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Abstracts

New approach to the quantum three-body scattering
problem. I. One-dimensional particles.

Vladimir Buslaev
St.Petersburg State University

The talk is based on a joint work with S.B. Levin.

We present a new approach to the quantum three-body scattering problem. The main
idea is to propose a priory explicit formulas for the asymptotic behavior of the eigenfunctions
of the continuous spectrum (of scattered plane waves type) describing them up to the simple
diverging waves with a smooth amplitude. If we are able to find such asymptotic behavior
even heuristically, we obtain a way for regular numerical computations of the eigenfunctions,
and also a method to construct an appropriate integral equation of the same nature as the
Lippmann-Schwinger equation for the scattering of the plane wave by a quickly decreasing
potentials. The equation can be used to justify the asymptotic behavior rigorously.

For one-dimensional particles with quickly decreasing at infinity pair potentials we can use
for the description of the mentioned asymptotic behavior the analogy between the stated prob-
lem and the classical problem of the diffraction of the plane waves by the set of semi-transparent
infinite screens. This analogy was already used in [1,2]. In case of long range potentials we are
able to treat the diffraction problem analogously with the replacement of the classical plane
waves by plane waves that are appropriately deformed by the long range tails of the Coulomb
potentials. It is important to mention that the diffraction itself and the corresponding scatter-
ing problems cannot be completely reduced to the scattering of the plane waves by the screens:
we have to add to these processes some genuine diffraction components that have more com-
plicated analytical structure but still explicit description. This more complicated structure is
also dictated by the analogy with the classical diffraction theory.

The formulas we are going to present have been already used for the numerical coputations
and turned out quite effective.

References

[1] Buslaev, V. S.; Merkuriev, S. P.; Salikov, S. P. Probl. Mat. Fiz., Leningrad. Univ.,
Leningrad, 9, (1979), pp. 14–30

[2] Buslaev, V.S. and Levin, S.B., Amer.Math.Soc.Transl. (2), v.225, (2008), pp. 55–71
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The characterization of spectral data for the
vector-valued Sturm-Liouville problem

D.Chelkak
St.Petersburg State University

We consider the vector-valued Sturm-Liouville operator Ly = −y′′ + V y on [0, 1] with
Dirichlet boundary conditions, where V (x) is a self-adjoint N×N matrix-valued potential. We

suppose that the mean value V 0 =
∫ 1

0
V (x)dx of the potential is fixed (the unitary transform

leads to the diagonal V 0) and all eigenvalues of V 0 are simple (the ”nondegenerate” case). The
spectral data consist of

(i) eigenvalues λm and their multiplicities km : 1 ≤ km ≤ N ;
and residues −Bm of the (matrix-valued) Weyl-Titchmarsh function. Each Bm is a nonnegative
self-adjoint N ×N matrix of rank km and we treat it as Pmg

−1
m Pm, where

(ii) Pm is an orthogonal projector in CN , rank(Pm) = km;
(iii) gm is a positive quadratic form (”normalizing matrix”) defined in Ran(Pm).

It is well-known that the Weyl-Titchmarsh function defines the potential uniquely. We give
the complete characterization (in other words, necessary and sufficient conditions) of spectral
data that correspond to the square summable potentials with given V 0. Note that in ”nonde-
generate” case all sufficiently large eigenvalues are simple (and corresponding gm are positive
”normalizing constants”). Then, if km = 1 for all m > m0 and k1 + .. + km0 = Nn0, we define
the double-indexing (n, j), n > n0, j = 1, .., N , instead of the simple-indexing m > m0 by
m−m0 = N(n− n0 − 1) + j.

Theorem 1 (Chelkak-Korotyaev, 2008). (λm, Pm, gm)∞m=1 correspond to some poten-
tial V = V ∗ ∈ L2

N×N([0, 1]): V 0 = diag(v0
1, .., v

0
N), v0

1 < .. < v0
N iff

(a) the spectrum is asymptotically simple, i.e. km = 1 for all m > m0;
(b) for each j = 1, .., N the following ”asymptotics in `2-sense” are fulfilled:{

λn,j − π2n2 − v0
j

}∞
n=n0+1

∈ `2;
{
πn · (2π2n2gn,j − 1)

}∞
n=n0+1

∈ `2;

{‖Pn,j − P 0
j ‖}∞n=n0+1 ∈ `2 and {πn · ‖

∑N
j=1Pn,j − IN‖}

∞
n=n0+1 ∈ `2,

where P 0
j are the standard coordinate projectors and IN is the identity N ×N matrix;

(c) the following ”unique interpolation property” holds true for (λm, Pm)∞m=1:

if Pmξ(λm) = 0 for all m ≥ 1 and some entire vector-valued function ξ : C → CN

such that ξ(λ) = o(|λ|− 1
2 e|Im

√
λ|) as |λ| → ∞, then ξ ≡ 0.

Remark. (i) Asymptotics of λn,j and gn,j are the same as in the scalar case and their
leading terms are Fourier coefficients of diagonal entries of V (x). Similarly, the leading terms in
the asymptotics of individual projectors Pn,j and their sums

∑N
j=1 Pn,j are given by the Fourier

coefficients of nondiagonal entries of V (x).

(ii) This work is a part of the joint with E.Korotyaev project devoted to the spectral theory
of 1D Schrödinger-type operators with matrix-valued potentials. The author was supported
by the Foundation of the President of the Russian Federation (grants no. MK-4306.2008.1 and
NSh-2409.2008.1).
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Heat Trace Asymptotics in Polyhedra

Leonid Friedlander
University of Arizona

It is well known that

h(t) = tre−t∆ ∼
∞∑
j=0

cjt
(−n+j)/2, t→∞ (1)

where ∆ is the Laplacian on a compact Rimannian manifold M , with or without boundary.
The boundary is assumed to be smooth, and the above asymptotics holds for a big class of
boundary conditions. We will be dealing with the Dirichlet boundary condition. All coefficients
cj are locally computable quantities: they are sums of integrals over M of polynomials of the
components of the curvature tensor and integrals over the boundary of M of polynomials of
components of the second fundamental form. The situation is more complicated when the
boundary is not smooth. In the case when M is an n-dimensional polyhedron, the asymptotic
expansion (1) holds, but computing coefficients turns out to be not that easy. A naive idea of
approximating a polyhedron by smooth domains and passing to the limit does not work. The
main issue is computing the contribution of a vertex. For polygons, the problem was solved by
B.V. Fedosov in the early sixties: the contribution of a vertex equals (π2 − θ2)/(24πθ) where
θ is the corresponding interior angle. In the case n > 2, the answer was not known. It is not
clear whether the contribution of a vertex can be explicitly written down as a simple function
of different angles attached to that vertex.

Let P be a polyhedron in Rn, let A be a vertex of P , and let CA be the cone in Rn that
has A as its vertex and such that CA ∩U = P ∩U for a neighborhood U of the point A that is
small enough. Let ωA be the intersection of CA with the sphere of radius 1 centered at A. By
θ(t) we denote the heat trace in ωA, and let

p(t) = exp

{
−(n− 1)(n− 3)

4

}
θ(t).

Consider the space of Brownian paths b(t), 0 ≤ t ≤ 2 conditioned on b(0) = b(2) = 0, and let
µ2,0 be the Wiener measure on this space. For a path b(t), we define a function

ξ[r; b] =
1

2

∫ 2

0

dt

(r + b(t))2
dt.

It equals +∞ when r ≤ m(b) = −min{b(t)}; then it is strictly monotone, and it decreases from
+∞ to 0. The inverse function r[ξ; b] is defined for all ξ > 0, and it decreases from ∞ to m(b).
Let

r(ξ) =

∫
r[ξ; b]dµ0,2(b).

We show that, up to an explicitly computable expression (and we compute that expression,)
the contribution of the vertex A to the heat trace expansion (1) equals to the free term in the
expansion of ∫ ∞

τ

r(ξ)p′(ξ)dξ

as τ → 0. Notice that r(ξ) is a universal function. In this way, we reduce the problem of
computing the contribution of a vertex to the heat trace for an (n− 1)-dimensional domain.
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On the Riemann-Hilbert approach in the theory of
Toeplitz and Hankel determinants

Alexander Its
Indiana University- Purdue University Indianapolis

Let φ(z) be a function defined on the unit circle,

C = {z : |z| = 1}.

The Toeplitz determinant, DT
n [φ], is defined as

DT
n [φ] := detTn[φ],

where
Tn[φ] := {φj−k}, k = 0, ..., n− 1,

and

φk =

∫
C

φ(z)z−k−1 dz

2πi
.

Similarly, given a function φ(z) defined on the real line R the Hankel determinant, DH
n [φ], is

defined as
DH
n [φ] := detHn[φ],

where
Hn[φ] := {φj+k}, k = 0, ..., n− 1,

and

φk =

∫ ∞
−∞

zkφ(z)dz.

The principal analytic question is evaluation of the large n asymptotics of DT
n and DH

n .
Starting with Onsager’s celebrated solution of the two-dimensional Ising model in the

1940’s, Toeplitz and Hankel determinants play an increasingly central role in modern math-
ematical physics. Simultaneously, the theory of Toeplitz and Hankel determinants is a very
beautiful area of analysis representing an unusual combinations of profound general operator
concepts with the highly nontrivial concrete formulae. The area has been thriving since the
classical works of Szegö, Fisher and Hartwig and Widom, and it very much continious to do so.

In the 90s, it has been realized [3,1,2] that the theory of Toeplitz and Hankel determinants
can be also embedded in the Riemann-Hilbert formalism of integrable systems . The new
Riemann-Hilbert techniques have gone far beyond the classical Wiener-Hopf schemes, and they
have led to the solutions of several important long-standing asymptotic problems of the theory.
We shall review some of the most recent results which includes the proof of the Basor-Tracy
conjecture concerning the asymptotics of Toeplitz determinants with the most general Fisher-
Hartwig type symbols, the Fisher-Hartwig type asymptotics for Hankel determinants and for
Toeplitz + Hankel determinants, and the asymptotics of the determinants of Toeplitz matrices
with the matrix-valued algebraic symbols. The Riemann-Hilbert approach will be outlined as
well.

The presentation is based on the author’s joint works with P. Deift, V. Korepin, I.
Krasovsky, F. Mezzadri, and M. Mo.
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The Pontrjagin-Hopf invariants for Sobolev maps

Lev Kapitanski
University of Miami

I have been interested in the Faddeev S2-nonlinear sigma-model, [3], for quite some time.
Thinking about it has led me to the problem of homotopy classification of maps from a 3-
dimensional manifold, M , into the sphere S2. In fact, the classification was obtained in the
1930s starting with the work of H. Hopf [4] and ending with deep results of L. Pontrjagin [5].
In the case of a simply connected 3-manifold M , the homotopy classes of the maps M → S2

are distinguished by an integer, the Hopf invariant, and there is a neat analytical formula
(due to J.H.C. Whithead, 1947) that allows one to in principle compute this integer for any
sufficiently smooth map ϕ : M → S2. If M is not simply connected (take, e.g., T 3, the 3-torus),
no analytical method has been known to tell whether two smooth maps belong to the same
homotopy class or not (and I have discussed this with a number of world renowned geometers).
Recently, Dave Auckly and I came up with a solution, [1,2]. To describe it, it is convenient to
use quaternions, q = q0 + q1 i + q2 j + q3 k, with the usual properties. We make the following
identifications. The sphere S3 is identified with the unit (norm 1) quaternions. S3 is the Lie
group Sp(1). Its Lie algebra, sp(1), is identified with the space of purely imaginary quaternions,
R3, with the Lie bracket [p, q] = pq − qp. We identify the usual sphere S2 with the unit sphere
in the space of purely imaginary quaternions. Finally, we identify S1 with the unit quaternions
of the form q0 + q1 i. Thus S2 ⊂ S3, S1 ⊂ S3, and S2 ∩ S1 = i ∪ −i.

Our description of the Pontrjagin-Hopf invariants. Let M be a closed, connected,
oriented 3-manifold. To any continuous map ϕ from M to S2 one associates the pull-back
ϕ∗µS2 ∈ H2(M ; Z) of the orientation class µS2 ∈ H2(S2; Z). The class ϕ∗µS2 is the primary
invariant. For two maps, ϕ and ψ, to be in the same homotopy class, it is necessary that
ψ∗µS2 = ϕ∗µS2 . In [2] we use the Čech picture to define the pull-backs for maps with fi-
nite Faddeev energy (such maps may be discontinuous) and prove the following result (under
appropriate regularity assumptions).

Theorem 1 ψ∗µS2 = ϕ∗µS2 iff there exists a map u : M → S3 such that

ψ(x) = u(x) · ϕ(x) · u(x)−1 (1)

The intertwining map u is not unique. If ũ is another such map, then ũ(x) = u(x) q(ϕ(x), λ(x)),
where λ is a map M → S1 and q : S2 × S1 → S3 is defined via q(z, λ) = qλq−1, where
z = q i q−1.
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Fix ϕ : M → S2. The pull-back ϕ∗µS2 is the primary invariant of the homotopy class of
ϕ. The map η 7→ (ϕ∗µS2 ∪ η)[M ] from H1(M ; Z) to Z is a group homomorphism, hence has
image mZ for some integer m = mϕ depending on the class ϕ∗µS2 ∈ H2(M,Z).

Theorem 2 The map ψ : M → S2 with the same primary invariant as ϕ is homotopic to
ϕ iff the Brouwer degree of the intertwining map u in (1), is an integer multiple of 2mϕ, i.e.,
deg (u) = 0 mod 2mϕ.

Theorems 1 and 2 turned out to be new even for smooth maps. The homotopy classifica-
tion of Sobolev maps between manifolds is an interesting area of current research. Although
the notion of homotopy itself requires reconsideration, it is important to make sure that the
homotopy invariants make sense for the relevant Sobolev maps. In [2], Dave Auckly and I prove
that the homotopy invariants of theorems 1 and 2 are well defined for maps ϕ : M3 → S2 with
finite Faddeev energy,

E(ϕ) =

∫
M

|dϕ|2 + |dϕ ∧ dϕ|2 .

The argument relies on some subtle analytical considerations.
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Blow up and regularity in some models of fluid
mechanics

Alexander Kiselev
Univ of Wisconsin, Madison

I will talk about recent results on global existence and regularity, blow up, and properties
of solutions to certain partial differential equations motivated by fluid mechanics. These are
nonlocal nonlinear equations involving fractional dissipation.

I am going to describe a new technique, nonlocal maximum principle, that is particularly
useful for proving global existence of smooth solutions in the critical case, when nonlinear and
dissipation terms balance. The technique involve conservation of a modulus of continuity of the
solution, which carries nonlocal information. It can also be used to obtain some quantitative
estimates on the solutions.

I will also discuss constructions and characteristics of blow up, where available.
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The results I am going to describe apply to several different models.
1. The simplest model I will mention is the Burgers equation in one dimension,

θt = θθx − (−∆)αθ.

The properties of this equation are fairly well understood, even though some advances are quite
recent. The value α = 1/2 is critical. There are global smooth solutions for α ≥ 1/2, and finite
time blow up (shocks) is possible if α < 1/2.
2. The Cordoba-Cordoba-Fontelos model. This is next step up in difficulty, still one-dimensional,
but the nonlinearity is now nonlocal. Let Hθ denote the Hilbert transform of θ. Then the equa-
tion reads

θt = Hθ θx − (−∆)αθ.

This models more complex and realistic equations of fluid mechanics, such as surface quasi-
geostrophic or Euler equation in vorticity form, where the advection velocity in the nonlinearity
is also given by a singular integral operator of the advected quantity.
3. Surface quasi-geostrophic (SQG) equation in two dimensions,

θt = u · ∇θ − κ(−∆)αθ,

u = ∇⊥(−∆)−1/2θ. This equation arises in atmospheric studies. It can be derived, under cer-
tain assumptions, from the Boussinesq system (Navier-Stokes equations coupled with advected
temperature equation via buoyancy term) describing fluid in a rotating half-space. The SQG
equation should be satisfied by temperature on the surface of the half-space. The physically rel-
evant cases are then κ = 0 (conservative case) and α = 1/2 (models Ekman pumping boundary
layer effect).

The SQG model appears to be simplest-looking equation of fluid mechanics for which the
question of the global existence of smooth solutions (for α < 1/2) is still open.

15



Resonances for “large” ergodic systems

Frédéric Klopp
Institut Galilée, Université de Paris-Nord

On `2(Zd), consider V a bounded ergodic potential and the operator

H = −∆ + V

where −∆ is the discrete Laplace operator. By ergodic potential, we mainly think of:

• V periodic;

• V = Vω random e.g. Anderson model;

By large “ergodic” system, we mean that we consider the ergodic potential only on a large
subset, say cube, of the total space. More precisely, let L ∈ N be large and set HL = −∆ +
V 1|x|≤L. So we deal with a compact (actually finite rank perturbation) of the Laplace operator.
Hence, we know that

• σess(HL) = σ(−∆) = [−2d, 2d];

• outside σ(−∆), HL has only discrete eigenvalues.

The operator valued function z ∈ C+ 7→ (z−HL)−1 admits a meromorphic continuation (valued
in the operators from l2comp to l2loc) from C to C cut at finitely many half-lines staring at the
critical points of the symbol of −∆. In figure 1, we represented first the spectrum of HL

and second the analytic continuation to the cut lower half-plane. The poles of this analytic

Figure 1: The meromorphic continuation

continuation are the resonances of HL. They are associated with finite dimensional resonant
subspaces. The pole width is the imaginary part of the pole. It is well known that the resonance
widths play an important role in the large time behavior of e−itHL , especially the smallest width
that gives the leading order contribution.

Our goal is to describe the resonances and, more specifically, relate them (their distribu-
tion, the distribution of their width) to the spectral characteristics of the full space Hamiltonian
H = −∆ + V .

We do this for a very simple one-dimensional model on a half-line and essentially study
two cases:

• when V is periodic;

• when V is random.
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Let us now describe shortly the results we obtain. Fix some energy E0 ∈ (−2, 2). In the case V
periodic, we prove that the resonances near E0 stay roughly at a distance of order 1/L of the
real axis; we find a quantization condition that enables us to describe the resonances precisely.

In particular, if we rescale the imaginary parts of the resonances (locally near E0) by
multiplying it by L, we prove that they accumulate near an analytic curve the equation of
which we compute (see figure 2).
The local linear density of resonances is given by the density of states of the full Hamiltonian
−∆ + V .

In the case when V = Vω is random, the picture

Figure 2: Rescaled resonances

is quite different. Fix some energy E0 ∈ (−2, 2). Let
ρ(E0) denote the Lyapunov exponent of −∆ + Vω at
energy E0 and n(E0 be the density of states of−∆+Vω
at energy E0. It is known that ρ(E0) > 0. Assume
that n(E0) > 0. In the case V periodic, we prove
that the resonances near E0 stay roughly at a distance
roughly en(E0)L(1+o(1)) of the real axis.

Moreover, if one rescales the resonances such that

Figure 3: Rescaled resonances

their real parts have roughly spacing one and their
imaginary parts are of order one i.e. one scales the
real parts by the factor L and the imaginary parts by
the factor e−n(E0)L, then the thus obtained point pro-
cess converges weakly to a Poisson process in R×[0, 1]
of intensity the measure n(E0)ρ(E0)dxdy. So the pic-
ture of the rescaled resonances is roughly that shown
in figure 3.

Sharp decay estimate for the generalized eigenvectors
asymptotics for unbounded Hermitean Jacobi Matrices

Sergei Naboko
St.Petersburg State University

The presentation is based on the joint work with J. Janas and G. Stolz.

Bounds on the exponential decay of generalized eigenfunctions of bounded and unbounded
selfadjoint Jacobi matrices in l2(N) are established. Two cases are considered separately and
lead to different results: (i) the case in which the spectral parameter lies in a general gap of
the spectrum of the Jacobi matrix and (ii) the case of a lower semibounded Jacobi matrix with
values of the spectral parameter below the spectrum. It is demonstrated by examples that both
results are sharp.

We apply these results to obtain a ”many barriers-type” criterion for the existence of
square-summable generalized eigenfunctions of an unbounded Jacobi matrix at almost every
value of the spectral parameter in suitable open sets. In particular, this leads to examples
of unbounded Jacobi matrices with a spectral mobility edge, i.e. a transition from purely
absolutely continuous spectrum to dense pure point spectrum.
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The main results are the following theorems.

Theorem. Let J be a selfadjoint Jacobi matrix (in limit point case) with off-diagonal entries
an → +∞ as n → ∞. Assume that (r, s) is a gap in the spectrum of J . Then for arbitrary
ε ∈ (0, 1

2
) there exists N = N(ε) such that

|(J − λ)−1e1, en)| ≤ s− r
ε(λ− r)(s− λ)

exp

{
−
(

1

2
− ε
)√

(λ− r)(s− λ)
n−1∑
k=N

1

ak

}

for all λ ∈ (r, s) and for all n > N . Here en stands for the canonical basis in l2(N).

Theorem. Let J = J ∗ and assume that lim
n→∞

an = +∞. Suppose that J is bounded from

below and denote d := inf σ(J ). Fix ε ∈ (0; 1) and complex λ,Reλ < d. Then there exists
N = N(ε, λ) such that

|((J − λ)−1e1, en)| ≤ [(d− Reλ)ε]−1 exp

{
−(1− ε)

√
d− Reλ

n−1∑
k=N

1
√
ak

}
,

for n > N .

Hölder–Zygmund operator functions

Vladimir Peller
East Lansing, Michigan

This is a joint work with A. B. Aleksandrov.
It is well known that a Lipschitz function is not necessarily operator Lipschitz which means

that for a Lipschitz function f on the real line it is not necessarily true that

‖f(A)− f(B)‖ ≤ const‖A−B‖

for self-adjoint operators A and B. It is also well known that a continuously differentiable
function is not necessarily operator differentiable. However, we have proved that if f is a
function in the Hölder class Λα with 0 < α < 1, then it is operator Hölder, i.e.,

‖f(A)− f(B)‖ ≤ const‖A−B‖α

for self-adjoint operators A and B. The same is true for functions in the Zygmund class Λ1 .
They must be operator Zygmund, i.e.,

‖f(A+K)− 2f(A) + f(A−K)‖ ≤ const‖K‖

for self-adjoint operators A and K. The same is true for all spaces Λα , 0 < α < ∞ of the
Hölder–Zygmund scale. Similar results also hold for functions of unitary operators and for
functions of contractions.

We also obtain similar estimates in the case of Schatten–von Neumann norms.
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Two soliton collision for nonlinear Schrodinger equations
in dimension 1

Galina Perelman
Ecole Polytechnique, Paris

We consider the nonlinear Schrödinger equation

iψt = −ψxx + F (|ψ|2)ψ, (x, t) ∈ R× R, (1)

where F is a smooth function that satisfies F (ξ) = −2ξ +O(ξ2), as ξ → 0.
This equation possesses solutions of special form - solitary waves (or, shortly, solitons):

eiΦ(x,t)ϕ(x− b(t), E),

Φ(x, t) = ωt+ γ +
1

2
vx, b(t) = vt+ c, E = ω +

v2

4
> 0,

where ω, γ, c, v ∈ R are constants and ϕ is the ground state that is a smooth positive even
exponentially decreasing solution of the equation

−ϕxx + Eϕ+ F (ϕ2)ϕ = 0, ϕ ∈ H1(R).

We are interested in the solutions of (1) that behave as t → −∞ like a sum of two
nonlinearly stable solitons

eiΦ0ϕ(x− b0(t), E0) + eiΦ1ϕ(x− b1(t), E1),

Φj = ωjt + γj + 1
2
vjx, bj(t) = vjt, v1 − v0 6= 0, our goal being to understand the collision

between the solitons and to determine what happens after. We show that in the case where
E1 ≡ ε2 � 1 (depending on v1−v0 and E0) the collision leads to the splitting of the small soliton
into two outgoing parts, that at least up to the times t ∼ ε−2| ln ε| propagate independently
according to the cubic NLS:

iψt = −ψxx − 2|ψ|2ψ. (2)

The splitting of the small soliton is essentially controlled by the flow linearized around the
“large” one: in the interaction region a small amplitude soliton behaves as a slowly modulated
plane wave εe−iv

2
1t/4+iv1x/2 and is splitted by the large soliton into a reflected and a trans-

mitted parts accordingly to the linear scattering theory. For the first time this phenomenon
was observed by J.Holmer, J.Marzuola, M.Zworski [1], [2] in the context of soliton-potential
interaction for the cubic NLS with an external delta potential:

iψt = −ψxx + δ(x)ψ − 2|ψ|2ψ.

To control the solution in the post interaction region ε−1−δ ≤ t ≤ δε−2| ln ε| one invokes
the orbital stability argument combined with the integrability of (2), again in the spirit of [1],
[2].
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Low Energy Asymptotics of the SSF for Pauli Operators
with Nonconstant Magnetic Fields

Georgi Raikov
Pontificia Universidad Católica de Chile

Suppose that the magnetic field B : R3 → R3 has a constant direction, say,

B = (0, 0, b).

By the Maxwell equation, div B = 0, we should then have ∂b
∂x3

= 0. In what follows we assume

that b = b0 + b̃ where b0 > 0 is a constant, while the function b̃ : R2 → R is such that the
Poisson equation

∆ϕ̃ = b̃

admits a solution ϕ̃ : R2 → R, continuous and bounded together with its derivatives of order
up to two. For x ∈ R2 set ϕ0(x) := b0|x|2/4, and ϕ := ϕ0 + ϕ̃. Then ∆ϕ0 = b0 and ∆ϕ = b.
Put A := (A1, A2, A3) with

A1 := − ∂ϕ
∂x2

, A2 :=
∂ϕ

∂x1

, A3 = 0.

Then curl A = B = (0, 0, b). Let

H0 :=

(
(−i∇−A)2 − b 0

0 (−i∇−A)2 + b

)
:=

(
H−0 0
0 H+

0

)
= H−0 ⊕H+

0

be the unperturbed Pauli operator, self-adjoint in L2(R3; C2). Note that we have

H±0 = H±⊥ ⊗ I‖ + I⊥ ⊗H‖ (1)

where I‖ and I⊥ are the identity operators in L2(R) and L2(R2) respectively,

H‖ := − d2

dx2
3

,

H−⊥ = H−⊥ (b) := a∗a, H+
⊥ = H+

⊥ (b) := aa∗,

and

a = a(b) := −2ie−ϕ
∂

∂z
eϕ, a∗ = a(b)∗ := −2ieϕ

∂

∂z
e−ϕ, z := x1 + ix2, z := x1 − ix2.

Let p = p(b) be the orthogonal projection onto

Ker H−⊥ = Ker a =

{
u ∈ L2(R2)|u = ge−ϕ,

∂g

∂z
= 0

}
.

Obviously, rank p =∞. Since
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• σ(H‖) = [0,∞), and σ(H‖) is purely absolutely continuous,

• inf σ(H−⊥ ) = 0, and H+
⊥ ≥ 0,

we easily find that by (1) we have σ(H0) = [0,∞), and σ(H0) is purely absolutely continuous.
Further, let V := {vjk}j,k=1,2 be a bounded Lebesgue-measurable Hermitian matrix-valued
function. On the domain of H0 define the operator H := H0 + V . Assume

vjk ∈ C(R3), |vjk(x)| ≤ C0〈x〉−m, x ∈ R3, j, k = 1, 2, (2)

with m > 3. Then we have

(H − i)−1 − (H0 − i)−1 ∈ S1(L2(R3; C2))

where S1 denotes the trace class. Our results concern the asymptotic behavior as E → 0 of the
spectral shift function ξ(E;H,H0) for the operator pair (H,H0).
In what follows we assume that V satisfies (2) with m > 3. Moreover, in the sequel we will
suppose that the perturbation of the operator H0 is of definite sign. More precisely, we will
assume

V (x) ≥ 0, x ∈ R3, (3)

and will consider the operators H0 + V or H0 − V . Set

W (x) :=

∫
R
v11(x, x3)dx3, x ∈ R2,

ω(E) :=
1

2
√
E
p(b)Wp(b), E > 0.

Let T = T ∗ be a compact operator. For s > 0 set n+(s;T ) := Tr 1(s,∞)(T ).
Theorem 1 Let V satisfy (2) with m > 3, and (3). Then for each ε ∈ (0, 1) we have

−n+((1− ε);ω(E)) +O(1) ≤ ξ(−E;H0 − V,H0) ≤ −n+((1 + ε);ω(E)) +O(1), E ↓ 0.

For E > 0 define the matrix-valued function

WE =WE(x) :=

(
w11(x) w12(x)
w21(x) w22(x)

)
, x ∈ R2,

where

w11(x) :=

∫
R
v11(x, x3) cos2 (

√
Ex3)dx3, w22(x) :=

∫
R
v11(x, x3) sin2 (

√
Ex3)dx3,

w12(x) = w21(x) :=

∫
R
v11(x, x3) cos (

√
Ex3) sin (

√
Ex3)dx3.

Set

Ω(E) :=
1

2
√
E
p(b)WEp(b), E > 0.

Evidently, Ω(E) = Ω(E)∗ ≥ 0 in L2(R2; C2). Moreover, Ω(E) ∈ S1.
Theorem 2 Let V satisfy (2) with m > 3, and (3). Then for each ε ∈ (0, 1) we have

± 1

π
Tr arctan ((1±ε)−1Ω(E))+O(1) ≤ ξ(E;H0±V,H0) ≤ ± 1

π
Tr arctan ((1∓ε)−1Ω(E))+O(1), E ↓ 0.
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Using known results on the spectral asymptotics for compact Berezin-Toeplitz operators
p(b)Up(b) with U ∈ L∞(R2; R), lim|x|→∞ U(x) = 0, we can describe explicitly the main asymp-
totic term of ξ(E;H0 − V,H0) as E ↑ 0, of ξ(E;H0 ± V,H0) as E ↓ 0 under appropriate
assumptions about the decay of V at infinity.

The author was partially supported by the Chilean Science Foundation Fondecyt under
Grant 1090467.

Theorems on finite rank Bergman-Toeplitz operators
and applications

Grigori Rozenblum
Chalmers University of Technology and University of Gothenburg

Toeplitz operators arise in many fields of Analysis and have been an object of active study
for many years. Quite a lot of questions can be asked about these operators, and these questions
depend on the field where Toeplitz operators are applied.

For a Hilbert space H of functions, a bounded function f (a symbol) and a closed subspace
L ⊂ H, the Toeplitz operator Tf in L acting as

Tfu = Pfu,

where P is the projection P : H → L. In particular, in the case when H is the space L2(Ω, ρ)
for some domain Ω ⊂ Cd and some measure ρ and L is the Bergman space B2 = B2(Ω, ρ) of
analytical functions in H, such operator is called Bergman-Toeplitz.

More generally, the operator Tf can be defined for more general symbols, i.e., for f being
a complex regular Borel measure in Ω or even a distribution in E ′(Ω).

The initial question consists in the following. Suppose that the Toeplitz operator Tf has
finite rank. What can be said about the distribution f? It is natural to expect that f should be
degenerate in a certain sense; especially, if f is a function, it must be zero. The latter hypothesis
was formulated more than 20 years ago and turned out to be important in many questions of
analysis. It was only in 2007 that the first general result in this direction was established, see
[1]. For the domain Ω in C1 and a measure f it was proved that finite rank of Tf implies that
f is a finite combination of point masses. After this, a number of generalizations of this result
were established and applications to different fields of analysis were found. The talk contains
a description of a part of the results in this direction, especially, obtain with a participation of
the author, more details can be found in [2].

First of all, the above finite rank theorem is extended to the case of Bergman spaces in
Ω ⊂ Cd for any d and for f being a distribution in E ′(Ω). Here, the finiteness of the rank of
Tf implies that f must be a finite combination of δ–distributions and and their derivatives.
Moreover, this result holds true if one considers Toeplitz operators in a proper subspace in the
Bergman space, actually, the closed linear span of a sufficiently rich set of analytic monomials.
Further on, the finite rank theorem (for measures) was carried over to the Bergman space of
harmonic function and also to the Bergman space of solutions of the Helmholtz equation.

As applications, we mention here the results on the structure of ideals of finite codimension
in the algebras of analytical functions, on the approximation of smooth functions by products
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of analytical and antianalytical polynomials with restrictions on entries, on the classical ques-
tion about which Toeplitz operators can have zero product, on operator equations for Berezin
transform, on the spectral properties of an operator determining the splitting of the spectrum
of the Landau Hamiltonian, and on the spectral properties of the scattering matrix.
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On the relation between an operator and its
self-commutator

Yuri Safarov
King’s College London

The talk will discuss the following naive question: if A is a bounded operator in a Hilbert
space whose self-commutator [A∗, A] is small in an appropriate sense, is there a normal operator
Ã close to A? There are two known positive results on this problem.

The Brown–Douglas–Fillmore (BDF) theorem: if [A∗, A] is compact and the corre-
sponding to A element of the Calkin algebra has trivial index function then there is a compact
operator K such that A+K is normal.

Huaxin Lin’s theorem: there exists a nondecreasing function F vanishing at the origin such
that the distance from A to the set of normal operators is estimated by F

(
‖[A∗, A]‖

)
for all

finite rank operators A .

We consider a general unital C∗-algebra L of real rank zero and denote the sets of normal
and self-adjoint elements in L by Ln and Ls respectively. Let Bε be the ball of radius ε about
the origin in L, and let M[A∗,A] be the convex hull of

⋃
U,V U [A∗, A]V where the union is taken

over all unitary elements of L. Our main result is the following theorem.
Theorem 1. There exists a nonincreasing function h : (0,∞) 7→ [0,∞) such that

A ∈ B‖A‖
⋂

Ln + h(ε)M[A∗,A]

⋂
Ls +Bε , ∀ε > 0 ,

for all C∗-algebras L of real rank zero and all A ∈ B1 satisfying the following condition: for
each λ ∈ C the operator A− λI belongs to the closure of the connected component of unity in
the set of invertible elements of L.

Theorem 1 implies both the BDF and Huaxin Lin’s theorems and allows us to extend the
latter to operators of infinite rank and other unitary invariant norms. We shall outline its proof,
present some corollaries and discuss possible applications to Szegö type limit theorems, which
describe asymptotic behaviour of the spectra of truncations of (almost) normal operators to
finite dimensional subspaces.

The research was supported by the EPSRC grant GR/T25552/01.
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Double-sided estimates for the trace of the difference of
two semigroups

Vladimir Sloushch
St.Petersburg University

This is a joint work with M. Sh. Birman.
Main results. We derive double-sided estimates for the trace of the difference of two semi-
groups, generated by a pair of Schrodinger operators in L2(R3) with a trace class difference of
resolvents. The results obtained are formulated in quite general abstract terms.
1. Let H be a Hilbert space; Ak, k = 0, 1, – self-adjoint operators in H. Assume that the
following conditions are fulfilled

DomA0 = DomA1; (1)

(−∞, γ] ∩ σ(Ak) = ∅, k = 0, 1; (2)

V := A1 − A0 ∈ B, |V |1/2(A0 − zI)−1 ∈ S2, z ∈ %(A0). (3)

Here for a self-adjoint operator A the following notation has been adopted: DomA, σ(A),
%(A) are the domain, spectrum and the resolvent set, respectively; B and S2 are the class
of all bounded operators and the class of Hilbert-Schmidt operators, respectively. Consider
semigroups, generated by the operators Ak, k = 0, 1,

Uk(t) := e−tAk , t > 0, k = 0, 1. (4)

Under the conditions (1)–(3), the difference U0(t)− U1(t), t > 0 is trace class. Consider

Ξ(t) = Tr (U0(t)− U1(t)) , t > 0.

Our main result is the following assertion.
Theorem 1.Let conditions (1) – (3) be fulfilled. Then the difference U0(t)−U1(t) is trace class,
and the following double-sided estimate holds:

Tr(U1(t/2)V U1(t/2)) 6 t−1Ξ(t) 6 Tr(U0(t/2)V U0(t/2)). (5)

2. Let now H = L2(R3); define the operators

A0 = −∆, DomA0 = H2(R3), A1 = A0 + V. (6)

Here ∆ denotes the Laplace operator in R3, H2(R3) is the standard Sobolev space. It is assumed
that

V = V ∈ L∞(R3) ∩ L1(R3). (7)

Under the condition (7) the operators (6) satisfy the conditions (1) – (3). Hence for the
semigroups (4) generated by the operators (6) the estimate (5) holds. The following equality
holds:

Tr(U0(t/2)V U0(t/2)) = (4πt)−3/2

∫
R3

V (x)dx. (8)

From (7) the following estimate follows easily:

Tr(U0(t/2)V U0(t/2))− Tr(U1(t/2)V U1(t/2)) = O(t−1/2), t→ +0. (9)
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Comparing (5), (8) and (9) we arrive at the following assertion:
Proposition 2.Under the condition (7), the following asyptotics holds

Ξ(t) = (4π)−3/2t−1/2

∫
R3

V (x)dx+O(t1/2), t→ +0. (10)

Well-known asymptotics (10) shows that the estimate (5) is tight for small t > 0.
A brief exposition of methology. We employ purely operator-theoretical technique devel-
oped by M.S. Birman and M.Z. Solomyak in 1972. Our argument is in essence based on the
M.G. Krein – I.M. Lifshits formula and on the representation for the spectral shift function,
obtained by M.S. Birman and M.Z. Solomyak.

We remark that related questions were discussed recently in a work by S.A. Stepin, where
based on the Feynman-Kac representation for the corresponding heat kernels inequalities close
to (5) were obtained in the case of Schrodinger operators in R3.

Szegö limit theorem for operators with discontinuous
symbols: Widom’s hypothesis

Alexander V. Sobolev
University College London

The objective is to study the quasi-classical asymptotics of the spectrum for a pseudo-
differential operator with a discontinuous symbol. Let a(x, ξ), x, ξ ∈ Rd, d ≥ 1 be a classical
smooth symbol, i.e.

|∇s
x∇

p
ξa(x, ξ)| ≤ Cs,p〈x〉γ−s〈ξ〉σ−p, 〈 · 〉 = (1 + | · |2)

1
2 ,

with γ, σ ∈ R. Denote by Opα(a), α ≥ 1, the (quasi-classical) pseudo-differential operator
(PDO) with the symbol a:

(Opα(a)u)(x) =

(
α

2π

)d ∫ ∫
eiα(x−y)·ξa(x, ξ)u(y)dξdy,

u ∈ L2(Rd). Let Λ and Ω be domains in Rd. Denote by χΛ and χΩ their indicators, and let
PΩ = χΩ(−i∇). We are interested in the spectrum of the operator

A = A(a) = χΛOpα(a)PΩχΛ,

which clearly has a symbol with jump discontinuities in both variables x and ξ. The aim is to
find asymptotics of trf(A) as α→∞ for suitable functions f , such that f(0) = 0.

In 1982 H. Widom [1] conjectured that

trf(A) = αdW0 + αd−1 logα W1 + o(αd−1 logα), α→∞, (4)

with the coefficients

W0 =

(
1

2π

)d ∫
Ω

∫
Λ

f(a(x, ξ))dxdξ,
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W1 =

(
1

2π

)d−1
1

4π2

∫
∂Ω

∫
∂Λ

|nx · nξ|U(0, a(x, ξ); f)dxdξ.

Here nx and nξ are exterior normals to the boundaries ∂Λ and ∂Ω at the points x and ξ
respectively, and

U(p, q; f) =

∫ 1

0

f((1− t)p+ tq)− [(1− t)f(p) + tf(q)]

t(1− t)
dt.

Operators of this type have been very well studied in the one-dimensional situation. In partic-
ular, the classical Szegő formula was generalized for the symbols with jump discontinuities by
M. Fisher- R. Hartwig (’68), E. Basor (’79), A. Böttcher (’82). The formula (4) for d = 1 was
proved by H. Widom (’82).

In the case d ≥ 3 H. Widom [2] justified (4) under the assumption that one of the domains
Λ, Ω was a half-space, and f was analytic in a disk of a suitably large radius. Recently D.
Gioev and I. Klich (’06) discussed the relevance of (4) to the Entanglement Entropy, and in this
context they announced a proof of the Widom’s Hypothesis for f(t) = t2. For general smooth
f the precise order of the second term, i.e. αd−1 logα, was established by D. Gioev (’06).

The main result of the talk is the following theorem:
Main Theorem Let d ≥ 2. Suppose that Ω, Λ are compact domains in Rd, and that

∂Λ ∈ C1, ∂Ω ∈ C3. Then the Widom’s Hypothesis (4) holds for any polynomial f such that
f(0) = 0.

The proof has two ingredients:

1. The study of a model problem.

2. The reduction of the initial operator to the model one.

The model operator is the operator of the form A(a) with d = 1, Λ = (0,∞),Ω =
(0,∞). The required information about this operator is obtained using the methods of [1]. The
reduction to the model operator requires new ideas. The main technical tool is a partition of
unity, which becomes finer as one approaches the boundary ∂Λ, which enables one to localize
the problem to balls of small radii. In each ball the boundary is approximated by a hyperplane,
after which the ideas from [2] are used.
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On my joint work with M. Sh. Birman in 1965–1970

Michael Solomyak
Weizmann Institute

I am going to talk about our work on double operator integrals (DOI) and on the theory
of piecewise-polynomial approximation.

1. Our joint work started in the early 1964 but the first result were published in 1965. The
notion of a DOI was introduced by Y. Daletskii and S. Krein in 1956, but their comprehensive
theory did not exist before our work. Its basics were developed by us in ’65-67; some important
additional results were obtained a little bit later, in 1973.

2. This development required a new technical tools, for estimation of eigenvalues of integral
operators acting in a weighted L2-spaces. Such technical tools were created in the process of
our work. The main idea consisted in a special way of approximation of functions from the
Sobolev spaces H l(Q) (where Q is a cube in Rd) by a piecewise-polynomial functions.

3. The way of approximation suggested by us in 1967 turned out to be quite efficient
not only for solving our original problem. It worked perfectly in such, quite different fields as
spectral estimates and spectral asymptotics for the elliptic operators with non-smooth data,
and also estimation of ε-entropy of embeddings H l(Q) ⊂ C l(Q).

Counting bound states for Schrödinger operators on the
lattice

Michael Solomyak
Weizmann Institute

The results of a joint work with G. Rozenblum [2] are presented.
We study the estimates of the number of negative eigenvalues of the discrete Schrödinger

operator −∆−αV in the Hilbert space `2(Zd), d ≥ 3. The Rozenblum – Lieb – Cwikel estimate
for the number of negative eigenvalues of the Schrödinger operator on Rd, d ≥ 3, easily extends
to the discrete case:

N−(−∆− αV ) ≤ C(d)αd/2
∑
x∈Zd

V (x)d/2.

However, unlike in the ”continuous” case, V ∈ `d/2(Zd) yields

N−(−∆− αV ) = o(αd/2).

This shows that the discrete theory cannot be considered as just an elementary analogue
of its continuous counterpart. The sharpest question here is this: how to construct discrete
potentials V , that give the exact order N−(−∆− αV ) = O(αd/2) (with ”O” capital)?

We answer this question, by showing that such behavior can be achieved for the so-called
sparse potentials. The property of sparseness will be defined below, after some necessary
preliminaries.

Define the Hilbert space H1(Zd), d ≥ 3, consisting of all sequences u(x), x ∈ Zd, such
that

Q0[u] =
∑

x,y∈Zd

x∼y

|u(x)− u(y)|2 <∞;
∑
x∈Zd

|u(x)|2

|x|2 + 1
<∞.

27



The quadratic form Q0 is taken as the metric form in H1(Zd), so that ‖U‖2
H1 = Q0[u]. If the

discrete potential V is such that the quadratic form

bV [u] =
∑
x∈Zd

V (x)|u(x)|2

is bounded on H1(Zd), then it defines on this space a bounded operator, say, BV . The Birman
– Schwinger principle reduces the original problem to the study of the operator BV .

Now, consider the Green function of the discrete Laplacian. This is a discrete convolution,
and its kernel is given by the explicit formula:

hy(x) = h0(x− y), ∀y ∈ Zd,

where

h0(x) = (2π)−d
∫

eixz

4
∑d

j=1 sin2(zj/2)
dz,

with integration over the d-dimensional torus. The function h0(x) lies in H1(Zd), is harmonic
outside the point x = 0, and its value at this point is some number µ2. If u has finite support,
then summation by parts leads to

(u, hy)H1 = u(y).

This equality extends by continuity to all u ∈ H1. In particular,

(hy, hy1)H1 = hy(y1) = h0(y − y1)

and ‖hy‖H1 = µ.
It follows from the formula for h0 that

h0(x)| ≤ C|x|−(d−2).

So we see that for the points y, y1 ∈ Zd lying far enough from each other, the functions hy, hy1
are ‘almost orthogonal’ in H1. This is the heart of the further construction. It is convenient to
normalize these functions, and to work with h̃y = µ−1hy.

Let Y be a subset in Zd, d ≥ 3, and let H1
Y stand for the subspace in H1(Zd) spanned by

the functions hy, y ∈ Y . We say that the set Y is sparse, if in H1(Zd) there exists a compact
operator T, such that the operator I−T has bounded inverse and the functions

ey = (I−T)−1h̃y, y ∈ Y,

form an orthonormal system in H1. Sparse sets do exist, their many examples can be con-
structed on the basis of Theorem VI.3.3 in the book [1]. We call a potential V sparse if its
support is sparse.

Below we formulate one of our main results. For a function V ≥ 0 on Zd, such that
V (x) → 0 as |x| → ∞, we write V ∗j , j ∈ N, for the numbers V (x) rearranged in the non-
increasing order.

Theorem Let V ≥ 0 be a sparse potential on Zd, d ≥ 3. Then the operator BV is compact
if and only if V (x) → 0 as |x| → ∞. Moreover, the following two-sided inequality is satisfied
for the eigenvalues λj(BV )

CV ∗j ≤ λj(BV ) ≤ C ′V ∗j , ∀j ∈ N.
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In particular, if V ∗j = j−2/d, then

N−(−∆− αV ) = O(αd/2) but 6= o(αd/2).
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Inverse and Direct scattering on the half line

Vladimir Sukhanov
St. Petersburg State University

This work is devoted to the study of the inverse and direct scattering problem for the forth
order differential operator on the half line

L =
d4

dx4
+

d

dx
u(x)

d

dx
+ v(x), x ∈ [0,+∞)

with smooth quickly decaying potentials v(x) and u(x). We will consider inverse problem for
this operator in terms of corresponding Riemann-Gilbert problem on the system of rays. As an
example we investigate well known inverse problem for the second order Schroedinger operator
on the half line with the help of Riemann-Gilbert problem. This talk is based on the joint work
with R.Shterenberg.

Homogenization of nonstationary periodic equations

Tatyana Suslina
St. Petersburg State University

This is a joint work with M. Sh. Birman.
In L2(Rd; Cn), we consider a second order differential operator Aε = b(D)∗g(ε−1x)b(D),

ε > 0. Here g(x) is an (m×m)-matrix-valued function in Rd such that g, g−1 ∈ L∞, g(x) > 0,
and g(x) is periodic with respect to some lattice. Next, b(D) is a first order differential operator;
its symbol b(ξ) is an (m × n)-matrix-valued linear homogeneous function of ξ ∈ Rd such that
rank b(ξ) = n, ξ 6= 0. We assume that m ≥ n. We study the following Cauchy problem for the
Schrödinger type equation for a function uε(x, τ), x ∈ Rd, τ ∈ R:

i∂τuε(x, τ) = Aεuε(x, τ), uε(x, 0) = φ(x).

We also study the Cauchy problem for the hyperbolic equation for a function vε(x, τ), x ∈ Rd,
τ ∈ R:

∂2
τvε(x, τ) = −Aεvε(x, τ), vε(x, 0) = ϕ(x), ∂τvε(x, 0) = ψ(x).
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The corresponding ”homogenized” problems look as follows:

i∂τu0(x, τ) = A0u0(x, τ), u0(x, 0) = φ(x);

∂2
τv0(x, τ) = −A0v0(x, τ), v0(x, 0) = ϕ(x), ∂τv0(x, 0) = ψ(x).

Here A0 = b(D)∗g0b(D) is the effective operator.

Theorem 1. If φ ∈ L2(Rd; Cn), then uε tends to u0 in L2(Rd; Cn) for a fixed τ ∈ R, as ε→ 0.
If φ ∈ Hs(Rd; Cn), 0 < s ≤ 3, then

‖uε(·, τ)− u0(·, τ)‖L2 ≤ εs/3Cs(τ)‖φ‖Hs .

Here Cs(τ) = O(|τ |s/3) for large values of |τ |.
Theorem 2. If ϕ, ψ ∈ L2(Rd; Cn), then vε tends to v0 in L2(Rd; Cn) for a fixed τ ∈ R, as
ε→ 0. If ϕ, ψ ∈ Hs(Rd; Cn), 0 < s ≤ 2, then

‖vε(·, τ)− v0(·, τ)‖L2 ≤ εs/2
(
C(1)
s (τ)‖ϕ‖Hs + C(2)

s (τ)‖ψ‖Hs

)
.

Here C
(1)
s (τ) = O(|τ |s/2), C

(2)
s (τ) = O(|τ |1+s/2) for large values of |τ |.

We also prove analogs of Theorems 1 and 2 for more general class of operators. The results
are published in [1].
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Exponential decay of eigenfunctions of first order
systems

Dmitri Yafaev
University of Rennes 1

The first exponential estimate on eigenfunctions ψ of the discrete spectrum for second
order self-adjoint elliptic operators H is due to Shnol’ (1957) who proved that an eigenfunction
corresponding to an eigenvalue λ satisfies the estimate∫

Rd

|ψ(x)|2e2δ|x|dx <∞. (∗)

Here δ depends only on the distance d(λ) = dist{λ, σess(H)} between the corresponding eigen-
value and the essential spectrum σess(H) of the operator H. Later Agmon (1982) has shown
that estimate (*) is true with an arbitrary δ <

√
d(λ), but only for eigenvalues lying below

σess(H). A natural question to ask is whether such a stronger estimate is true for eigenvalues ly-
ing in gaps of σess(H). We give a negative answer to this question considering a one-dimensional
Schrödinger operator whose potential is a sum of a periodic function and of a function with
compact support.

30



Another goal of our work is to study exponential decay of eigenfunctions for first order
matrix differential operators

H = −i
d∑
j=1

Aj
∂

∂xj
+ V (x)

acting in the space H = L2(Rd; Cn). Here Aj = A∗j , j = 1, . . . , d, are constant matrices and
V (x) is a symmetric matrix-valued functiion. Set

γ = max
|ξ|=1
|||

d∑
j=1

Ajξj|||, ξ = (ξ1, . . . , ξd), ||| · ||| = ||| · |||Cn .

For example, γ = 1 for the Dirac operator. Our main result is the estimate (*) with an arbitrary
δ < γ−1d(λ) for all eigenvalues (including those lying in gaps of σess(H)).

These results are published in Contemporary Mathematics, v. 447, 249-256, 2007.

Spectral properties of the scattering matrix

Dmitri Yafaev
University of Rennes 1

The relation
detS(λ) = e−2πiξ(λ)

between the scattering matrix S(λ) and the spectral shift function ξ(λ) for a pair of self-adjoint
operators H0, H was found in the famous paper by M. Sh. Birman and M. G. Krĕın On
the theory of wave operators and scattering operators, Soviet Math. Dokl. 3 (1962), 740-
744. Actually, this relation is quite often used for the definition of the spectral shift function.
To a certain extent, the theories of the scattering matrix and of the spectral shift function
developed in parallel. I’m going to concentrate on spectral properties of the scattering matrix.
Its spectrum consists of eigenvalues µn(λ) lying on the unit circle and accumulating at the point
1 only.

The following properties of these eigenvalues will be discussed in the talk:
1. If a perturbation V = H − H0 is positive (negative), then eigenvalues µn(λ) may

accumulate to 1 only from below (from above).
2. If a perturbation increases (decreases), then eigenvalues µn(λ) rotate in the clockwise

(counterclockwise) direction.
These properties were discovered by M. Sh. Birman and M. G. Krĕın in the trace class

framework. Later they were extended to a broader class of perturbations (but also of trace
class type) by L. S. Koplienko and S. Yu. Rotfel’d. In the talk these assertions will be obtained
using only the structure of the stationary representation of the scattering matrix. Therefore
this approach works both under trace class and smooth assumptions.

A typical example is the pair H0 = −∆, H = −∆ + V (x) in the space L2(Rd) where the
real function V (x) satisfies the estimate

|V (x)| ≤ C(1 + |x|)−ρ, ρ > 1.

If V (x) = v(x̂)|x|−ρ + o(|x|−ρ) where v ∈ C∞(Sd−1), then asymptotics of µn(λ) can be found.
The following result was obtained in the paper by M. Sh. Birman and D. R. Yafaev The
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asymptotic behavior of the spectrum of the scattering matrix, J. Soviet Math. 25 (1984), 793-

814. Let us write eigenvalues of S(λ) as µ±n (λ) = e±2iϕ±n (λ), where ϕ+
n (λ) ∈ (0, π/2], ϕ−n (λ) ∈

(0, π/2), ϕ±n+1(λ) ≤ ϕ±n (λ). Then asymptotics of the scattering phases is given by the formula

lim
n→∞

nγϕ±n (λ) = c±

where γ = (ρ− 1)(d− 1)−1 and c± are some explicit functionals of v, ρ and λ.

YOUNG SCIENTISTS SESSION
ABSTRACTS:

Absolute continuity of the spectrum of the Schrödinger
operator in a layer and in a smooth multidimensional

cylinder

I. Kachkovskiy
St.Petersburg State University

This is a joint work with N. Filonov.
We study the periodic Schrödinger operator in a d-dimensional cylinder and in a plane-

parallel layer. In the case of a layer we establish the absolute continuity of its spectrum for the
potentials V ∈ Lp,loc, p > d/2, d > 3. The conditions for the cylinder are p > d/2, d = 3, 4 and
p > d− 2, d > 5. The proof is based on the classical Thomas scheme. In the case of a layer we
then use a modified version of Sogge’s spectral cluster Lp-estimates. In the case of a cylinder
we use spectral cluster estimates for manifolds with boundary, derived by Smith and Sogge as
a corollary of their Strichartz estimates for the wave equation.

The uniqueness theorem for vector-valued
Sturm-Liouville operators

S. Matveenko
St.Petersburg State University

We consider self-adjoined Sturm-Liouville operators on the unit interval with matrix-
valued potentials and separated boundary conditions of general type. We obtain the uniqueness
theorem, if the boundary conditions are fixed. Moreover, we prove that in some special cases
spectral data (i.e. residues of the Weyl-Titchmarsh function) uniquely determine the boundary
conditions and so the whole operator.
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Monodromization and the Maryland equation
F. Sandomirskiy

St.Petersburg State University

This is a joint work with A. Fedotov.
Monodromization method is a renormalization method invented by V. Buslaev and A. Fe-

dotov in 90s to study quasi-periodic equaions. It was successfully used to solve different prob-
lems. We apply this method to the Maryland equation, the simplest finite difference Schre-
odinger equation with a meromorphic potential. We prove that this equation is equivalent to
a difference equation invariant with respect to the renormalizations up to two constant param-
eters. The transformation of the frequency, one of these parameters, is described by the Gauss
map. The transformation of second parameter, an effective coupling constant, is described by
a simple explicit formula.

Weyl-Titchmarsh type formula for discrete Schrödinger
operator with Wigner-von Neumann potential

S. Simonov
St.Petersburg State University

The discrete Schrodinger operator with Wigner-von Neumann potential is considered. The
classical Weyl-Titchmarsh formula for Schrödinger operator on the half-line with summable
potential relates the spectral density to the behavior of solutions of the spectral equation. The
analog of this formula is obtained in the considered discrete case.

Homogenization with corrector of a periodic parabolic
Cauchy problem

E. Vasilevskaya
St.Petersburg State University

We consider the Cauchy problem for the parabolic equation with periodic coefficients in
the small period limit. The convergence of the solutions to the solution of the corresponding
homogenized problem was proved by M. Sh. Birman and T. A. Suslina. Using the same spectral
approach we improve the estimate for the solutions by introducing a corrector.

Homogenization of High Order Periodic Differential
Operators
N. Veniaminov

St.Petersburg State University

The homogenization for the second order differential operators in the small period limit
is a well studied problem. An approach based on the operator theory has been developed by
M. Sh. Birman and T. A. Suslina during the last ten years. In this talk, the higher order
differential operators that admit factorization are considered within the same framework. The
special and physically meaningfull case is the fourth order operator DDaDD (where a is the
elasticity tensor) that describes elasticity of plates. For the class of operators desribed above
the approximation for the resolvent is obtained.
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