Theorem. The parameter number is upper semicontinuous in flat fam-
ilies of algebras.

Corollary 1. A flat deformation of a derived tame algebra is derived
tame. Equivalently, a flat degeneration of a derived wild algebra is de-
rived wild.
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Algebras with skew-symmetric identity of degree 3
A. S. Dzhumadil’daev (Almaty, Kazachstan)

Algebras with one of the following identities are considered:

[[t1, t2], t3] + [[t2, t3], t1] + [[t3, t1], t2] = 0, (Lie-Admissible)

[t1, t2]t3 + [t2, t3]t1 + [t3, t1]t2 = 0, (0-Lie-Admissible (shortly 0-Alia))
{[t1, t2], t3}+ {[t2, t3], t1}+ {[t3, t1], t2} = 0,

(1-Lie-admissible (shortly 1-Alia))
where [t1, t2] = t1t2 − t2t1 and {t1, t2} = t1t2 + t2t1. For algebra A =
(A, ◦) with multiplication ◦ denote by A(q) an algebra with vector space
A and multiplication a ◦q b = a ◦ b + q b ◦ a.

Theorem Any algebra with a skew-symmetric identity of degree 3 is
(anti)-isomorphic to one of the following algebras:

Lie-admissible algebra
0-Alia algebra
1-Alia algebra
algebra of the form A(q) for some left-Alia algebra A and q ∈ K,
such that q2 6= 0, 1.

Any right (left) Alia algebra is anti-isomorphic to its opposite algebra,
left (right) Alia Algebra.

For anti-commutative algebra (A, ◦) call a bilinear map ψ : A×A → A
commutative cocycle, if

ψ(a ◦ b, c) + ψ(b ◦ c, a) + ψ(c ◦ a, b) = 0,
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ψ(a, b) = ψ(b, a),

for any a, b, c ∈ A.
Algebra with identities

[a, b] ◦ c + [b, c] ◦ a + [c, a] ◦ b = 0

a ◦ [b, c] + b ◦ [c, a] + c ◦ [a, b] = 0

is called two-sided Alia.
Theorem 2. For any anti-commutative algebra (A, ◦) with commu-

tative cocycle ψ an algebra (A, ◦ψ), where a ◦ψ b = a ◦ b + ψ(a, b), is
1-Alia. Conversely, any 1-Alia algebra is isomorphic to algebra of a form
(A, ◦ψ) for some anti-commutative algebra A and some commutative co-
cycle ψ. Moreover, if (A, ◦) is Lie algebra with commutative cocycle ψ,
then (A, ◦ψ) is two-sided Alia and, conversely, any two-sided Alia algebra
is isomorphic to algebra of a form (A, ◦ψ) for some Lie algebra A and
commutative cocycle ψ.

Theorem 3. Let L be classical Lie algebra over a field of characteristic
p 6= 2. Then it has non-trivial commutative cocycles only in the following
cases L = sl2 or p = 3.

Standard construction of q-Alia algebras. Let (U, ·) be associative com-
mutative algebra with linear maps f, g : U → U . Denote by Aq(U, ·, f, g)
an algebra defined on a vector space U by the rule

a ◦ b = a · f(b) + g(a · b)− q f(a) · b.
Then Aq(U, ·, f, g) is q-Alia.

Example 1. (C[x], ?) under multiplication a? b = ∂(a)∂2(b) is 1-Alia
and simple.

Example 2. (C[x], ?), where a?b = ∂3(a)b+4∂2(a)∂(b)+5∂(a)∂2(b)+
2a ∂3(b), is 0-Alia and simple. It is exceptional 0-Alia algebra.

Example 3. Let (λi,j) be symmetric matrix. Then (C[x1, . . . , xn], ?),
where a ? b =

∑
λi,j

(∂i(a)∂j(b)+∂i∂j(a)b/2) is 0-Alia. It is simple iff the
matrix (λi,j) is non-degenerate.

Example 4. Let m be positive integer and A = (C[x], ?) an algebra
with multiplication a?b = a∂m(b)−q∂m(a)b+q ∂m(ab) Then A is q-Alia
and simple.
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On automorphic functions on arithmetic schemes

I. B. Fesenko (Nottingham, United Kingdom)

The classical works of Tate and of Iwasawa in which they used an-
alytic dualities to prove the functional equation and meromorphic con-
tinuation of twisted by Galois character zeta functions of global fields
was extended in the seventies, as part of activity in the Langlands pro-
gramme, to the noncommutative one dimensional theory of zeta integrals
over algebraic groups on global fields (Godement, Jacques, Langlands).
A two dimensional version of the works of Tate and Iwasawa was de-
veloped in 2001-2005, it deals with zeta functions of regular models of
elliptic curves over global fields using new translation invariant measures
and integration on two dimensional local and adelic spaces associated to
the models. In my talk I will report on a very recent work 2006-2007,
part of which was stimulated by conversations with D. Kazhdan, H. Kim
and D. Gaitsgory, on the extension of the two dimensional work to al-
gebraic groups. In the case of arithmetic surfaces instead of one single
adelic space two very different adelic spaces come into play, one for in-
tegral structures of rank 1 (1-cycles, more algebraic geometry aspects)
and one for integral structures of rank 2 (0-cycles, arithmetic aspects). A
very general problem is to describe a new kind of empowered arithmetic
geometry on arithmetic surfaces in which the structures of rank 1 and
of rank 2 are appropriately blended. I will describe one blending which
leads to the definition of an object functions on which are automorphic
functions on the surface, and I will explain several possible applications
of this new development.

Versal deformations of algebraic structures

Alice Fialowski (Budapest, Hungary)

Versal deformations of different objects is a basic concept in studying
their properties. It decribes completely the local behaviour in the variety
of a given type objects. Namely, it characterizes its all nonequivalent
deformations and is unique at the infinitesimal level. In addition, versal
deformations provide us with a natural division of the moduli space of
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given structures into families, and give a geometric picture of the moduli
space. I will demonstrate the concepts in the case of Lie algebras.

On generalized prime essential rings and special and
nonspecial radicals

Halina France-Jackson (Port Elizabeth, South Africa)

In this paper all rings are associative and all classes of rings are closed
under isomorphisms and contain the one-element ring 0. The fundamen-
tal definitions and properties of radicals can be found in [1] and [4]. If µ
is a hereditary class of rings, U (µ) denotes the upper radical generated
by µ , that is, the class of all rings which have no nonzero homomorphic
images in µ. For any class µ of rings an ideal I of a ring R is called an
µ-ideal if the factor ring R/I is in µ. For a radical ρ the class of all ρ-
semisimple rings is denoted by S (ρ). π denotes the class of all prime rings
and β the prime radical. The notation I C R means that I is a two-sided
ideal of a ring R. For I C R ∈ S (β), {r ∈ R : rI = 0} = {r ∈ R : Ir = 0}
is an ideal of R which we shall denote by I∗. An ideal I of a ring R is
called essential in R if I ∩ J 6= 0 for any nonzero two-sided ideal J of R.
If R ∈ S (β) this is equivalent to I∗ = 0. 0 is an inessential ideal. Hered-
itary and essentially closed class of prime rings (respectively semiprime
rings) is called a special class (respectively weakly special class) and
the upper radical generated by a special class (respectively weakly spe-
cial class) is called a special radical (respecively supernilpotent radical).
Unless otherwise stated, throughout this paper the letter α denotes a
supernilpotent radical and σ denotes a special class of rings.

A ring R is called (α, σ)-essential if R is α-semisimple and each σ-
ideal P of R is essential in R. (α, σ)-essential rings form a generalization
of prime essential rings, that is, semiprime rings whose every π-ideal is
essential. Prime essential rings were first introduced by Rowen [7] in his
study of semiprime rings and their subdirect decompositions and they
have been a subject of investigations of many authors (see [2], [3], [6]
and [9]) since.

In this paper we show that many important results concerning prime
essential rings are also valid for (α, σ)-essential rings and demonstrate
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how (α, σ)-essential rings can be used to determine whether a supernilpo-
tent radical is special. Using (α, σ)-essential rings, we generalize Ryabuk-
hin’s example of supernilpotent nonspecial radical by constructing infin-
itely many supernilpotent nonspecial radicals α such that S (α)∩π = {0}
and show that such radicals form a sublattice of the lattice of all su-
pernilpotent radicals.
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Normalizers of subsystem subgroups in finite groups
of Lie type

A. A. Galt (Novosibirsk, Russia)

Finite simple groups of Lie type form the main part of known finite
simple groups. One of the most important subgroups in finite groups of
Lie type are reductive subgroups of maximal rank. These subgroups ap-
pear as Levi factors of parabolic subgroups and centralizers of semisimple
elements, and also as subgroups containing maximal tori. Moreover, re-
ductive subgroups of maximal rank are the principal subgroups in the
inductive investigation of subgroup structure in finite groups of Lie type.
However, some important questions concerning internal structure of re-
ductive subgroups of maximal rank remain unsolved.
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Let G be a group, A, B, H are subgroups of G and B be a nor-
mal subgroup of A (B £ A). Denote NH(A/B) = NH(A) ∩ NH(B).
If x ∈ NH(A/B), then x induces an automorphism Ba 7→ Bx−1ax of
the quotient group A/B. Thus, there is a homomorphism of NH(A/B)
into Aut(A/B). The image of NH(A/B) under this homomorphism is
denoted by AutH(A/B) and is called a group of induced automorphisms.

If R is a reductive subgroup of maximal rank in a finite group of Lie
type G, then R = T (G1 ◦ . . . ◦ Gm), where T is a maximal torus of G,
which is contained in R, and G1 ◦ . . . ◦Gm is a central product of finite
groups of Lie type defined over some extension of the base field of G and
their ranks are less than the rank of G. Subgroups G1, . . . , Gm, arising
in this way, are called subsystem subgroups. In our work we obtain the
structure of NR(Gi) in terms of AutR(Gi).

Reconstructing schemes from abelian categories

Grigory Garkusha (Swansea, United Kingdom)

Let ModR (respectively QGrA) denote the category of R-modules
(respectively graded A-modules modulo torsion modules) with R (re-
spectively A = ⊕n>0An) a commutative ring (respectively a commuta-
tive graded ring).

Theorem 2 (Classification, Garkusha-Prest, 2006). Let R (respectively
A) be a commutative ring (respectively commutative graded ring which
is finitely generated as an A0-algebra). Then the maps

V 7→ S = {M ∈ Mod R | suppR(M) ⊆ V }, S 7→ V =
⋃

M∈S
suppR(M)

and

V 7→ S = {M ∈ QGr A | suppA(M) ⊆ V }, S 7→ V =
⋃

M∈S
suppA(M)

induce bijections between
(1) the set of all subsets V ⊆ Spec R ( respectively V ⊆ ProjA) of

the form V =
⋃

i∈Ω Yi with Spec R \ Yi (respectively ProjA \ Yi)
quasi-compact and open for all i ∈ Ω,

(2) the set of all torsion classes of finite type in ModR (respectively
tensor torsion classes of finite type in QGrA).
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The following result says that there is a 1-1 correspondence between
the finite localizations in ModR and the triangulated localizations of
perfect complexes Dper(R).

Theorem 3 (Garkusha-Prest, 2006). Let R be a commutative ring. The
map

S 7→ T = {X ∈ Dper(R) | Hn(X) ∈ S for all n ∈ Z}
induces a bijection between

the set of all torsion theories of finite type in Mod R,
the set of all thick subcategories of Dper(R).

We consider the lattices LSerre(Mod R) and LSerre(QGr A) of (tensor)
torsion classes of finite type in Mod R and QGrA, as well as their prime
ideal spectra Spec(Mod R) and Spec(QGr A). These spaces come natu-
rally equipped with sheaves of rings OMod R and OQGr A. The following
result says that the schemes (Spec R,OR) and (ProjA,OProj A) are iso-
morphic to (Spec(Mod R),OMod R) and (Spec(QGr A),OQGr A) respec-
tively.

Theorem (Reconstruction, Garkusha-Prest, 2006). Let R (respectively
A) be a commutative ring (respectively commutative graded ring which
is finitely generated as an A0-algebra). Then there are natural isomor-
phisms of ringed spaces

(Spec R,OR) ∼−→ (Spec(Mod R),OMod R)

and
(Proj A,OProj A) ∼−→ (Spec(QGrA),OQGr A).

A scheme X is locally coherent if it can be covered by open affine
subsets Spec Ri, where each Ri is a coherent ring. X is coherent if it
is locally coherent, quasi-compact and quasi-separated. By coh(X) we
denote the category of coherent sheaves on X.

Proposition 4. Let X be a quasi-compact, quasi-separated scheme.
Then X is coherent if and only if the category of coherent sheaves coh(X)
is abelian.

The next result was proven by Gabriel for noetherian schemes.

Theorem 5 (Classification). Let X be a coherent scheme. Then the
maps

V 7→ S = {F ∈ coh(X) | suppX(F) ⊆ V }
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and
S 7→ V =

⋃

F∈S
suppX(F)

induce bijections between
the set of all subsets of the form V =

⋃
i∈Ω Vi with quasi-compact

open complement X \ Vi for all i ∈ Ω,
the set of all tensor Serre subcategories in coh(X).

Theorem 6. Suppose X is a coherent scheme. The map

S 7→ T = {X ∈ Dper(X) | Hn(X ) ∈ S for all n ∈ Z}
induces a bijection between

the set of all tensor Serre subcategories in coh(X),
the set of all tensor thick subcategories of Dper(X).

Theorem 7 (Reconstruction). Suppose X is a coherent scheme. There
is an isomorphism of ringed spaces

(X,OX) ∼−→ (Spec(coh(X)),Ocoh(X)),

where (Spec(coh(X)),Ocoh(X)) is a ringed space associated to the lattice
LSerre(coh(X)) of tensor Serre subcategories in coh(X).

Cohomology of algebras with small complexity

A. I. Generalov (St. Petersburg, Russia)

The complexity of an algebra R is a rate of growth of dimensions
of modules in minimal projective resolutions of simple R-modules. We
announce recent results on calculation of cohomology algebras of some
families of algebras with “small” complexity, namely,

1) Yoneda algebras for several families of dihedral, or semidihedral
type (in classification of K. Erdmann [1]);

2) Hochschild cohomology algebra for certain families of dihedral, or
quaternion type.

In this calculation we use direct methods of construction of resolutions
of suitable modules. Such methods were earlier developed in [2, 3].

Using similar technique we describe also Hochschild cohomology alge-
bra for the integer group ring ZD4m of the dihedral group D4m of order
4m.
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On Hochschild cohomology of algebras of quaternion
type with two vertices

A. I. Generalov, A. A. Ivanov, and S. O. Ivanov (St. Petersburg,
Russia)

Let K be an algebraically closed field, and let Q(2B)1(k, s, a, c) be a
family of K-algebras of quaternion type from classification of K. Erd-
mann [1]. We describe the Hochschild cohomology algebra HH∗(R) of
an algebra R in this family over the field K with characteristic 2. We
distinguish several cases (depending on such conditions as k and s are
even or odd, c is zero or nonzero). In the each of these cases we pick out
generators for the algebra HH∗(R) and write down relations which are
satisfied by the corresponding generators. Using results in [2] we extend
the description of the algebra HH∗(R) to all algebras of quaternion type
with two simple modules.

The calculation of the algebra HH∗(R) is based on the construction
of the (4-periodic) bimodule minimal projective resolution of the algebra
R = Q(2B)1(k, s, a, c) (over the field K with arbitrary characteristic).
This resolution was discovered independently of [3].
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On characterization of finite simple linear groups by
spectrum

M. A.Grechkoseeva (Novosibirsk, Russia)

The spectrum ω(G) of a finite group G is the set of element orders
of G. A finite group is called recognizable by spectrum if every finite
group H with ω(H) = ω(G) is isomorphic to G. If denote by h(G) the
number of pairwise non-isomorphic finite groups H with ω(H) = ω(G),
then G is recognizable if and only if h(G) = 1. If 1 < h(G) < ∞ then G
is said to be almost recognizable, and if h(G) = ∞ that G is said to be
non-recognizable. We say that the recognizability question is solved for
a group G if the value of h(G) is known.

Since a finite group with nontrivial normal soluble subgroup is non-
recognizable, each recognizable or almost recognizable group is an ex-
tension of the direct product M of several nonabelian simple groups by
some subgroup of Out(M). For this reason of prime interest is the recog-
nition problem for simple and almost simple groups. The first examples
of recognizable by spectrum simple groups, namely, the alternating group
A5 and the projective special linear group L2(7), appeared in works by
Shi Wujie in the middle of 1980th after the classification of finite simple
groups had been announced to be complete. These works initiated nu-
merous investigations on the subject. Here we consider the recognition
problem for simple linear groups over fields of characteristic 2.

At present the recognizability question is solved for L2(2m) [1], L3(2m)
[2], Ln(2m), n = 2k > 16 [3], and Ln(2) [4]. It turns out all these groups
are recognizable by spectrum. We prove that finite simple linear groups
over fields of characteristic 2 are recognizable or almost recognizable
providing their dimension is sufficiently large.

Theorem. Let L = Ln(q) where q is even and n > 24. Then h(L) <
∞. Moreover, if n and q − 1 are coprime then h(L) = 1.

Supported by RFBR grant Nos. 05-01-00797 and 06-01-39001, and by
SB RAS Integration Project No. 2006.1.2.
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Non-additive geometry

M. Shai Haran (Haifa, Israel)

We develop a language that makes the analogy between geometry
and arithmetic more transparent. In this language there exists a base
field F , "the field with one element". There is a fully faithful functor
from commutative rings to "F-rings". There is a notion of the F -ring of
"integers"of a real or complex prime of a number field K (analogous to
the p-adic integers), and there is a compactification of the spectrum of
the ring of integers of K. There is a notion of tensor product of F -rings
giving rise to arithmetical surface relevant for the study of arithmetical
problems whose geometric analogues are well known (such as ABC and
the Riemann hypothesis).

Subgroups of unitriangular groups of infinite
matrices

Waldemar HoÃlubowski (Gliwice, Poland)

In our talk we show, that for any associative ring R, the subgroup
UTr(∞, R) of row finite matrices in UT (∞, R) – the group of all infi-
nite dimensional (indexed by N) upper unitriangular matrices over R, is
generated

by strings (block-diagonal matrices with finite blocks along the main
diagonal). We note that similar result is true for the group of infinite
invertible banded matrices for any associative ring R [1]. This allows us
to define a large family of subgroups of UTr(∞, R) associated to some
growth functions. The smallest subgroup in this family, called the group
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of banded matrices, is generated by 1-banded simultaneous elementary
transvections (a slight generalization of the usual notion of elementary
transvections). We introduce a notion of net subgroups and characterize
the normal net subgroups of UT (∞, R) [2].

References

[1] В. Голубовски, Подгруппы бесконечных унитреугольных матриц, Зап. На-
учн. Сем. ПОМИ 338 (2006), 137–153.

[2] W. HoÃlubowski, Groups of infinite matrices Proceedings of Groups St. Andrews
2005, Cambr. University Press 340 (2007), 405–410.

Artinian rings with supersolvable adjoint group

R. Iu. Ievstafiev (Kiev, Ukraina)

Let R be an associative ring, not necessarily with a unit element.
The set of all elements of R forms a monoid under the circle operation
a ◦ b = a + b + ab for all a and b from R. The group of all invertible
elements of this monoid is called the adjoint group of R and is denoted
by R◦. Obviously, if R has a unity 1, then 1 + R◦ coincides with the
multiplicative group R∗ of R and the mapping r 7→ 1 + r with r ∈ R◦ is
an isomorphism from R◦ onto R∗.

Recall that every associative ring R can also be viewed as a Lie ring
under the Lie multiplication [a, b] = ab− ba for all a, b ∈ R. For additive
subgroups V and W of R, we denote by [V, W ] the additive subgroup of
R generated by all Lie commutators [v, w] with v ∈ V and w ∈ W . The
subgroup V is a Lie ideal of R if [V,R] ⊆ V .

The derived chain of a Lie ring R is defined inductively as δ0(R) = R
and δn+1(R) = [δn(R), δn(R)] for each integer n > 0. The ring R is called
Lie solvable if δm(R) = 0 for some m > 1. Recall also that solvable groups
are defined in a corresponding way, where the usual group commutator
replaces the Lie commutator. A group is supersolvable if it contains a
finite invariant series with cyclic sections. Similarly to this definition, we
say that a ring is Lie supersolvable if it has a finite chain of Lie ideals
with cyclic sections.

We shall say that a ring is artinian if it satisfies the minimal condition
for its right or left ideals. Denote by J(R) and Z(R) the Jacobson radical
and the center of a ring R, respectively. Following Jacobson [1], a ring
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R is called radical if R = R◦, which means that R coincides with its
Jacobson radical. A ring R with a unit element is local if R modulo its
Jacobson radical is a division ring.

It was shown by Eldridge [2] that an artinian ring whose adjoint group
is finitely generated and solvable must be finite. Therefore in the case of
artinian rings with the supersolvable adjoint group we may only consider
finite rings. By an immediate consequence from [3, Corollary B], every
finite ring R with the supersolvable adjoint group can be written in the
form R = S⊕T , where either S = 0 or S = M2(F2)⊕ . . .⊕M2(F2) and T
is commutative modulo J(R). The following theorem supplements this
result.

Theorem A. Let R be a finite ring. If the adjoint group R◦ is super-
solvable and the factor ring R/J(R) is commutative, then R is a direct
sum of ideals Ri each of which is a ring of one from the following types:

(1) Ri is a nilpotent ring;
(2) the factor ring Ri/J(Ri) is a direct sum of fields of the same prime

order;
(3) Ri is a local ring such that Ri = Z(Ri) + J(Ri) and the factor

ring Ri/J(Ri) is a field that differs from its simple subfield.
It was proved by Zalesskii and Smirnov [4] that if a ring R of char-

acteristic 0 with a unit element is Lie solvable, then its multiplicative
group R∗ is solvable. However, for arbitrary rings, the corresponding re-
sult does not hold. For instance, the ring R of all (2×2)-matrices over the
field F (x), where F (x) is the field of rational functions over the Galois
field F2, satisfies the equality [δ2(R), R] = 0, whereas the multiplicative
group R∗ contains a non-abelian free subgroup and so is non-solvable.

On the other hand, Amberg and Sysak [5] have shown that every
radical ring with the solvable adjoint group must be Lie solvable. Fur-
thermore, the adjoint group of any Lie metabelian ring is metabelian
by a result of Krasil’nikov [6]. Now we can pose the following question.
What correlation exists between the Lie supersolvability of an associa-
tive ring and the supersolvability of its adjoint group? In particular, the
next example shows that the adjoint group of a Lie supersolvable ring is
not neccesarily supersolvable.

Example. There exists a finite local Lie supersolvable ring with the
non-supersolvable adjoint group.

At the same time we have the following result.
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Theorem B. Let R be a finite ring. If the adjoint group R◦ is super-
solvable, then R is Lie supersolvable.
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Subregular subsets and subregular characters of the
unitriangular group

M. V. Ignatev (Samara, Russia)

Let k = Fq, char k = p. Let G = Gn(k) be the group of all strictly
lower-triangular matrices with 1’s on the main diagonal; we assume that
p > n. The orbit method establishes one-to-one correspondence between
irreducible complex characters and coadjoint orbits of G [3]. Orbits of
maximum dimension µ(n) are described in [4], correspondent charac-
ters are described in [1]. Subregular orbits (i.e., orbits of dimension =
µ(n)−2) and correspondent characters also play an important role. Sub-
regular orbits are described in [2]. Here we give an explicit description
of subregular characters.

By Φ = Φ(n) denote the set of all pairs (i, j), 1 6 j < i 6 n. Let
n1 = [(n − 1)/2]. Let f = (ξij) be the canonical form on a subregular
orbit, 1 6 d = j0 < n1 (see [2, Theorem 3.3]), and χ = χf be the
correspondent character. Denote Supp(f) = {(i, j) ∈ Φ | f(eij) 6= 0},
α = (n − d + 1, n − d), γ = (n − d + 1, d). We say that D ⊂ Φ is d-
subregular if D ⊂ Supp(f) ∪ α ∪ γ.
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Given any d-subregular subset D and any map ϕ : D → F∗q : (i, j) 7→
ϕij , we define eD(ϕ) =

∑
(i,j)∈D ϕijeij ∈ g, xD(ϕ) = 1n + eD(ϕ) ∈ G,

KD(ϕ) = {g · xD(ϕ) · g−1, g ∈ G} and

Kf =
⋃

D∈Sd

ϕ∈Mf (D)

KD(ϕ),

where Sd is the set of all d-subregular subsets of Φ and Mf (D) =
{ϕ : D → F∗q | ξd,n−dϕd+1,d = ξd+1,n−d+1ϕn−d+1,n−d}. Note that all
KD(ϕ) can be described in terms of coefficients of minors of the charac-
teristic matrix.

Let
R(D) = {(i, j) ∈ Φ | (i, k), (k, j) /∈ D for all i < k < j},
Φd = {(i, j) ∈ Φ(n) | i > n− j + 1, j /∈ {d, n− d}, i /∈ {n− d + 1, n− d}},
Φreg = {(i, j) ∈ Φ(n) | i > n− j + 1},

mD =

{
|R(D) ∩ Φreg| − 1, if α /∈ D,

|R(D) ∩ Φd|+ n− 2d− 1, if α ∈ D.

Fix any non-trivial character θ of Fq and put θf : g → C : x 7→ θ(f(x)).
Theorem. Let g ∈ G. If g /∈ Kf then χ(g) = 0. If g ∈ KD(ϕ) ⊂ Kf

then χ(g) = qmD · θf (eD(ϕ)).
This theorem can be proved by Mackey method of semi-direct de-

composition of G and by induction on n. The case d = n1 is studied
similarly.

This research was supported by Samara regional grant for students
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A Characterizaton of 2Dn(q) by order of normalizer
of Sylow subgroups

A. Iranmanesh and N. Ahanjideh (Tehran, Iran)

In 1992, Bi showed that projective special linear group L2(q) can be char-
acterized by the order of normalizer of its Sylow subgroups. This type
of characterization is done for the following groups: Projective special
linear group Ln(q) such that n > 3, projective symplectic group S4(q),
alternating groups, Janko groups, Mathieu groups and Un(q).
Let (V, f) be a orthogonal space, where V = V2n(q), f is a nondegenerate
orthogonal form and there are maximum (n − 1) distinct hyperplanes
in V. Define SO−

2n(q) = {A ∈ SL2n(q)|f(Av, Aw) = f(v, w) for all v,
w ∈ V } and 2Dn(q) = Ω−2n(q)/Z, where Ω−2n(q) = (SO−

2n(q))′ and Z
is the center of Ω−2n(q). In this paper, we characterize the simple group
2Dn(q) by the order of normalizer of its Sylow subgroups. In fact we
proved the following Theorem:
Theorem. Let G be a finite group. If |NG(R)| = |N2Dn(q)(R̄)| for ev-
ery prime r, with n > 2, then G ∼= 2Dn(q), where R ∈ Sylr(G) and
R̄ ∈ Sylr(2Dn(q)).

Noether’s problem for some non-abelian p-groups

Ming-chang Kang (Taipei, Taiwan)

Let K be any field and G be a finite group. Let G act on the rational
function field K(xg : g ∈ G) by K-automorphisms and h · xg = xhg for
any g, h ∈ G. Define K(G) = K(xg : g ∈ G)G to be the fixed field of
K(xg : g ∈ G) under the action of G. Noether’s problem asks under what
situations the field K(G) is rational (= purely transcendental ) over K.

Noether’s problem is related to the inverse Galois problem which asks
whether there is a Galois extension field L over K with Gal(L/K) '
G, provided that K is a prescribed algebraic number field and G is a
prescribed finite group. In fact, if K(G) is rational over K, it follows
that K(G) is retract rational (equivalently, there exists a generic Galois
G-extension over K), which will guarantee the existence of the inverse
Galois problem for K and G.
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In this talk we will discuss Noether’s problem, both rationality and
retract rationality, for some non-abelian p-groups.

Twisted K-theory

Max Karoubi (Paris, France)

Twisted K-theory has its origins in the author’s PhD thesis (http:
//www.numdam.org/item?id=ASENS_1968_4_1_2_161_0) and in
the paper with P. Donovan <http://www.numdam.org/item?id=
PMIHES_1970__38__5_0>

The objective of this lecture is to revisit the subject in the light of
new developments inspired by Mathematical Physics. See for instance E.
Witten (hep-th/9810188), J. Rosenberg (http://anziamj.austms.org.au
/JAMSA/V47/Part3/Rosenberg.html), C. Laurent-Gentoux, J.-L. Tu,
P. Xu (ArXiv math/0306138) and M.F. Atiyah, G. Segal (ArXiv math/
0407054), among many authors.

Natural differential operations on manifolds and
algebraic groups

P. I.Katsylo, D. A. Timashev (Moscow, Russia)

Let M be a differentiable n-dimensional manifold over the field K = R
or C and V,W → M be two tensor bundles over M . Let Γ(V) denote
the space of global sections of a bundle V → M .

Definition. A natural differential operation (NDO) of order k from V
to W is a map D : Γ(V) → Γ(W) such that:

(1) In local coordinates, (Dv)λ = δλ({xi, vµ, ∂l1
1 · · · ∂ln

n vµ}), where
v ∈ Γ(V), λ, µ are multi-indices of tensor coordinates, xi (i =
1, . . . , n) are coordinates on M , and ∂i = ∂/∂xi, 1 6 l1 + · · · +
ln 6 k;

(2) δλ are polynomials in vµ, ∂l1
1 · · · ∂ln

n vµ;
(3) δλ do not change under any coordinate transform.
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It is easy to see that condition (3) implies that the coefficients of the
polynomials δλ are constant numbers which do not depend on xi’s. It
also implies that the local formulæ (1) may be used to define the NDO D
between any tensor bundles of the same type as V,W on any n-manifold.

More generally, NDO’s may be defined on an open subbundle of V
consisting of “nondegenerate” tensors (in a certain sense). Then it is
natural to replace (2) by a condition that δλ are rational functions whose
denominators depend only on vµ’s.

NDO’s are important in differential geometry since they have an in-
trinsic geometric or “physical” meaning, being independent of the choice
of local coordinates.

Examples:
(1) NDO’s of order 0 are just tensor operations (contraction, per-

mutation of indices, tensoring by the Kronecker delta, and their
combinations).

(2) The exterior differential d is an NDO of order 1 from
∧p

T ∗ to∧p+1
T ∗, where T denotes the tangent bundle.

(3) The commutator of vector fields is an NDO of order 1 from T×T
to T .

(4) The Riemann curvature tensor is an NDO of order 2 from the
bundle of Riemannian metrics (S2T ∗)+ to T ⊗ (T ∗)⊗3.

We propose an algebraic approach to the study of natural differential
operations. It is based on an observation that an NDO D : Γ(V) → Γ(W)
of order k defines a polynomial (or rational) map δ : V (k) := V ⊗J

(k)
n →

W , where V, W are typical fibers of V,W (i.e., certain spaces of ten-
sors over Kn) and J

(k)
n = K[x1, . . . , xn]/(x1, . . . , xn)k+1 is the truncated

polynomial algebra of k-jets of functions. Furthermore, coordinate trans-
forms induce an action of GL

(k+1)
n on V (k), where GL

(k)
n = AutJ (k)

n is
the group of k-jets of diffeomorphisms of Kn fixing 0. The differential
operation D is natural iff δ is GL

(k+1)
n -equivariant, where GL

(k+1)
n acts

on W through its quotient group GL
(1)
n = GLn.

Note that there is a Levi decomposition GL
(k)
n = GLn i NGL

(k)
n ,

where NGL
(k)
n consists of jets of diffeomorphisms with identical differ-

ential. Thus δ must be GLn-equivariant and NGL
(k+1)
n -invariant. We

conclude that the study (e.g., classification) of NDO’s reduces to a prob-
lem in invariant theory of (non-reductive) algebraic groups.
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Let us formulate our main results. The first one is a finiteness theorem:

Theorem. Fix a tensor bundle V and consider NDO’s D : Γ(V) →
Γ(W) of order 6 k and of degree 6 d in partial derivatives ∂l1

1 · · · ∂ln
n vµ.

Then there exists finitely many tensor bundles W1, . . . ,WN and NDO’s
Dp : Γ(V) → Γ(Wp) such that every D is representable as Dv =
=

∑
p,q Φpq(Dpv ⊗ v⊗q), ∀v ∈ Γ(V), where Φpq are linear tensor op-

erations.

Our next result is a short conceptual proof for the classification of
linear NDO’s due to Schouten, Rudakov, Chuu-Lian Terng, and Kirillov:

Theorem. Every linear NDO of order > 0 is a composition of the ex-
terior differential with tensor operations.

To formulate the 2nd classification theorem, we need to extend the
definition of NDO to varieties with an additional structure, by which
we mean a tensor field ω satisfying some natural differential equation
and/or nondegeneracy condition (e.g., a symplectic form). We extend
Definition 3 by assuming that δλ also depend on the components of ω
and their partial derivatives.

Theorem. Every linear NDO of order > 0 on symplectic manifolds is
a composition of the exterior differential d or symplectic Laplacian dd∗

with tensor operations.

Let us explain the idea of our proofs. Without loss of generality we
may assume that V,W are irreducible GLn-modules. Given an equivari-
ant linear map δ : V (k) → W , we prove that Sk(Kn)∗ ⊗ V ⊂ Ker δ by
showing that Sk(Kn)∗ ⊗ V is spanned by ξ · v, where ξ is in the Lie
algebra of NGL

(k)
n and v ∈ V (k). Thus we reduce the order of the linear

operation to 1 (resp. 2) and even to 0, unless D = d or dd∗.
Our final result concerns deformation quantization. Recall:

Definition. Let M be a Poisson variety with the Poisson bracket {f, g} =
β(df, dg), where β ∈ Γ(

∧2
T ) is the Poisson bivector, and F be the sheaf

of differentiable functions. A deformation quantization on M is an asso-
ciative product ? on the sheaf F [[h̄]] of formal power series with differ-
entiable coefficients that is K[[h̄]]-linear with respect to infinite formal
sums and is defined on F by a formula

(‡) f ? g = fg + h̄{f, g}+ · · ·+ h̄mβm(f, g) + · · · ,
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where βm (m > 2) are bilinear differential operators.

There are several constructions of deformation quantization on sym-
plectic and Poisson manifolds, and each of them requires some addi-
tional structure like symplectic connection etc. We justify this principle
by proving the following:

Theorem. There exist no NDO’s βm, m = 2, . . . , on a Poisson manifold
such that Formula (‡) defines an associative product on F [[h̄]]. There
even does not exist NDO β2 such that ? in (‡) is associative mod h̄3.

PI Index of Cartesian Product Graphs

M. H. Khalifeh and H. Yousefi-Azari (Tehran, Iran), A. R.
Ashrafi (Kashan, Iran)

Let G be a connected graph with vertex and edge sets V (G) and E(G),
respectively. As usual, the distance between the vertices u and v of G is
denoted by d(u, v) and it is defined as the number of edges in a minimal
path connecting the vertices u and v.

A topological index is a real number related to a graph. It must be a
structural invariant, i.e., it preserves by every graph automorphisms. The
Wiener index W is the first topological index to be used in mathematics.
Usage of topological indices began in 1947 when Harold Wiener devel-
oped the most widely known topological descriptor, the Wiener index,
and used it to determine physical properties of types of alkanes known
as paraffins. In a graph theoretical language, the Wiener index is equal
to the count of all shortest distances in a graph.

Let G be a graph and e = uv an edge of G. neu(e|G) denotes the num-
ber of edges lying closer to the vertex u than the vertex v, and nev(e|G)
is the number of edges lying closer to the vertex v than the vertex u. The
Padmakar-Ivan (PI) index of a graph G is defined as PI(G) =

∑
e∈E(G)

[neu(e|G)+nev(e|G)]. In this definition, edges equidistant from both ends
of the edge e = uv are not counted. We call This index, edge PI index
and denote by PIe(G). We also define vertex PI index of G, PIv(G), as
the sum of [meu(e|G) + mev(e|G)] over all edges of G, where meu(e|G)
is the number of vertices lying closer to the vertex u than the vertex v
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and mev(e|G) is the number of vertices lying closer to the vertex v than
the vertex u.

The Cartesian product G×H of graphs G and H has the vertex set
V (G×H) = V (G)× V (H) and (a, x)(b, y) is an edge of G×H if a = b
and xy ∈ E(H), or ab ∈ E(G) and x = y. If G1, G2, · · · , Gn are graphs
then we denote G1×· · ·×Gn by

⊗n
i=1 Gi. The main result of this paper

is as follows:
Theorem 1. Let G1, G2, · · · , Gn be connected graphs. Then

PIv(
⊗n

i=1 Gi) =
n∑

i=1

(
n∏

j=1,j 6=i

|V (Gi)|2)PIv(Gi), and

PIe(
n⊗

i=1

Gi) =
n∑

i=1

(
n∏

j=1,j 6=i

|V (Gj)|2)PIe(Gi)

+
n∑

i=1

PIv(Gi)
n∑

j=1,j 6=i

|V (Gj)||E(Gj)|
n∏

k=1,k 6=i,j

|V (Gk)|2.

Corollary. If G is a connected graph then PIe(Gn) = |V (G)|2(n−1)

(PIe(G)+n(n−1) |E(G)|
|V (G)|PIv(G)) and PIv(Gn) = n|V (G)|2(n−1)PIv(G).

Lemma 1. Let G be a graph. Then PIv(G) 6 |E(G)||V (G)| with equal-
ity if and only if G is bipartite.

The previous lemma shows that for a tree T with exactly n vertices,
PIv(T ) = n(n− 1).
Corollary (Klavzar 2006). If G is a bipartite connected graph then
PIe(Gn) = n|V (G)|2(n−1)PI(G) + n(n− 1)|E(G)|2|V (G)|2(n−1).
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On the number of maximal 2-signalizers in finite
simple symplectic and orthogonal groups

A. S.Kondratiev (Ekaterinburg, Russia)

The notion of a signalizer introduced by J. Thompson in [1] plays an
important rôle in the finite group theory, in particular, in the method of
signalizer functor.

If G is a finite group, p is a prime and P is a Sylow p-subgroup
of G, then any P -invariant p′-subgroup of G is called P -signalizer or
simply p-signalizer. The case of 2-signalizers is of the greatest interest. In
connection with announcing of the classification of finite simple groups,
D. Gorenstein in [2, Section 4.15] posed the question of the study of
properties of signalizers in known finite simple groups.

Because NG(P ) acts on the set FG(P ) of all maximal P -signalizers of
the group G, the following problems naturally arise:

(1) What is the cardinality of the set FG(P )?

(2) How many NG(P )-orbits has the set FG(P )?

(3) What NG(P )-orbits in FG(P ) are conjugated in G (or Aut(G))?

(4) What are the isomorphism types of elements of FG(P )?
In [3] the author jointly with V. D. Mazurov obtained the complete

classification of maximal 2-signalizers in finite simple groups up to con-
jugacy, in particular, the solution of the problem (4). In addition, the
problems (1), (2), (3) are solved for maximal 2-signalizers in all finite sim-
ple groups except symplectic and orthogonal groups. In the given work,
we solve these problems for remaining cases. The following theorem is
proved.

Theorem. If G is a symplectic or orthogonal finite simple group and
P is a Sylow 2-subgroup of G, then FG(P ) = 1.

The work is supported by RFBR (project 07-01-00148) and RFBR-
NNSF (project 05-01-39000).
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Affine representations of three dimensional algebraic
tori

Yu. Yu. Krutikov (Samara, Russia)

Let k be an arbitrary field, ks its separable closure, G = Gal(ks/k)
the absolute Galois group of k. Recall, that an algebraic k-torus is an
affine group scheme of the form

T = Spec(ks[T̂ ])G,

here T̂ is a torsion-free G-module of finite Z-rank such that T̂ ∼= X(T ),
where X(T ) is a module of rational characters of T . As linear algebraic
group T admits a regular embedding ϕ : T ↪→ GLn,k for a suitable n. As
affine variety T can be embedded to the affine space Am. Let us state
the following problems

(1) (the strong optimization problem) Find the minimal m = m(T )
such that T can be regularly embedded into Am.

(2) (the weak optimization problem) Find the minimal n = n(T )
such that T can be regularly embedded into GLn,k.

In the case of quasisplit k-tori m(T ) = n(T ) + 1, and n(T ) = dimT,
in the case of norm tori m(T ) = n(T ) = dimT + 1. In the rest cases
m(T ) 6 n(T ) and we have found the series of examples when the last
inequality is strong. Finally, we obtain the complete solution of the weak
optimization problem for three dimensional algebraic tori. The result is
following

Theorem Let T be a three dimensional k-torus such that X(T ) is an
indecomposable G-module then the following values of n(T ) are possible:
3, 4, 6, 8, 12.

We have extended this result and obtained the corresponding affine
embeddings of the tori. For example, consider the maximal finite sub-
groups in GL(3,Z), which are three nonequivalent integral representa-
tions of S4 × S2. Then for the tori with these decomposition groups the
affine representation are following:

T34 = RF3/k

(
R1

F6/F3
(Gm)

)
,
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here Fi/k are non normal extensions of degree i, i=3 or 6 and k ⊂
F3 ⊂ F6.

T35 = R
F

(1)
6 /k

(
R1

F12/F
(1)
6

(Gm)
) ⋂

⋂
ker

(
RL/k(Gm)

N
L/F

(1)
16−→ R

F
(1)
16 /k

(Gm)

)
⋂

⋂
ker

(
RL/k(Gm)

N
L/F

(2)
16−→ R

F
(2)
16 /k

(Gm)

)
⋂

⋂
ker

(
RL/k(Gm)

N
L/F

(2)
6−→ R

F
(2)
6 /k

(Gm)

)
,

here F12/k is a non normal extension of degree 12, F
(j)
i /k are non

normal extensions of degree i, i=6 or 16, j=1 or 2 and k ⊂ F
(1)
6 ⊂ F12.

T36 = RF4/k

(
R1

F8/F4
(Gm)

) ⋂
RF2/k

(
R1

F8/F2
(Gm)

)
,

here Fi/k are non normal extensions of degree i, i=4 or 8 and k ⊂
F4 ⊂ F8.

Such affine representations of three dimensional tori allow us to pro-
vide the following calculations in an explicit form using Computer Alge-
bra

description of groups T (F ) of F -points for a torus T
finding the parameterization of rational tori T .
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Chisini’s Conjecture for generic projections of the
surfaces and applications

V. S. Kulikov (Moscow, Russia)

Let B ⊂ P2 be an irreducible plane algebraic curve over C with ordi-
nary cusps and nodes, as the only singularities. Denote by 2d the degree
of B, and let g be the genus of its desingularization, c the number of
its cusps, and n the number of its nodes. A curve B is called the dis-
criminant curve of a generic covering of the projective plane if there



130

exists a finite morphism f : S → P2, deg f > 3, satisfying the following
conditions:

(i) S is a non-singular irreducible projective surface;
(ii) f is unramified over P2 \B;
(iii) f∗(B) = 2R + C, where R is a non-singular irreducible reduced

curve and a curve C is reduced;
(iv) f|R : R → B coincides with the normalization of B.

Such f is called a generic covering of the projective plane P2.
A generic covering f : S → P2 is called a generic projection if the

surface S is embedded in some projective space PN and f = pr|S is a
restriction to S of a linear projection pr : PN → P2.

Chisini’s Conjecture (see [1]) claims that if f : S → P2 is a generic cov-
ering of the projective plane of deg f > 5 then f is determined uniquely
up to an isomorphism of S by its discriminant curve.

It was proved in [3] that Chisini’s Conjecture holds for the discrimi-
nant curve B of a generic covering f : S → P2 if

(§) deg f >
4(3d + g − 1)

2(3d + g − 1)− c
.

Furthermore, it was observed in [5] that, by Bogomolov – Miaoka – Yau
inequality, the right side of inequality (1) takes the values less then 12,
that is, Chisini’s Conjecture holds for the discriminant curves of the
generic coverings of degree greater than 11. Besides, also it was shown in
[5] that if S is a surface of non-general type, then Chisini’s Conjecture
holds for the discriminant curves of the generic coverings f : S → P2 if
deg f > 8.

The following theorem gives the answer to Chisini’s conjecture in the
case of generic projections.

Theorem 8. Let f : S → P2 be a generic projection. Then the generic
covering f is uniquely determined up to an isomorphism of S by its
discriminant curve B ⊂ P2 except the case when S ' P2 is embedded in
P5 by the polynomials of degree two (the Veronese embedding of P2 in
P5) and f is the restriction to S of a linear projection pr : P5 → P2.

Let (X, L) be a polarized projective surface, where L is an ample line
bundle on X, For k >> 1, the sections of L⊗k define an imbedding of
X into some projective space Pr. The restriction of generic projection
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Pr → P2 to X gives a generic covering fk : X → P2 branched over a
cuspidal curve B̄k, the degree of the covering is equal k2c1(L)2.

The type of braid monodromy factorization of the curve B̄k (see [4],
[2]; the definition will be given in the talk) is called the k-th braid non-
odromy invariant βL,k(X,L) of (X,L).

In the talk we discuss the possibility to use the braid nonodromy
invariants of the polarized projective surfaces in order to distinguish the
connected components of their moduli spases in the case of the surfaces
of general type with canonical polarizations.

The work was partially supported by the RFBR (05-01-00455), NWO-
RFBR 047.011.2004.026 (РФФИ 05-02-89000-) (RFBR 05-02-89000-
NWOa), INTAS (05-1000008-7805), and by RUM1-2692-MO-05.
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The Lerch zeta-function
with algebraic irrational parameter

A.Laurinčikas, R.Macaitienė (Vilnius, Lithuania)

The Lerch zeta-function L(λ, α, s), s = σ + it, with parameters λ ∈ R
and α ∈ R, 0 < α 6 1, is defined, for σ > 1, by

L(λ, α, s) =
∞∑

m=0

e2πiλm

(m + α)s
,

and by analytic continuation elsewhere. If λ /∈ Z, then the function
L(λ, α, s) is entire. For λ ∈ Z, the Lerch zeta-function reduces to the
Hurwitz zeta-function ζ(s, α).
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We apply probabilistic methods for the investigation of value distri-
bution of the function L(λ, α, s). The simplest case is of transcendental
α because in this case the system

L(s) = {log(m + α) : m ∈ N0}, N0 = N
⋃
{0},

is linearly independent over the field of rational numbers Q. If α is al-
gebraic irrational number, then by a Cassel’s result at least 51 persent
of elements of the system L(α) are linearly independent over Q. We use
this fact to obtain limit theorems in the sense of weak convergence of
probability measures on the complex plane as well as in the space of ana-
lytic functions for the function L(λ, α, s). Also, joint limit theorems for a
collection of Lerch zeta-functions L(λ1, α1, s), ...., L(λr, αr, s) are proved
in the case when α1, ..., αr are distinct algebraic irrational numbers such
that the set

r⋃

j=1

I(αj)

is linearly independent over Q. Here I(αj) denote the maximal linearly
independent over Q subset of L(αj), j = 1, ..., r.

Let M(α) = {m ∈ N0 : log(m + α) ∈ I(α)}. Define

Ω =
∏

m∈M(α)

γm,

where γm = {s ∈ C : |s| = 1} for all m ∈M(α). With the product topo-
logy and pointwise multiplication, Ω is a compact topological Abelian
group, therefore on (Ω,B(Ω)) (B(Ω) denotes the class of Borel sets of
Ω) the probability Haar measure mH can be defined, and this leads to
a probability space (Ω,B(Ω), mH). Denote by ω(m) the projection of
ω ∈ Ω to the coordinate space γm, m ∈M(α).

If m /∈M(α), then there exists a finite number of m1, ...,mn ∈M(α)
and numbers k0(m), ..., kn(m) ∈ Z \ {0} such that

m + α = (m1 + α)−
k1(m)
k0(m) · · · (mn + α)−

kn(m)
k0(m) .

Then we extend the function ω(m) to the whole set N0 putting, for
m /∈M(α),

ω(m) = ω
− k1(m)

k0(m) (m1) · · · ω−
kn(m)
k0(m) (mn),
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and, for σ > 1
2 , define on (Ω,B(Ω),mH) a complex-valued random vari-

able

L(λ, α, σ, ω) =
∞∑

m=0

e2πiλmω(m)
(m + α)σ

.

Then the limit measure in a limit theorem on the complex plane coincides
with the distribution of the random variable L(λ, α, σ, ω). We have also
a similar situation in the space of analytic functions.

Parametrized families of Thue equations –
On the structure of their sets of solutions

Günter Lettl (Graz, Austria)

In 1993 E. Thomas conjectured that for families of Thue equations of a
certain shape there are – up to those solutions arising from finitely many
polynomials over the integers Z – only finitely many further solutions
over Z. This conjecture was verified by Thomas himself for equations of
degree 3 and by C. Heuberger (2001) for equations of arbitrary degree,
with some exceptional cases still remaining open.

During the last 15 years, several parametrized families of Thue-equati-
ons were completely solved. In all these results the same structure of the
set of solutions appeared, although these families do not belong to that
special type, for which Thomas made his conjecture: there are solutions
given by finitely many polynomials as well as finitely many further (“spo-
radic”) solutions. Recent examples show that Thomas’s conjecture in its
original form does not hold for arbitrary families, but one has to make
some modification.

This leads to the notion of Z-parameter solutions. Using a theorem of
C.L. Siegel one can give rather narrowing conditions for their existence.
Nevertheless, the known results of Yu.I. Manin (1963), H. Grauert (1965)
and R.C. Mason (1981) do not suffice to prove that any familiy of Thue
equations does only have finitely many Z-parameter solutions.
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On the (2× 2, 2)-generation of the group PSLn(Z+ iZ)

D. V. Levchuk, Ya. N. Nuzhin (Krasnoyarsk, Russia)

A group is said to be (2 × 2, 2)-generated, if it is generated by three
involutions, two of which commute.

Theorem. The projective special linear group PSLn(Z+ iZ) over the
ring of Gauss numbers for n > 8 is (2× 2, 2)-generated.

The groups PSL2(9) and PSL3(9) are not (2 × 2, 2)-generated. It
follows from the description of (2×2, 2)-generated groups of Lie type over
finite fields [1–3]. Therefore, the groups PSL2(Z+iZ) and PSL3(Z+iZ)
are not (2× 2, 2)-generated in view homomorphism PSLn(Z+ iZ) onto
PSLn(9).

This research was supported by the Russian Foundation for Basic
Research (є 06-01-00824).
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Invariants of classical linear groups

A. A. Lopatin (Omsk, Russia)

We work over an infinite field K of arbitrary characteristic that is
different from 2 whenever we consider O(n). Let a subgroup G of GL(n)
act on the d-tuple of n×n matrices M(n)d = M(n)⊕· · ·⊕M(n) by the
diagonal conjugation, i.e.

g · (A1, . . . , Ad) = (gA1g
−1, . . . , gAdg

−1),

where g ∈ G, A1, . . . , Ad ∈ M(n). Denote the algebra of polynomial func-
tions on M(n)d by K[M(n)d] = K[xij(k) | i, j ∈ 1, n, k ∈ 1, d] and the
matrix algebra of G-invariants by K[M(n)d]G = {f ∈ K[M(n)d] | f(g ·
A) = f(A) for all g ∈ G and A ∈ M(n)d}.
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A study of this algebra for classical linear groups GL(n), O(n), and
Sp(n) was originated by Sibirskii, Razmyslov, and Procesi more than 30
years ago (see [5], [4], [3]). For zero characteristic case, generators for the
algebras of invariants and relations between them were found out. For
example, it was shown that the K-algebra K[M(n)d]GL(n) is generated
by the traces of products of “generic" n× n matrices

Xk =




x11(k) · · · x1n(k)
...

...
xn1(k) · · · xnn(k)


 ,

where 1 6 k 6 n. Similarly, K[M(n)d]O(n) is generated by the traces of
products of X1, . . . , Xd, X

t
1, . . . , X

t
d and K[M(n)d]Sp(n) is generated by

the traces of products of X1, . . . , Xd, X
∗
1 , . . . , X∗

d , where X∗
k stands for

the symplectic transpose matrix (1 6 k 6 n).
The importance of characteristic-free approach to the matrix invari-

ants was pointed out by Formanek in overview [2] in 1991. Shortly af-
terwards, the case of arbitrary characteristic was considered. Generators
and relations for GL(n)-invariants as well as generators for O(n)- and
Sp(n)-invariants were established by Donkin and Zubkov (see [1], [6],
and [7]). We completed this description by finding out relations for O(n)-
and Sp(n)-invariants.
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Cohen-Macaulay modules of infinite projective
dimension

José MaLópez, Agustín Marcelo, Félix Marcelo, and César
Rodríguez (Las Palmas de Gran Canaria, Spain)

A characterization of finitely generated torsion modules of not nece-
sarily finite projective dimension over a Cohen-Macaulay ring, is given
in terms of the non-Cohen-Macaulay loci and the Fitting invariants of a
free resolution of such module.

Let R be a Noetherian ring and let F1
ϕ−→ F0 → M → 0, rankϕ = r,

rankF0 = n, be a finite free presentation of the R-module M . Let I(ϕ)
denote the (n − r)-th Fitting invariant of ϕ and let n(M) denote the
corresponding radical ideal of the non-Cohen-Macaulay locus of M.

Let R be a Cohen-Macaulay local ring of dimension d and let T be
a finitely generated torsion R-module of not necessarily finite projective
dimension, with dimT < d. Let

F• : Fm
ϕm−→ Fm−1 → . . . → F1

ϕ1−→ F0 → T → 0

be a free resolution of T such that,
(i) depth Im ϕm = depth R, and
(ii) depth Im ϕi < depth R for i = 1, . . . , m− 1.
(iii) rankϕi > 0 for i = 1, . . . , m.
The aim of this work is to prove that T is a Cohen-Macaulay R-module

if and only if,

radAnn (T ) = rad I(ϕi) = n(Im ϕi−1), i = 2, . . . , m.

Local cohomology, ideal modules and torsionfree
modules

José MaLópez, Agustín Marcelo, Félix Marcelo, and César
Rodríguez (Las Palmas de Gran Canaria, Spain)

Let R be a Noetherian ring and let M be a finitely generated R-
module. As is well known, the set of points p ∈ SpecR such that Mp is
a free Rp-module, is an open subset in the Zariski topology. Hence, its
complement C is a closed subset -called the non-free locus of M - whose
corresponding radical ideal is denoted by a = a(M) = =(C). In this
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work the groups of local cohomology with supports in the non-free locus
of a module are used in order to obtain classifications of two classes
of modules. First we obtain a classification of the ideal modules over
a local regular ring by means of H1

a(M). By applying this result and
from the existence of a dualizing functor we also obtain a classification
of the torsionfree finitely generated and nonfree modules of projective
dimension one over a regular local ring.

Recognizability by spectrum of the finite simple
group L2(7).

D. V. Lytkina (Krasnoyarsk, Russia)

This is an joint work with A.A.Kuznetsov.
The spectrum of a periodic group G is the set ω(G) consisting of all

element orders of G. A group G is recognizable by spectrum in the class
of all groups if every group with spectrum coinciding with the spectrum
of G is isomorphic to G.

The goal of this communication is to announce the positive answer to
the question 16.57 from [1] (see also [2]) on recognizability by spectrum
of the simple group L2(7) in the class of all groups.

Theorem. If the spectrum of a group G is equal to {1, 2, 3, 4, 7} then
G ' L2(7).

For finite groups this result is proved in [3].

References

[1] Unsolved problems of group theory. The Kourovka Notebook, 16-th edition.
Novosibirsk, 2006.

[2] V. D. Mazurov. Groups with given spectrum (in Russian). Izvestiya Uralskogo
gosudarstvennogo universiteta. Matematika i mekhanika, 36, No. 7 (2005), 119-
138.

[3] W. J. Shi. A characteristic property of PSL2(7). J.Austral. Math. Soc. Ser. A.
36, No. 3 (1984), 354-356.



138

Groups with given spectrum

V. D. Mazurov (Novosibirsk, Russia)

For a finite group G, denote by ω(G) the spectrum i.e. the set of el-
ement orders of G. This talk is devoted to the following question: For
which groups G the spectrum of G defines G uniquely up to isomor-
phism? As an example, we give the following result obtained recently by
G.Y.Chen and the author.

Theorem Let m > 2 be a natural number and L be any of the finite
simple groups L4(2m) or U4(2m). If G is a finite group such that ω(G) =
ω(L) then G ' L.

This work is supported by Russian Foundation of Basic Researches
(grants NN 05-01-00797 06-01-39001), Siberian Branch of RAS (complex
integration project No. 1.2).

τ-closed local formations defined by Hall subgroups

A. P. Mekhovich, N. N. Vorob’ev (Vitebsk, Belarus)

All groups considered are finite and soluble. We use the terminology
of [1-3]. The symbols S, Sπ and ProjFG denote respectively the class
of all groups, the class of all π-groups and the set of all F-projectors of
a group G.

Let X be a non-empty class of groups. For any group G ∈ X we asso-
ciate some subgroup system τ(G) of G. The map τ is called a subgroup
X-functor (or in other words τ is a subgroup functor on X) [3] if for
any epimorphism ϕ : A −→ B where A, B ∈ X the following inclusions
satisfy:

(τ(A))ϕ ⊆ τ(B),

(τ(B))ϕ−1 ⊆ τ(A)
and for any group G ∈ X we have G ∈ τ(G).

Recall that a formation is a class of groups closed under taking of
homomorphic images and subdirect products.

A formation F is called τ -closed [3] if τ(G) ⊆ F for any group G ∈ F.
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Functions f : P −→ {formation of groups} are called satellites [2].
For any satellite f we consider the class

LF (f) = (G | G/Fp(G) ∈ f(p) for all p ∈ π(G))

where π(G) is the set of all prime divisors of the order of a group G.
Recall that for any class of groups F ⊇ (1) the symbol GF denotes the

product of all normal F-subgroups of G and the symbol GF denotes the
intersection of all such normal subgroups N that G/N ∈ F. In particular
Fp(G) = GSp′Np .

Let F be a formation. If F = LF (f) for some satellite f then it is said
that F is a local formation defined by f [1].

Let F be a local formation. We define a class L′π(F) as follows: G ∈
L′π(F) if and only if every F-projector of a group G contains a normal
Hall π-subgroup of G.

We note if F = S then the class L′π(S) coincides with the class of all
π-closed groups SπSπ′ .

Recall that a subgroup H of a group G is called an F-projector of G
if the following conditions satisfy:

1) H ∈ F;
2) HUF = U for any subgroup U containing H.
We prove the following
Theorem. Let F be a τ -closed local formation. Then a class L′π(F) is

a τ -closed local formation defined by a local satellite f such that

f(p) =

{
(G | ProjFG ⊆ H(p)), if p ∈ π;
S, if p ∈ π′

where H = F
⋂

SπSπ′ is a formation defined by the canonical local
satellite H such that

H(p) = NpH(p) and H(p) ⊆ LF (H) for all p ∈ P.
If τ is a trivial subgroup functor [3] i.e. τ(G) = G for any group G,

we have the main result of [4].
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Hurwitz numbers of seamed surfaces

S. M. Natanzon (Moscow, Russia)

A seamed surface is a two-dimensional complex from modern models
of mathematical physics [1]. We extend the definition of Hurwitz num-
bers on seamed surfaces and we prove that these Hurwitz numbers form
a system of correlators for a Klein topological field theory. Klein topo-
logical field theories describe open-closed topological string theories with
oriented and non-oriented world-sheets. They correspond one-to-one to
structure algebras [2]. We describe the structure algebra corresponding
to n-degree Hurwitz numbers of seamed surfaces. Non-trivial part of this
algebra is an associative algebra on a vector space, that has bichromatic
graphs with n edges as a basis. We prove that this algebra is isomorphic
to the algebra of intertwining operators for the representation of sym-
metric group Sn in the set of all partition of n elements to batches. The
talk is based on joint with A.Alexeevski papers [3,4].
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Universal norms and Greenberg’s conjecture

T. Nguyen Quang Do (Besançon, France)

Greenberg’s conjecture, which could be considered as a reasonable
generalization of Vandiver’s conjecture, asserts that the "lambda"invari-
ant attached to the cyclotomic Zp-extension of a totally real number field
F should be null. In spite of numerical evidence (mainly for p = 3 and F
quadratic), no general theoretical result is known. In this talk, we study
Iwasawa (co)descent for the so called groups of "unit classes"(=units
modulo circular units) in terms of universal norms, and we construct
a certain finite cohomological invariant whose vanishing implies Green-
berg’s conjecture when p is totally split in F .

Certain aspects of non-abelian cohomology theory

A. L. Onishchik (Yaroslavl, Russia)

Homological methods were used widely in different branches of math-
ematics during the XXth century. Ґ special branch, Homological Algebra
has been appeared, and D.K. Faddeyev is known to be one of the pio-
neers in this discipline. The main objects of Homological Algebra are
chain and cochain complexes of abelian groups. However, there exist
certain non-abelian analogues of such complexes which have important
applications in algebra, differential and algebraic geometry, topology,
and also in the theory of complex manifolds and supermanifolds. Our
goal is to discuss certain attempts of constructing a systematic theory
of non-abelian cochain complexes which give cohomology sets in degrees
6 2 as well as certain applications of this theory.

Here we limit ourselves to the cohomology of degrees 0 ї 1. In this case,
the following general concept of non-abelian cochain complex seems to
be appropriate. It includes the triple K = {K0,K1,K2}, where K0, K1

are groups and K2 a point with a distinguished point e, two actions
σp of the group K0 on Kp, p = 1, 2, by automorphisms of the group
and the set with a distinguished point respectively, and two coboundary
mappings δp : Kp → Kp+1, p = 0, 1. Here δ0 should be a crossed
homomorphism with respect σ1, while δ1 should satisfy δ1(e) = e and
δ1 ◦ ρ(a) = σ2(a) ◦ δ1, a ∈ K0, where ρ is the "affine"action of K0
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on K1 associated with δ0. Such a complex K generates the cocycle sets
Zp(K) = Ker δp, p = 0, 1, and the cohomology sets H0(K) = Z0(K) ї
H1(K) = Z1(K)/ρ, where H0(K) is a group, while H1(K) is a set with
a distinguished point. No natural group operation in H1(K) is defined,
but instead of it we have an operation of "twisting"the complex by any
cocycle from Z1(K). For the non-abelian complexes certain versions of
exact cohomology sequences can be constructed.

The following general constructions of non-abelian complexes should
be mentioned: the Čech complex of a sheaf of non-abelian groups, the
complex of sections of a resolution of a sheaf of non-abelian groups,
the complex associated with a differential graded Lie superalgebra. We
intend to discuss some special cases of these constructions (and their
applications), in particular the following ones:

1. The de Rham complex of a smooth manifold M with values in a
Lie group (the monodromy of differential equations, the relation between
flat bundles and homomorphisms of the fundamental group of M , clas-
sification and deformations of homomorphisms of discrete groups) [1, 5,
6].

2. The Dolbeault complex of a complex manifold M with values in a
Lie group (classification and deformations of holomorphic bundles over
M) [4, 5].

3. A complex related to a holomorphic vector bundle (classification of
complex supermanifolds with a given retract) [7].

4. The "quadratic complex", associated with an orthogonal module of
a Lie algebra (classification of invariant bilinear forms on Lie algebras)
[2].

5. The complex of a group G with values in a non-abelian G-module
(the Galois cohomology, lifting of actions of a group) [5, 8, 9].
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Reduction of quantum Schubert cells

A. N. Panov (Samara, Russia)

Let N = UT(n,K) be the lower unitriangular group of order n over
the field of K of characteristic zero. The old problem of classification of
coadjoint orbits of N is not solved up today. The solution of this prob-
lem is important for the representation theory, the geometry of Poisson
varieties and the theory of ideals in universal enveloping algebra U(n) of
the Lie algebra n of N . We reduce the Quantum Schubert cells to obtain
ideals in K[n∗] invariant with respect to the coadjoint action.

Let B be the lower Borel subgroup in GL(n,K), q be a variable and
Cq[B] be the algebra of regular functions on the corresponding quantum
subgroup. The localizations C′q[B] and U ′

q(n) with respect to q− q−1 are
isomorphic. The quantum Schubert cell corresponding to w ∈ W = Sn is
a pair (QJw, QSw) where QJw is an ideal in Cq[B], generated by certain
quantum minors, and QSw is a denominator subset(see [1],[2]). The set of
pairs (QJw, QSw)w∈W form a stratification of the set of primitive ideals
in Cq[B]. It is known that any primitive ideal in Cq[B] that contains
QJw and has empty intersection with QSw has dimension l(w) + s(w),
where l(w) (resp. s(w)) is a length of a reduced decomposition of w into
a product of simple (resp. arbitrary) reflections.

Localization QJ ′w of QJw with respect to q−q−1 is an ideal in C′q[B] =
U ′

q(b). We correspond the Quantum Schubert cell to the pair (Jw, Sw)
where

Jw = gr (QJ ′w ∩ Uq(n) mod (q − 1))
is an ideal in S(n) = K[n∗] and Sw = gr(QSw mod (q − 1)) is a denomi-
nator subset in S(n).
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Let σ be an involution in Sn. Denote Ωσ = AnnJσ ∩ {f ∈ n∗| a(f) 6=
0 ∀f ∈ Sσ}. The set Ωσ is a union of coadjoint orbits.

Decompose σ into a product of reflections σ = r1r2 · · · rs with respect
to positive roots {ξm = εjm − εim}. Let {yij}16j<i6n−1 be a standard
basis in n. Consider the subset Xσ ⊂ n∗ that consists of all f ∈ n∗ such
that f(yim,jm

) 6= 0, 1 6 m 6 s, and that annihilate on all other vectors
of the standard basis.

Theorem 1. Ωσ is a union of coadjoint orbits Ω(f), f ∈ Xσ.
Theorem 2. dimΩ(f) = l(σ)− s(σ).
For any 1 6 t 6 n consider the involution σt−1, that is a product

of all rm,1 6 m 6 s such that jm < t. Put σ0 = id. Consider the set
of pairs Pσ = {(i, t) : 1 6 t < i 6 n, σt−1(t) < σt−1(i)}. Denote
pσ = span{yij | (i, j) ∈ Pσ.

Theorem 3. pσ is a subalgebra in n and a polarization of any f ∈ Xσ.
In the talk we will present generators of the defining ideal of any

coadjoint orbit Ω(f) for any f ∈ Xσ.
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On Drinfeld quasi-modular forms

Federico Pellarin (Caen, France)

The forms of the title are variants in positive characteristic of classical
quasi-modular forms for the group SL2(Z) as defined by Kaneko and
Zagier (whose main properties will be reviewed). We will show that the
rings generated by Drinfeld quasi-modular forms can be endowed with
Hyperdifferential (or Hasse-Schmidt differential) structures. Analogies
occur between Drinfeld quasi-modular forms and classical quasi-modular
forms; these will be described in the lecture. The proofs however, are not
similar at all. This work follows from a collaboration with V. Bosser of
Basle University.
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One-relator algebras and noncommutative geometry

D. I. Piontkovski (Moscow, Russia)

Suppose that A is a graded associative algebra defined by a single
quadratic relation. We show that A is graded coherent, that is, the cate-
gory coh-modA of graded finitely presented modules over it is abelian. It
follows that there is a well-defined coherent noncommutative spectrum
coh-projA (in the sense of Polishchuk), that is, a quotient category of
coh-modA by the category of torsion modules.

Suppose that the relation of A is generic enough. Then we show that
the category coh-projA is abelian Ext -finite hereditary with Serre du-
ality, like the category of coherent sheaves on P1; therefore, it can be
considered as a noncommutative spectrum of the projective line. On the
other hand, the category coh-projA is derived equivalent to noncommu-
tative Pn−1 in the sense of Kontsevich and Rosenberg, where n is the
number of generators of the algebra A.

Partially supported by the grant 05-01-01034 of the Russian Basic
Research Foundation.

Logically separable algebras in varieties

B. I. Plotkin (Jerusalem, Israel)

We consider algebras in a variety of algebras Θ. A well known invariant
of every algebra H ∈ Θ is its elementary theory Th(H). Two algebras H1

and H2 are elementary equivalent if Th(H1) = Th(H2). We introduce a
more strong notion of logically geometrical equivalence of two algebras
(LG-equivalence). This LG-equivalence implies elementary equivalence,
but not vice versa.

In the talk we consider problems related to the notion of LG-equivalen-
ce of algebras. In particular, let us mention the following one:

Let Θ be an arbitrary variety of algebras, W = W (X) a free algebra
in this variety with the finite set X. We say that this algebra W is LG-
separable in Θ, if any other algebra H, LG-equivalent to W , is isomorphic
to W . It is proved that this property holds for free semigroups and free
inverse semigroups. A study of other interesting cases is in progress.
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On the solvable radical of a finite group and around

E. B. Plotkin (Jerusalem, Israel)

In the talk we discuss the progress obtained within the last years in
the problem of the characterization of the solvable radical of a finite
group. The main attention is paid on commutator-like descriptions of
the solvable radical. We also give an insight on Burnside-type problems
from the positions of solvability property.

The Baer-Suzuki theorem characterizes the nilpotent radical of a finite
(or linear) group by the property that an element g is in the nilpotent
radical of G if and only if any two conjugates of g generate a nilpotent
group.

We discuss a general setting whose part is the sharp analog of the
Baer-Suzuki theorem for the solvable radical of a finite (linear) group.

In the talk we outline the proof of this theorem.
The Baer-Suzuki theorem for the solvable case is independently an-

nounced by Flavell, Guest, Guralnick.
Joint work with N.Gordeev, F.Grunewald, B.Kunyavskii

On the topology of real decomposable 7th degree
curves

G. M. Polotovskiy (Nizhny Novgorod, Russia)

We shall give a survey of the results in the problem of classification
of decomposable algebraic curves of degree 7 in the real projective plane
RP 2 with respect to isotopies preserving cofactors, under natural condi-
tions of maximality and general position: i) each cofactor is an M -curve;
ii) cofactors are in general position; iii) every two cofactors have the
maximal number of common real points and these points belong to the
same real branch of each cofactor. This problem belongs to the topic of
the Hilbert 16th problem.

For degree 6 similar problem was solved in [1] and the results have
many applications. For degree 8 the solution of the problem in such
formulation is unreal: the number of types is very big. In the case of
degree 7 the solution approaches to the end – mainly due to efforts of
E. Shustin, S. Orevkov, A. Korchagin, and the author. For example, in
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the series of works of Shustin, Orevkov, and Korchagin the classification
of affine M -sextics was obtained (final paper is here [2]); classification
of unions of a quartic and a cubic with 12 common points on ovals was
obtained by Orevkov and the author [3].

We shall consider in detail following two cases.
(i) Classification of unions of a quintic and a pair of lines. When each

of two disks of the complement of RP 2 to the pair of lines has only
one arc of odd branch of the quintic with ends in different lines of the
pair, the classification was obtained by Korchagin and the author [6] and
consists of 20 isotopy types. In the rest cases classification was completed
recently in papers of Korchagin and the author [7] and Orevkov [8].

(ii) Classification of arrangements of a quartic and a cubic with 12
common points on odd branch of the cubic and on one oval of the quar-
tic. S. Orevkov [4] has constructed 237 mutually nonisotopic types of
such curves. There is the base to think that this list gives the complete
classification. By Orevkov’s method [5] based on link theory we have
success in proving of this statement: having considered more than 3500
models of such arrangements (total number of models for consideration
is more than 7000), we proved that there are realizable from these mod-
els only the models which belong to the Orevkov 237-list. So, the proof is
in progress but is not finished now because of a big volume of necessary
computations.
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Finite linear groups, lattices, and
products of elliptic curves

V. L. Popov (Moscow, Russia)

Studying complex tori (in particular, abelian varieties) with finite
group actions (and, more generally, with certain endomorphisms) is a
subject matter of several recent papers, see, e.g., [DL], [LR], [Vo]. In
particular, it is a starting point for examples of compact Kähler mani-
folds that do not have the homotopy type of projective complex man-
ifolds [Vo]. Among such tori, abelian varieties are of a special interest.
For instance, they arise as the jacobians of smooth projective curves
with group actions. These actions induce decompositions of jacobians
up to isogeny. For hyperelliptic curves, such decompositions go back to
classical interest in hyperelliptic integrals expressible in terms of elliptic
integrals, because the problem boils down to decomposing jacobians, up
to isogeny, as products of elliptic curves.

Complex tori with group actions arise in the following way. Let V be
a complex linear space of nonzero dimension n < ∞ and let G be a finite
subgroup of GL(V ). If there is a G-invariant lattice Λ in V of rank 2n
(hereinafter a lattice is a discrete additive subgroup of a complex or real
linear space), then V/Λ is a complex torus with G-action. This naturally
leads to the following questions:

(1) when is there a G-invariant lattice Λ of rank 2n?
(2) if Λ exists, when is V/Λ an abelian variety?
(3) if Λ exists and V/Λ is an abelian variety, what can one say about

decomposition of V/Λ, up to isogeny?
Note that the Riemann condition reduces (2) to the linear algebra

problem: when is there a polarization of V/Λ, i.e., a positive definite
Hermitian bilinear form V ×V → C, whose imaginary part takes integral
values on Λ× Λ?

We address and answer these questions for irreducible G.
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Namely, we give a criterion of the existence of a nonzero G-invariant
lattice Λ in V in terms of the character and the Schur Q-index of the
G-module V . For Λ of rank 2n, we describe the structure of complex
torus V/Λ. In particular, we prove that in the majority of cases (but
not in all) V/Λ is an abelian variety. Moreover, we show that if the
latter holds, then in many cases V/Λ is isogenous to a self-product of
an elliptic curve or even isomorphic to a product of mutually isogenous
elliptic curves with complex multiplication, while in the other cases, V/Λ
is isogenous to a self-product of an abelian surface. We prove that G
and Λ such that the complex torus V/Λ is not an abelian variety do
exist, but one can always replace Λ by another G-invariant lattice ∆
such that V/∆ is a product of mutually isogenous elliptic curves with
complex multiplication. A separate discussion concerns the interesting
example of groups G generated by (complex) reflections, in which case
a complete classification of G-invariant lattices is available, [Po].

These results are obtained jointly with Y. G. Zarhin and published in
[PZ].

Supported by Russian grants NSH–123.2003.01, RFFI 05–01–00455,
and Program of Mathematics Section of Russian Academy of Sciences.
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Degeneration of del Pezzo surfaces and local
structure of del Pezzo fibrations

Y. G. Prokhorov (Moscow, Russia)

We will discuss issues on biregular local classification of del Pezzo
fibrations over curves. More presicely we study the local structure of
fibrations f : X → Z 3 o, where X is a threefold with worst terminal
singularities, Z 3 o is a curve germ, and the anti-canonical divisor −KX

is f -ample. These fibrations naturally appear in the birational geome-
try of varieties of negative Kodaira dimension. On the other hand, the
generic fibre of such an f is a smooth del Pezzo surface, so X/Z can be
considered as a total space of degeneration of del Pezzo surfaces.

We will present some recent progress in the classification problem of
such fibrations. One of our main goal is a partial classification of singular
fibres in the “semistable case” (joint work with P. Hacking). In this case
the classification is given in terms of Markov-type equations.

Modules whose Maximal Submodules are
Supplements over Dedekind Domains

D. Pusat-Yılmaz (Izmir, Turkey)

Let R be a ring and M be a unital left R-module. M is called an
ms −module if every maximal submodule of M is a supplement in M ,
and M is called an md−module if every maximal submodule of M is a
direct summand of M .

Throughout R is always a Dedekind domain.
The following is proved by Zöschinger:

Lemma 1. Let M be an R-module and V 6 M . Then V is coclosed if
and only if V is closed.

Lemma 1 implies that a maximal submodule is a supplement if and
only if it is a direct summand. Hence over a Dedekind domain, ms- and
md-modules coincide. We characterize these modules as in the following
Theorem:
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Theorem. Let M be an R-module. Then M is an md-module (ms-
module) if and only if

(i) T (M) = M1 ⊕M2, where M1 is semisimple and M2 is divisible,
(ii) M/T (M) is divisible.

In the following theorem we investigate weather being an md-module
imply every simple submodule is a direct summand.

Theorem. For an R-module M , the following are equivalent:
(i) M is an md-module and Rad(T (M)) = 0,
(ii) every simple submodule of M is a direct summand and M/T (M)

has no maximal submodules.
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Some minimal representation-infinite algebras

C. M. Ringel (Bielefeld, Germany)

We consider finite-dimensional k-algebras A (associative, with 1),
where k is a field. Recall that any finite-dimensional A-module can be
written as a direct sum of indecomposable A-modules and such a de-
composition is unique up to isomorphism. In case there are only finitely
many isomorphism classes of indecomposable A-modules, then A is said
to be representation-finite, otherwise representation-infinite. In case A
is representation-infinite, but any proper factor algebra is representation-
finite, then to be minimal representation-infinite. The minimal representa-
tion-infinite algebras have not yet been classified, but the known classes
seem to be of great interest, most of them are related to the extended
Dynkin diagrams of Lie theory (and the indecomposable modules corre-
spond to suitable positive roots).
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The lecture will present two classes of minimal representation-infinite
algebras which exhibit some new features: the barbells and the wind
wheels. Both are obtained from a hereditary algebra H of type Ãn for
some n by a process which we call barification (and actually turn out
to be subalgebras of H). The barbell algebras are tame algebras of non-
polynomial growth. In contrast, a wind-wheel algebra W is 1-domestic,
and its module category is obtained from the module category of H by
rearranging the modules in the non-homogeneous tubes and inserting
countably many additional indecompoosable modules. The Auslander-
Reiten components obtained in this way are coverings of a plane with
a hole, and there are examples with an arbitary finite number of such
components.

It should be remarked that all the algebras presented are (reduced)
semigroup algebras of finite semigroups with zero, and they are (together
with the hereditary algebras of type Ãn) the only minimal representation-
infinite algebras which are special biserial.

On Galois cohomology, Steenrod operations and
Cycles

Markus Rost (Bielefeld, Germany)

The Bloch-Kato conjecture (bijectivity of the norm residue homo-
morphism) describes the (mod p) Galois cohomology ring of a field.
The proof of this conjecture relies on work of Suslin and Voevodsky
and the understanding of the so called norm varieties. Special examples
of norm varieties are Severi-Brauer varieties and Pfister quadrics. Im-
portant properties of norm varieties are that they are generic splitting
varieties of the corresponding symbol and that they split off a certain
Chow motive uniquely determined by the symbol. Both properties are
established using the "basic correspondence of norm variety". We will
discuss some details concerning the basic correspondence and its role in
the proof of the Bloch-Kato conjecture.
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Computation of complex representations of certain
finite groups

A. V. Rukolaine (St. Petersburg, Russia)

Computer calculation of some complex irreducible representations of a
certain finite group G may use information about all complex irreducible
characters of the group G.

Now all complex irreducible characters of a finite group can be re-
ceived with the help of Computer System GAP [1], beginning in Aachen,
Germany. Another technology for computer calculation of irreducible
characters of some finite groups was proposed in [2, 3].

It is known that minimal central idempotents in complex group alge-
bra of the group G may be calculated with the help of irreducible charac-
ters of the group. Such minimal central idempotents are used for decom-
positon of G-modules as a direct sum of homogeneous G-submodules
that themselves are direct sums of similar irreducible G-submodules.
Such homogeneous G-submodules are known as homogeneous compo-
nents of G-modules.

Sometimes such homogeneous components are the irreducible G-modu-
les. In this case it is possible to construct a complex irreducible repre-
sentation of the group G.

If the homogeneous components are not the irreducible G-modules
then some information about the decomposition of the homogeneous
components may be received from centralizer algebras.

In this work we propose to use the G-modules induced from irreducible
characters of maximal cyclic subgroups of the group G. Preliminary re-
sults show that this technique is possible and helpful for the calculation
of some complex irreducible representations of certain finite groups.

Presently work for such calculations with the help of GAP has been
started.

Of course, it is possible to extend this technology to G-modules in-
duced from irreducible characters of maximal abelian subgroups of a
group.
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Schur Multiplier and Pair of Groups

Ali Reza Salemkar and Vahid Alamian (Sari, Iran)

Let G be a finite p-group of order pn, then there exists a non-negative
integer t(G), such that |M(G)| = p1/2n(n−1)−t(G). In 1999 G. Ellis gave
the structure of p-groups, when t(G) = 0, 1, 2 or 3. In fact, Ya.G.
Berkovich was already obtained the structure of p-groups in the case
t(G) = 0 or 1, and X. Zhou gave the positive answer for t(G) = 2.
But Ellis proved all the cases including t(G) = 3 with different tech-
nique. Using this technique, in chapter three we have characterized the
structure of p-groups G for which t(G) = 4. Also, if (G,M) is a pair
of groups with G/M and M/Z(M, G) are of orders pm and pn, re-
spectively. Then there exists a non-negative integer s(G, M) such that
|[M, G]| = p1/2n(n+2m−1)−s(G,M). Also for the pair (G,M), if M and
G/M are of orders pn and pm,respectively. Then there exists a non-
negative integer t(G,M) such that |M(G,M)| = p1/2n(n+2m−1)−t(G,M).

Theorem. Let (M,G) be a pair of groups such that |G/M | = pm,
|M/Z(M, G)| = pn and |[M, G]| = p

1
2 n(n+2m−1)−1. If |[M/Z(M, G),

G/Z(M, G)]| 6 p, then one of the following holds:
(i) M/Z(M, G) is an elementary abelian p-group;
(ii) the pair (G/Z(M, G), M/Z(M,G)) is an extra-special pair of finite

p-groups;
(iii) Z2(M, G)/Z(M, G) is a group of order p2, and there exist normal

subgroups K and N of Z2(M, G) in such a way that Z2(M, G) = NK,
N∩K = Z(M, G), M/N is elementary abelian and the pair (G/K, M/K)
is extra special.

Theorem. Let (G,M) be a pair of groups with | G
Z(M,G)

|= pα and | G
M |= pβ, where 2n−1 < pα < 2n and 0 < pβ < 2m and

m,n > 5. Then
| [M, G] |6 2

1
2 (n−1)(n+2m−2).
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Theorem. Let (G,M) be a pair of finite p−groups and N be a com-
plement of M in G. Also, assume M and N are of orders pn and pm,
respectively. If

| M(G,M) |= p
1
2 n(n+2m−1)−2

then
(i) if N is elementary abelian, then

G ' E1 × Cp , D8 , Cp2 × Cp

(ii) if G and N elementary abelian p−groups such that (G,N) is non-
capable, then

G ' Cp × Cp2 .

Theorem. Let (G,M) be a pair of finite p-groups and N be a non-
trivial complement of M in G. Assume

| M |= pn, | N |= pm, | M(G,M) |= p
1
2 n(n+2m−1)−t

and | M(N) |= p
1
2 m(m−1)−s, where s and t are non-negative integers

with s 6 t. Then
(i) t = 0 if and only if G is an elementary abelian p-group;
(ii) t = 1 if and only if (G,M) ∼= (E1, Cp × Cp), (Cp × Cp2 , Cp) or

(Cp × E1, Cp);
(iii) t = 2 if and only if (G,M) ∼= (Cp×Cp2 , Cp2), (Cp×Cp×Cp2 , Cp×

Cp) or (Cp × Cp × Cp × Cp2 , Cp × Cp), when G is abelian;
(iv) t = 2 if and only if (G, M) ∼= (D8, C4D8), (E2 × Cp, E2),(Cp ×

Cp × E1, Cp × Cp),
(C2×C2×D8, C2×C2) or (Cp×Cp×E1, Cp×Cp), when G is non-abelian
and its centre is elementary abelian.
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On π-normal Fitting classes

N. V. Savelyeva (Vitebsk, Belarus)

All groups considered are finite and solvable. We use standard nota-
tions and definitions from [1].

A normally hereditary class of groups F is called a Fitting class if it
is closed under taking of normal F-subgroups products.

A Fitting class F is called a maximal (by inclusion) subclass of a
Fitting class X (denoted by F < ·X), if F ⊂ X and F ⊆ M ⊆ X, where
M is a Fitting class, then M ∈ {F, X}.

In the theory of Fitting classes it is known the result of Cossey [2]
that if a Fitting class F is maximal in a Fitting class S of all groups,
then F is normal.

Recall that a Fitting class F 6= (1) is called normal in a Fitting class
X, if for every X-group G a subgroup GF is an F-maximal subgroup of
G.

If a Fitting class F < ·Sπ, then we call F π-maximal. If a Fitting class
F 6= (1) is normal in the class Sπ, then F is called π-normal. The inter-
relation of properties of π-maximality and π-normality is characterized
by the following

Theorem. Every π-maximal Fitting class is π-normal.
Note, if π is a set of all primes, the theorem implies the result of

Cossey [2].
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J-invariant and the higher Tits indices of algebraic
groups

Nikita Semenov (Muenchen, Germany)

Let G be a semisimple algebraic group over a field k of inner type and
X be a projective G-homogeneous variety such that G splits over the
field k(X) of X (e.g. X is the variety of complete flags). We introduce
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an invariant of G called the J-invariant which characterizes the motivic
behavior of X.

This generalizes the respective notion invented by A. Vishik in the
context of quadratic forms.

As the main applications we obtain in a uniform way motivic de-
compositions of all generically cellular projective homogeneous varieties
(e.g. Severi-Brauer varieties (N. Karpenko), Pfister quadrics (M. Rost),
maximal orthogonal Grassmannians, G2- (J.-P. Bonnet), F4-, E6-, and
E8-varieties (S. Nikolenko, V. Petrov, N. Semenov, K. Zainoulline)), clas-
sify all exceptional generically cellular varieties and provide a list of the
higher Tits indices for groups of type E7.

We also discuss relations with torsion indices, canonical dimensions
and cohomological invariants of the group G.

Adjoint orbits of the unitriangular group

V. V. Sevostiyanova (Samara, Russia)

We consider the Lie group G = SLn (K) and its Lie algebra g =
sln (K), where char K = 0. Let g = n⊕ h⊕ n− be any Cartan decompo-
sition of g.

An irreducible component of intersection of nilpotent adjoint orbit
with n is called an orbital variety. Generators of the ideal of definition
of given orbital variety for n 6 6 are constructed in [1].

Every orbital variety splits into disjoint union of nilpotent orbits of n
via the adjoint action of Lie group of strictly upper-triangular matrices
N = UTn (K).

Our goal to find generators of defining ideal for any adjoint orbits of
N .

Theorem. Let n 6 6. One can choose the generators of defining ideal
of every nilpotent orbit of adjoint action of N of the form Pi− ci, where
Pi is some coefficient of minor of the characteristic matrix, ci ∈ K.

We present the full description of adjoint N–orbits and orbital vari-
eties in n for n 6 6. We note that they can be described in terms of
coefficients of minors of characteristic matrix. We also consider some
special series of orbits (regular and subregular) for arbitrary n.
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Rectangular low level case of modular branching
problem for GLn(K)F

V. V. Shchigolev (Moscow, Russia)

Let K be an algebraically closed field of characteristic p > 0. Consider
a rational irreducible GLn(K)-module Ln(λ) with highest weight λ. An
important problem is to find all nonzero GLn−1(K)-high weigh vectors
of Ln(λ), that is the vectors stabilized by the subgroup Un−1(K) of
GLn−1(K) consisting of the upper triangular matrices with 1 on the main
diagonal. Here GLn−1(K) is naturally identified with the subgroup of
GLn(K) consisting of the matrices with 0 everywhere in the last column
and the last row except the position of their intersection where they have
1. Actually, the problem is to find which weights such vectors can have.

In my report, I plan to speak on my recent result — an explicit com-
binatorial criterion for the existence of a nonzero GLn−1(K)-high weight
vector of weight (λ1, . . . , λi−1, λi − d, λi+1, . . . , λn−1, λn + d), where 1 6
d < p in the module Ln(λ1, . . . , λn). For this purpose, I introduce new
lowering operators.

To formulate this result explicitly, let us introduce the strict partial
order <̇ on Z2 and the subsets Yλ

d(i, n) and Cλ(i, n) of Z2 as follows:
(a, c) <̇ (b, d) holds if and only if a < b and c < d; for any λ ∈ Zn, denote

Yλ
d(i, n) :=

{(t, h) ∈ {i + 1, . . . , n} × {1, . . . , d} | t− i + λi − λt − h ≡ 0 (mod p)},

Cλ(i, n) := {s ∈ {i + 1, . . . , n− 1} | s− i + λi − λs ≡ 0 (mod p)}.
Moreover, a map ϕ : A → B, where A,B ⊂ Z2, is called strictly decreas-
ing if ϕ(α) <̇ α for any α ∈ A. Column t of the plain Z2 is the subset
{(t, k) | k ∈ Z}. Denote also α(s, t) := (0, . . . , 0, 1, 0, . . . , 0,−1, . . . , 0),
where 1 is at position s, −1 is at position t and 1 6 s < t 6 n.

Main Theorem. Let λ ∈ Zn be a dominant weight, 1 6 i < n and
1 6 d < p. Then the module Ln(λ) contains a nonzero GLn−1(K)-high
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weight vector of weight λ − dα(i, n) if and only if for each subset ∆ of
Yλ

d(i, n) whose points are incomparable with respect to <̇, there exists a
strictly decreasing injection from ∆ to Cλ(i, n)× {0}.

The existence of the above mentioned injection can be checked using
only subsets of Z. Let π1 : Z2 → Z denote the projection to the first
component. The set ∆, as well as Yλ

d(i, n), contains at most one point
in each column, since d < p. Therefore, there exists a strictly decreasing
injection from ∆ to Cλ(i, n) × {0} if and only if there exists a weakly
decreasing injection from π1(∆)− 1 to Cλ(i, n). If d = 1 then all points
of Yλ

1 (i, n) are automatically incomparable with respect to <̇ and one
gets the criterion of [1].

FSupported by RF President grant MK-2304.2007.1.
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On the formation with given characteristic of
residual

V. V. Shpakov, N. T. Vorob’ev (Vitebsk, Belarus)

In the theory of the Fitting classes of finite groups Lockett operators
[1] „∗“, „∗“ are well known. We shall recall that if F is a nonempty Fitting
class then F∗ is the least of the Fitting classes so if F∗-radical of the
direct product of any groups G and H is a direct product F∗-radical of
these groups, and the class F∗ =

⋂{X : X Fitting classes and X∗ = F∗}.
The dual structure in the theory of the formation was determined by
Doerk and Hawkes [2]. It was installed in the work [3] that each local
Fitting class F is defined by Hartley functions f∗ and f∗ such a way that
f∗(p) = (f(p))∗ and f∗(p) = (f∗(p)) for each simple p.

In the theory of the formation the dual result is achieved.
Let f be satellite, local satellite fo and fo such as fo(p) = (f(p))o

and class fo(p) = ∩{ϕ(p) : ϕ(p) formations and (ϕ(p))o = fo(p)} for all
simple p. Class fo(p) is the least of the formations, such as f(p) ⊆ fo(p)
and (G×H)fo(p) = Gfo(p)×Hfo(p). If formation is defined local satelitte
then mark as F = LF (f).
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Teorema. If F = LF (f), then F = LF (fo) = LF (fo).
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Non-commutative plane curves

Arne B. Sletsjøe (Oslo, Norway)

In this talk we study noncommutative plane curves, i.e. non-commuta-
tive k-algebras, over a field k for which the 1- dimensional simple modules
form a plane curve. We study extensions of simple modules and we try
to enlighten the completion problem, i.e. understanding the connection
between simple modules of different dimensions.

Generalized subrings of some classical rings

A. L. Smirnov (St. Petersburg, Russia)

The old idea to apply algebro-geometric methods to number theory
and to diophantine problems was considerably developed recently by M.
J. Shai Haran and by N. Durov.

The approach of N. Durov is based on a generalization of rings and
on corresponding generalization of schemes. These generalized algebra
and algebraic geometry are in the very beginning of their evolution. For
example, the classification of classical finite fields was obtained at least
several decades before heyday of algebraic geometry. A description of
generalized finite fields is unsolved and interesting problem.

Another feature of new world is its very unusual properties. For ex-
ample, a dimension of a proper closed part of a generalized irreducible
scheme can be greater than the dimension of an open subscheme, the
tensor product of finite generalized rings can be an infinite ring and so
on.
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To apply new algebraic geometry it is necessary to elaborate new in-
tuition and to develop new computing facilities. To do this it is desirable
to explore a number of examples. Results of such investigation for gen-
eralized subrings of classical rings Fq, Z/p2, Zp, Z, R will be presented
in the talk.

On idempotents in generalized rings

Mirela Ştefănescu and Camelia Ciobanu (Constanţa, România)

The generalized rings considered in the paper are nearrings with some
properties, infra-nearrings and ringoids.We use semigroup properties of
the multiplication for nearrings and infra-nearrings, finding Peirce de-
compositions and structure theorems. The idempotents in the nearrings
generated by the endomorphisms or the infra-endomorphisms of a group
are also studied.

For ringoids, we find some unexpected properties of idempotents,
when some chain conditions are fulfilled.
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On the behaviour of unipotent elements from
subsystem subgroups in modular representations of
the classical algebraic groups with large highest

weights

I. D. Suprunenko (Minsk, Belarus)

The goal of this talk is to discuss some regularities concerned with
the Jordan block structure of the images of unipotent elements from
proper subsystem subgroups in irreducible representations of the classical
algebraic groups over fields of positive characteristic. The main subject
is the behaviour of such elements in irreducible representations of the
special linear and symplectic groups with highest weights large enough
with respect to the ground field characteristic and a fixed element.

Throughout the text a subsystem subgroup of a semisimple alge-
braic group is a subgroup generated by it root subgroups associated
with all roots from a subsystem of the group root system. Let K be
an algebraically closed field of characteristic p > 0 and G be a sim-
ply connected simple algebraic group of type Ar or Cr over K. De-
note by |x| the order of an element x ∈ G. Assume that p > 2 for
G = Cr(K). Recall that G ∼= SLr+1(K) if G = Ar(K) and G ∼= Sp2r(K)
for G = Cr(K). For an element u ∈ G with |u| = pm+1 (m may be zero)
define the collection S(u) as follows. Let k1 > k2 > . . . > kt denote the
sizes of all Jordan blocks of upm

in the standard realization of G. Here
k1 + k2 + . . . + kt = r + 1 for G = Ar(K) and 2r for G = Cr(K). Then
put

S(u) ={k1 − 1, k1 − 3, . . . , 1− k1, k2 − 1, k2 − 3,

. . . , 1− k2, . . . , kt − 1, kt − 3, . . . , 1− kt}.
For 1 6 i 6 r let ωi be the ith fundamental weight of G (the labeling
is standard) and bi(u) be the sum of i largest members of S(u). For
an irreducible representation ϕ of G with highest weight

∑r
i=1 aiωi set

b(ϕ, u) =
∑r

i=1 aibi(u). Recall that such representation is p-restricted if
all the coefficients ai < p. We consider the behaviour of u in p-restricted
representations of G with b(ϕ, u) large enough.

Theorem 1. Assume that a unipotent element u ∈ G lies in a subsystem
subgroup of type Al with l < r−1 for G = Ar(K) and in such subgroup of
type Cl with l < r for G = Cr(K). Let ϕ be a p-restricted representation
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of G with b(ϕ, u) > p + b1(u). Then the element ϕ(u) has at least r − l
Jordan blocks of size |u| for G = Ar(K) and at least 2(r− l) such blocks
for G = Cr(K).

It follows from [2, Theorem 1.10] that ϕ(u) has no blocks of size |u| if
b(ϕ, u) < p− 1. We have some reasons to expect that in the majority of
cases the assertion of Theorem 1 holds under a weaker assumption that
b(ϕ, u) > p. However, the following proposition shows that one cannot
simply take this weaker assumption in Theorem 1.

Proposition 2. Let G = Ar(K), ϕ be an irreducible representation of
G with highest weight a1ω1 + arωr, a1ar 6= 0, and a1 + ar = p. Assume
that ps < r and u is a regular unipotent element in a subsystem subgroup
of G of type Aps . Then ϕ(u) has just two Jordan blocks of size |u|.

One can deduce that in the assumptions of Proposition 2 b(ϕ, u) = p
and b1(u) = 1.

Earlier lower estimates for the number of Jordan blocks of the max-
imal possible size in the images of unipotent elements of fixed order in
irreducible representations of the classical algebraic groups with large
highest weights were obtained [1]. But those results concern only repre-
sentations where all unipotent elements have the minimal polynomials
of degree equal to their orders. In the assumptions of Theorem 1 it may
occur that

∑r
i=1 ai < p−1, but b(ϕ, u) > p+ b1(u). Then it follows from

[2, Theorem 1.10] that all unipotent elements whose power is a root ele-
ment have the minimal polynomials of degrees smaller than their orders
and hence have no blocks of such size.

Some other results concerning the Jordan block structure of the im-
ages of unipotent elements from subsystem subgroups of small rank in
irreducible representations of the classical groups can be discussed as
well.

This research is a part of a more general program concerned with in-
vestigating properties of unipotent elements in modular representations
of semisimple algebraic groups and elaborating machinery for recogniz-
ing representations by such properties. For this purpose it is worth to
distinguish some "rare"classes of unipotent elements whose presence can
be effectively used for recognizing representations and linear groups. To
find such classes, it is necessary to investigate in details properties of
these elements (strictly speaking, of their images) in representations.
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Cyclicity of algebras after a scalar extension

S. V. Tikhonov (Minsk, Belarus)

The goal of the talk is to present our recent result (joint with U.
Rehmann and V.I. Yanchevskii) concerning properties of central simple
algebras.

In particular, we are going to discuss in detail the proof of the follow-
ing result.

Theorem. Let A1 . . . Am be central simple algebras over a field k.
Assume ξp ∈ k for any prime p dividing

∏m
i=1 ind(Ai) where ξp is a

primitive p-th root of unity. Then there exists a regular field extension
E/k such that all the algebras Ai⊗k E are cyclic, ind(C⊗k E) = ind(C)
and exp(C ⊗k E) = exp(C) for any central simple k-algebra C.

Amply Supplemented Lattices

S. Eylem Toksoy (Izmir, Turkey)

L will mean a complete modular lattice with greatest element 1. An
element c of a lattice L is called compact if for every subset X of L with
c 6

∨
X there exists a finite subset F of X such that c 6

∨
F . A lattice

L is said to be compact if 1 is compact. An element a of a lattice L has
ample supplements in L if for every element b(6= 1) of L with a ∨ b = 1,
b/0 contains a supplement of a in L, that is a minimal element c ∈ L
with respect to a ∨ c = 1. A lattice L is said to be amply supplemented
if every element of L has ample supplements.



165

The following theorem generalizes the result for modules: a finitely
generated module M is amply supplemented if and only if every maximal
submodule has ample supplements in M (see 20.24 in [3]).

Theorem. A compact lattice L is amply supplemented if and only if
every maximal element has ample supplements in L.

If a ∨ b = 1 and a ∧ b ¿ L, then b is said to be weak supplement
of a. L is called weakly supplemented if every element of L has a weak
supplement in L. Given elements a 6 b of L, the inequality a 6 b is
called cosmall in L if b ¿ 1/a. An element c of L is called coclosed in L
if there is no proper element a of c/0 for which a 6 c is cosmall in L, i.e.
the inequality a 6 c is cosmall in L implies a = c. An element a 6 b is
said to be coclosure of b in L if the inequality a 6 b is cosmall in L and
a is coclosed in L.

Theorem. (c.f. [3], 20.25) L is amply supplemented if and only if it is
weakly supplemented and every element of L has a coclosure in L.

Joint work with: Refail Alizade, İzmir Institute of Technology
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Totally Weak Supplemented Modules

Serpil Top (Izmir, Turkey)

M will mean an R-module where R is an arbitrary ring with iden-
tity. A module M is weakly supplemented if every submodule U of M
has a weak supplement in M , i.e. U + V = M and U ∩ V ¿ M for
some submodule V of M . M is totally weak supplemented if every sub-
module of M is weakly supplemented. A module M is called hollow if
every proper submodule of M is small(superfluous) in M . A module is
called linearly compact if for every family of cosets {xi +Mi}4, xi ∈ M ,
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and submodules Mi ⊂ M (with M/Mi finitely cogenerated) such that
the intersection of any finitely many of these cosets is not empty, the
intersection is also not empty. (see [1])

The following example shows that if N and M/N are weakly supple-
mented, M need not be weakly supplemented in general.

Example 1. Let F be a field and the commutative ring S be the direct
product

∏
n∈N Fn, where Fn = F (n > 1) and the element of S are the

sequences {an} where an ∈ F (n ∈ N). Let R be the subring of S consist-
ing of all sequences {an} such that there exists a ∈ F, k ∈ N with an = a
for all n > k. The Soc R of the R-module R and R/ Soc R are weakly
supplemented but R-module R is not weakly supplemented.

In special case we have the following result.

Предложение 1. M is weakly supplemented if and only if M/⊕n
i=1 Li

is weakly supplemented for a finite direct sum of hollow submodules Li

of M .

Theorem. (c.f. [2], [3]) M is totally weak supplemented if and only if
M/U is totally weak supplemented for a linearly compact submodule U
of M .

Joint work with: Rafail Alizade, İzmir Institute of Technology
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Generated Fischer formations

A. A. Tsarev, N. N. Vorob’ev (Vitebsk, Belarus)

All groups considered are finite and soluble. We use the terminology
of [1]. The symbol N denotes the class of all nilpotent groups. Recall
that for any class of groups F ⊇ (1) an intersection of all such normal
subgroups N of a group G that G/N ∈ F is called an F-residual GF of
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G. A class of groups is called a formation if it is closed under taking
homomorphic images and subdirect products.

Let X be a class of groups. Then sFX = (G |G 6 H ∈ X and GN CC
H).

The class of groups X 6= ∅ is called a Fischer class if X = sFX and X
= n0X. We call a Fischer formation (by N.T. Vorob’ev’s proposition) the
class of groups which is simultaneously a formation and a Fischer class.
We write SFFit(Y) to denote the smallest sF-closed class containing a
non-empty set of groups Y.

Theorem. Let X1, ..., Xn, Y1, ..., Ym be Fischer formations. Then
SFFit((

⋂n
i=1 Xi)

⋃
(
⋂m

j=1 Yj)) =
⋂n

i=1

⋂m
j=1 SFFit(Xi

⋃
Yj).

The symbol SFit(Y) denotes the smallest hereditary class containing
a non-empty set of groups Y.

Corollary [2]. Let X1, ..., Xn, Y1, ..., Ym be hereditary Fitting classes.
Then

SFit((
⋂n

i=1 Xi)
⋃

(
⋂m

j=1 Yj)) =
⋂n

i=1

⋂m
j=1 SFit(Xi

⋃
Yj).
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On the recognition of a finite simple group by its
spectrum

A. V. Vasilev (Novosibirsk, Russia)

Let G be a finite group, π(G) be the set of prime divisors of its or-
der and ω(G) be the spectrum of G, that is the set of element orders
of G. The prime graph GK(G) of a group G is defined as follows. The
vertex set of GK(G) is π(G) and two primes r, s ∈ π(G) considered as
vertices of the graph are adjacent by the edge if and only if rs ∈ ω(G).
K.W.Gruenberg and O.Kegel introduced this graph (it is also called the
Gruenberg — Kegel graph) in the middle of 1970th and gave a character-
ization of finite groups with a disconnected prime graph (we denote the
number of connected components of GK(G) by s(G)). This deep result
and a classification of finite simple groups with s(G) > 1 obtained by
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J. S.Williams and A. S.Kondrat’ev (see [1–2]) implied a series of impor-
tant corollaries.

The proof of the Gruenberg–Kegel Theorem relies substantially upon
the fact that G contains an element of odd prime order which is discon-
nected with 2 in GK(G). It turned out that disconnectedness could be
successfully replaced in most cases by a weaker condition for the prime 2
to be nonadjacent to at least one odd prime.

Denote by t(G) the maximal number of primes in π(G) pairwise non-
adjacent in GK(G). In other words, t(G) is a maximal number of vertices
in independent sets of GK(G). In graph theory this number is usually
called an independence number of the graph. By analogy we denote by
t(r,G) the maximal number of vertices in independent sets of GK(G)
containing the prime r. We call this number an r-independence num-
ber. Recently, in [3] it was given a characterization of finite groups with
t(G) > 3 and t(2, G) > 2, and in [4] it was proved that all finite non-
abelian simple groups except the alternating permutation groups satisfy
the condition t(2, G) > 2. Here we give a refinement of the main theorem
of [3].

Theorem 1. Let G be a finite group with t(G) > 3 and t(2, G) > 2.
Then

(1) There exists a finite simple nonabelian group S such that S 6 G =
G/K 6 Aut(S) for maximal soluble normal subgroup K of G.

(2) For every independent subset ρ of π(G) with |ρ| > 3 at most one
prime in ρ divides the product |K| · |G/S|. In particular, t(S) > t(G)−1.

(3) One of the following holds:
(a) Every prime r ∈ π(G) non-adjacent in GK(G) to 2 does not

divide the product |K| · |G/S|. In particular, t(2, S) > t(2, G).
(b) There exists the unique prime r ∈ π(K) non-adjacent in GK(G)

to 2, in which case t(G) = 3, t(2, G) = 2, and S ' Alt7 or A1(q) for
some odd q.

The above characterization with the description of prime graph of
every finite nonabelian simple group (see [4]) can be applied to a so-called
recognition problem. Namely, the question is as follows: for a given finite
nonabelian simple group L and a finite group G with ω(G) = ω(L),
what can we say about the structure of G? If it turns out that the
equality ω(G) = ω(L) implies G ' L, then L is said to be recognizable.
Clearly, the equality ω(G) = ω(L) implies the coincidence of the prime
graphs of G and L. Thus, if L satisfies the condition of Theorem 1, then
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so does G. The statement (1) of the conclusion of Theorem 1 implies
that G has the unique nonabelian composition factor S. On the other
hand, the statements (2) and (3) help to prove that this factor S is
isomorphic to L. The described method allowed to obtain a series of
results on the recognition of finite nonabelian simple group. In particular,
the recognizability of infinite series of finite simple linear groups with
connected prime graph was established (see [5]). Here, we mention the
following general result on exceptional groups of Lie type.

Theorem 2. Let L be a finite simple exceptional group of Lie type
and G be a finite group with ω(G) = ω(L). Then L 6 G/K 6 Aut(L)
for maximal soluble normal subgroup K of G.

Supported by the Russian Foundation for Basic Research (Grant 05–
01–00797 and 06–01–39001), SB RAS Integration Project No. 2006.1.2,
the Foundation of Russian Science Support, and President grant (MD-
2848.2007.1).
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On the existence of regular orbits of solvable
subgroups

E. P.Vdovin (Novosibirsk, Russia)

The following theorems are the main result of our work.
Theorem 1. Let G be a solvable subgroup of GLn(q) and (|G|, q) = 1.

Then there exist vectors u, v ∈ GF (q)n such that CG(u) ∩ CG(v) = {e}.
Theorem 2. Let G be a solvable subgroup of GLn(q) and (|G|, q) = 1.

Consider the action of G on V ×V given by (u, v)g = (ug, vg). Then there
exists a regular orbit of G on the set V × V . In particular |G| < |V |2.
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Known examples show that Theorems 1 and 2 are not valid with-
out the restriction (|G|, q) = 1. The following result is immediate as a
corollary of Theorem 1.

Theorem 3. Let π be a set of primes, G a finite π-solvable group,
and H a Hall π-subgroup of G. Then there exist x, y ∈ G such that
H ∩Hx ∩Hy = Oπ(G).

The work is supported by RFBR 05–01–00797, grant of President
RF (MK–3036.2007.1) and SB RAS(grant N 29 for young scientists and
Integration project 2006.1.2)

Modular elements of the lattice of semigroup
varieties

B. M. Vernikov (Ekaterinburg, Russia)

An element x of a lattice 〈L; ∨,∧〉 is called modular (upper-modular)
if (x∨y)∧z = (x∧z)∨y (respectively (z∨y)∧x = (z∧x)∨y) for all y, z ∈ L
with y 6 z (respectively y 6 x). Lower-modular elements are defined
dually to upper-modular ones. A semigroup variety is called modular
(upper-modular, lower-modular) if it is a modular (upper-modular, lower-
modular) element of the lattice of all semigroup varieties. A number of
results about varieties of these three types are obtained in [1–6].

An identity of the form u = 0 is called 0-reduced. We call an identity
u = v substitutive if u and v depend on the same letters and v may be
obtained from u by renaiming of letters. We denote by T , SL and SEM
the trivial variety, the variety of all semilattices and the variety of all
semigroups respectively. The following theorem essentially sharpen [2,
Proposition 1.6].

Theorem 1. If a semigroup variety V is modular then either V =
= SEM or V = X ∨N where X ∈ {T ,SL} and N is a nil-variety given
by 0-reduced and substitutive identities only.

It is proved independently in [1, Corollary 3] and [2, Proposition 1.1]
that if a variety is given by 0-reduced identities only then it is modular.

Theorem 2. For a commutative semigroup variety V the following
are equivalent : (i) V is modular ; (ii) V is modular and upper-modular ;
(iii) V ⊆ SL ∨N where N satisfies the identities x2y = 0 and xy = yx.
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A commutative upper-modular and commutative lower-modular va-
rieties were completely determined in [5] and [6] respectively.

Theorem 3. If a modular semigroup variety V satisfies a permutable
identity of length n then it satisfies also all permutable identities of length
n + 1. If, besides that, n > 4 and V is a nil-variety then it satisfies also
all identities of the form u = 0, where u is a word of length n depending
on n− 1 letters.
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Hochschild cohomology for a family of self-injective
algebras of tree class Dn

Y. V. Volkov, A. I. Generalov (St. Petersburg, Russia)

Let R be a representation-finite self-injective basic algebra over an al-
gebraically closed field. It is known that the stable AR-quiver of the such
algebra is described with using an associate tree and this tree is one of
the Dynkin diagram An, Dn, E6, E7, or E8 [1]. If this tree is An, then the
algebra R is stably equivalent to some serial self-injective algebra or to
so called “Möbius algebra” [2]. In [3] the Hochschild cohomology algebra
HH∗(R) was calculated for serial self-injective algebras, and for Möbius
algebra the subalgebra HH∗r(R) of the algebra HH∗(R) was calculated
in [4] (here, r is a parameter related with the algebra R). In these papers
the fact that the syzygy of an appropriate order for the R-bimodule R
can be described as twisted bimodule, was essentially used. More direct
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approach to the calculation of Hochschild cohomology for Möbius alge-
bra R was initiated in [5, 6]. Namely, the minimal projective resolution
for algebra R as a Λ-module, where Λ is the enveloping algebra of the
algebra R, was constructed, and then this resolution was used for calcu-
lation of the additive structure for the algebra HH∗(R), i.e. dimensions
of the groups HHn(R) were calculated.

In the talk we give the description of the additive structure of the
algebra HH∗(R) for a family of representation-finite self-injective alge-
bras with the associate tree Dn (n > 4). As in [5], first we construct the
minimal projective bimodule resolution for these algebras.
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Modular forms with multiplicative coefficients and
group representations

G. V. Voskresenskaya (Samara, Russia)

Let G be a finite group. We can associate with each g ∈ G a modu-
lar form by means of a representation T. Such representation has some
special properties but it can be constructed for every finite group. In par-
ticular, 24 | dim T. Modular forms in this correspondence are products
of Dedekind η− functions of various arguments.

We consider general properties of this correspondence and study in
details the open problem of finding such finite groups that the modular
forms associated with all elements of these groups by means of a certain
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faithful representation belong to a special class of modular forms. These
groups are called MηP groups.

Modular forms from this class are completely determined by the fol-
lowing conditions: they are cusp forms of integer weights with characters,
all their zeroes are in the cusps and each zero has the multiplicity one.
A priori we don’t give other assumptions but in fact these functions
are eigenforms of Hecke algebra and can be expressed as products of
Dedekind η−functions of various arguments. Their Fourier coefficients
are multiplicative and they are called multiplicative η−products.

G.Mason proved that M24 is an MηP−group. But there are many
MηP−groups which are not subgroups in M24. So we have a non-

trivial problem of classification. We present at the conference our results
on this problem.

Also we investigate the arithmetic properties of the Fourier coeffi-
cients of multiplicative η−products. We consider Shimura sums related
to the modular forms and prove several families of identities involving
them. The type of identity obtained depends on the splitting of primes in
certain imaginary quadratic number fields. Shimura sums are in a sense
analogous to Gaussian and Jacobian sums.
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The classical reciprocity law as an analog of an
Abelian integral theorem

S. V. Vostokov (St. Petersburg, Russia)

Already Kronecker understood that there was a deep relationship be-
tween algebraic numbers and algebraic functions. From this point of
view, the Hilbert reciprocity law (the product of local norm residue
symbols is equal to 1), as emphasized by Hilbert himself and later by



174

Shafarevich, is an analog of the Cauchy theorem stating that the sum of
residues of a differential form on a Riemann surface is zero. In this talk,
we consider the classical reciprocity law for algebraic number fields from
the same point of view. It is well known that the main problem in the
classical reciprocity law is finding an explicit formula for the product of
power residues. Class field theory connects this product with the prod-
uct of local norm residue symbols (Hilbert symbols). Thus, an analogy
between the classical reciprocity law and the theorem stating that the
integral of a differential form on a Riemann surface is equal to the sum
of residues of this form arises. Using explicit formulas for the Hilbert
symbol, we make this analogy explicit and obtain an explicit global reci-
procity law.

On (2,3) generation of matrix groups over the ring
of integers

M. A. Vsemirnov (St. Petersburg, Russia)

The group is called (2, 3)-generated if it can be generated by an invo-
lution and an element of order three. The list of (2,3)-generated classical
matrix groups over finite fields is known (see [1] and references therein).
A similar problem for matrix groups over integers still remains open.
For instance, it is known that the groups SLn(Z), n > 13, and GLn(Z),
n > 19, are (2,3)-generated [4], while SL2(Z), SL3(Z), SL4(Z), GL2(Z),
GL3(Z), GL4(Z) are not [3],[5].

The main result presented here is the following.

Theorem 9. For n = 5, 6, 7, the groups GLn(Z) and SLn(Z) are (2, 3)-
generated.

The results are constructive and explicit generators are provided.
In the case of GL5(Z) Luzgarev and Pevzner [2] reduced the problem

to the study of ten explicit pairs of matrices. However, they were not
able to determine whether these pairs actually generate GL5(Z) or not.
We strengthen their results and give a complete description of (2, 3)-
generating pairs.
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Theorem 10. The groups GL5(Z) and SL5(Z) are (2, 3)-generated. More-
over, any (2, 3)-generating pair for GL5(Z) (resp., SL5(Z)) is GL5(Z)-
conjugated to one the pairs (x, y) (resp., (−x, y)), where

x =




−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
1 0 0 1 0
0 0 1 0 1




, y =




0 1 0 0 a1

−1 −1 0 0 a2

0 0 0 1 a3

0 0 −1 −1 a4

0 0 0 0 1




,

and the set (a1, a2, a3, a4) is one of the following sets:

(1,−1,−2,−2), (0,−1,−2,−2), (−1, 1,−2,−2),
(0, 1,−2,−2), (1,−1, 1,−3), (0,−1, 0,−1).

One may expect a complete classification of (2,3)-generating pairs also
in the case of SL6(Z). The corresponding was reduced [6] to the study of
32 explicit pairs of matrices. Now it is known that these pairs generate
SL6(Z) in four cases, they generate a proper subgroup in 16 cases, while
12 cases remain open.
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Prescribed properties and imbedding problems for
central simple algebras under central field extensions

V. I. Yanchevskii (Minsk, Belarus)

Let A1, . . . , As be central simple finite-dimensional algebras over a
field F . We will be interested in the following question: does there exist a
field extension E/F such that A1⊗F E, . . . , As⊗F E have some prescribed
property P?

Example 1. P = {Ai ⊗F E is cyclic and ind(Ai) = ind(Ai)⊗F E for
each i = 1, . . . , s}, where ind(A) denotes the index of the algebra A.

Example 2. P = {ind(Ai) = ind(Ai) ⊗F E and exp(Ai ⊗F E) is
a prescribed divisor of exp(Ai) for each i = 1, . . . , s}, where exp(A)
denotes the exponent of the algebra A.

For s = 1 and P as in examples 1,2 the solutions of the corresponding
problems are well known [1], [2] (see also [3] and [4]). The talk will be
devoted to the case s > 1.

Among others we are going to discuss a few recent (joint with U.
Rehmann and S.V. Tikhonov) results on this topic such as theorems
below.

Theorem 1. Let A1 . . . Am be central simple algebras over a field
k. Assume ξp ∈ k for any prime p dividing

∏m
i=1 ind(Ai) where ξp is a

primitive p-th root of unity. Then there exists a regular field extension
E/k such that all the algebras Ai⊗k E are cyclic, ind(C⊗k E) = ind(C)
and exp(C ⊗k E) = exp(C) for any central simple k-algebra C.

Theorem 2. Let A1, . . . , An be central simple algebras over a field
k, exp(Ai) = ind(Ai) = ni. Assume

< [Ai] > ∩ < [A1], . . . , [Ai−1], [Ai+1], . . . , [An] >= {0}.
Let also mi, 1 6 i 6 n, be such that mi|ni and for any prime p dividing ni

one has p|mi. Then there exists a field extension E/k such that exp(Ai⊗k

E) = mi and ind(Ai ⊗k E) = ind(Ai), 1 6 i 6 n.
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Motivic decompositions of projective homogeneous
varieties

Kirill Zainoulline (St. Petersburg, Russia)

Let G be a linear algebraic group over a field F and X be a projective
homogeneous G-variety such that G splits over the function field of X. In
the present talk we introduce an invariant of G called J-invariant which
characterizes the motivic behaviour of X. This generalizes the respective
notion invented by A. Vishik in the context of quadratic forms. As a main
application we obtain a uniform proof of all known motivic decomposi-
tions of generically split projective homogeneous varieties (Severi-Brauer
varieties, Pfister quadrics, maximal orthogonal Grassmannians, G2- and
F4-varieties) as well as provide new examples (exceptional varieties of
types E6, E7 and E8). We also discuss relations with torsion indices,
canonical dimensions and cohomological invariants of the group G.

A characterization of finite groups by the prime
graph

A. V. Zavarnitsine (Novosibirsk, Russia)

The prime graph Γ(G) of a finite group G, also often called the
Gruenberg–Kegel graph, is a graph whose vertex set is the set π(G)
of prime divisors of the order |G|, two vertices p, q ∈ π(G) being joined
by an edge if and only if G contains an element of order pq. For example,
a prime graph of the simple group G2(7) is shown in fig. 1. The group G
is called recognizable by the prime graph if, for every finite group H, the
equality of the vertex-labeled graphs Γ(H) = Γ(G) implies the isomor-
phism H ∼= G. The recognition problem of finite groups by the prime
graph is similar to the problem, popularly studied recently, of recogniz-
ing groups by element orders. Obviously, the recognizability by graph is
stronger than the recognizability by the set ω(G) of element orders of
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the group G, since the knowledge of ω(G) allows one to determine Γ(G),
but in general not vice versa.

s
7

s2
s3 s19 s43

©©©
HHH

Рис. 1. Γ(G2(7))

We obtain [1] examples of groups recognizable by the prime graph.

Theorem. Suppose that the group G ∼= G2(q), with q ≡ 1 (mod 3) odd,
acts on a vector space V over a field of characteristic 3. Then 3(q2− q +
1) ∈ ω(V L).

Corollary. The group G2(7) is recognizable by the prime graph.

In particular, G2(7) is a new example of a group recognizable by the set
of element orders.

Theorem. Suppose that the group G ∼= 2G2(q), with q = 32m+1 > 3,
acts on a vector space V over a field of characteristic 2. Then 2(q −√

3q + 1) ∈ ω(V L).

Corollary. All the groups 2G2(q) are recognizable by the prime graph.
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On Iversen’s formula for morphisms of algebraic
surfaces

I. B. Zhukov (St. Petersburg, Russia)

We give a report on the work aimed at a 2-dimensional analog of
Riemann-Hurwitz formula. The classical Riemann-Hurwitz formula com-
pares the Euler characteristics of smooth projective algebraic curves
when a finite morphism between the curves is given. Namely, if Y and X
are such curves over an algebraically closed field k (of any characteristic),
and f : Y → X is a finite morphism of degree n, then

χY − nχX =
∑

Q

vQ(DQ),

where χX = 2g(X) − 2, χY = 2g(Y ) − 2, the sum is taken over all
closed points of Y , vQ is the valuation at Q, and DQ is the different
ideal in the extension of discrete valuation rings OY,Q/OX,f(Q). In the
case of surfaces one can seek for similar formulas for different discrete
invariants of a surface S. In particular, one can consider 1) the Euler
number χS defined as the degree of the second Chern class of S; 2)
the Euler characteristic of the structure sheaf χ(S,OS). B. Iversen in
his work “Numerical invariants and multiple planes”(Amer. J. Math. 92
(1970), 968–996) established Riemann-Hurwitz-like formulas for χS and
χ(S,OS) of complete smooth surfaces over an algebraically closed field of
characteristic zero. We make an attempt to extend his results to fields of
prime characteristic, at least for the Euler numbers. The central point is
the definition of an invariant describing wild ramification in codimension
2.

What is done so far? We derived the following formula comparing the
Euler numbers of surfaces in any characteristic. Let f : T → S be a finite
morphism of degree n of complete smooth surfaces over an algebraically
closed field. Let Bf =

∑
i biBi be the branch divisor (here Bi are prime

divisors on S). Assume that Bf is a normal crossing divisor. Then

χT − nχS =
∑

i

biχBi +
∑

Q

λq(ÔT,Q/ÔS,f(Q)).

Here Q runs over closed point of T , λq(A′/A) is a certain invariant
defined explicitly for an extension of complete 2-dimensional regular local
rings A′/A and a (sufficiently general) unramified prime ideal q of A of
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height 1, and the ideals q are chosen in a certain coherent way. This
invariant is defined in terms of the different of A′/q over A/(q ∩A), the
invariants of singularity of arcs corresponding to A′/q and A/(q∩A), and
the invariants of intersection of the latter arc with the branch divisor.
The summand λq(ÔT,Q/ÔS,f(Q) is non-vanishing only for a finite number
points Q, all of them lying on the ramification divisor of f . This result
is only a step towards the solution of the original problem, because we
could not avoid the dependence on q in the definition of the term λ that
describes the ramification in codimension 2. However, examples suggest
that λq does not actually depend on q, and therefore, the formula is
expected to be in its final form. What is important, this term depends
on infinitesimal (rather than merely local) behavior of f , i. e., on the
properties of extensions of completed local rings, and this reduces the
further analysis to some questions related only to complete regular local
rings.

Groups acting transitively and flag-transitively on
projective spaces

S. A. Zyubin (Tomsk, Russia)

Let K be a (commutative or skew) field and PG(n,K) be a projective
space over K. The projective linear group PGLn+1(K) naturally acts on
PG(n,K). Under such an action, the classical group PSOn+1(R) over
the real field R acts transitively on the projective space PG(n,R). More-
over it acts flag-transitively, i.e. it moves a maximal flag of the space to
any other one. Another example of transitive subgroup of the projective
linear group is the subgroup PSL2(Z) of the group PGL2(Q). The fol-
lowing two problems are part of the problem 11.70 from the Kourovka
Notebook. This problem was posed by P. Neumann and Ch. Praeger for
infinite fields. (1) Find all subgroups of PGL2(K), which act transitively
on the projective line PG(1,K); (2) under what conditions does the sub-
group PGLn+1(R) over a subring R of the field K act flag-transitively
on PG(n,K)?

The next theorem gives answer for the second part of the problem for
commutative fields.
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Theorem 1. Let R be a subring of a (commutative) field K. Then
the subgroup PGLn+1(R) acts flag-transitively on the projective space
PG(n,K) if and only if R is a Bezout ring and its quotient field coincides
with K.

The second result gives answer for the first part of the problem for
locally finite fields.

Theorem 2. Let K be a locally finite field and G be a subgroup of
PGL2(K). If G acts transitively on the projective line P (1,K) then the
only following cases are possible:

(i) G = PGL2(K);
(ii) G = PSL2(K);
(iii) G is a maximal subgroup of PGL2(K) that conjugated over qua-

dratic extension of K to the monomial subgroup;
(iv) G has index 2 in the subgroup from the previous case.
This research is supported by the Russian Foundation for Basic Re-

search (Grant 06–01–00824).
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