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Outline

 Impurity in Luttinger liquid : fermionic approach and bosonization
« S-matrix approach and current algebra formulation

» Analysis of interaction corrections to S-matrix — RG equation

* B function up to 3™ loop and solution of RG equation

» Comparison with CFT solution and dependence on regularization
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Hamiltonian

H = H0+H1+Himp
Hy = g / ' dq,[ L (i0), )@R—@}(?ﬁar)m}

>0

L Fermions
Hio= | dr hon) (W)
L

Hipmp = ?;F/d,:z: [21,1(:1:)( fLR+fU’LtL)

+(’ng($)@*£@53 + h.c.)] ,

The same, in bosonization: H = ;F dr [}( (3:39)2 + ](—1(33?(,9)2
T

+2uy (x)dp(x) + us(x) co 2\19(’1/)]

Boundary Sine-Gordon model
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Introduction: Quantum wire with single barrier

The observable: conductance G = current-density correlation functon
was studied in bosonization approach

Y(K=1)
» Decrease of the conductance for a weak barrier G=)\— TL)
 Strong barrier = weak tunneling : further suppression and YK 1)
vanishing of conductance in limit 7 — 0 GN(L
T.
Kane and Fisher, 1992 complete solution in bosonization :
Furukawa and Nagaosa, 1993 Fendley, Ludwig and Saleur, 1995
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Introduction: Poor man’s scaling at weak interaction

Fermionic approach :
Integrating out high momentum states, reducing the band width, one finds

a renormalization group equation for the transmission amplitude as a function
of the bandwidth D

dt
dn(D, /D)

= -gt(l- |t|2), g=g,/2nv,

The transmission coefficient as a function of energy follows as

Ty (e / Dy)”

—,  ¢<D,
R, + Ty(¢ / Dy)™*

Te¢)-=

Yue, Matveev and Glazman, 1995
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Introduction: Further analytical studies

Boundary sine-Gordon model - complete solution in bosonization :
Fendley, Ludwig and Saleur, 1995 one-parameter scaling in RG

U U* .. S=U"
g YMG
gz (fermions)
- Our aim
K=g | KF — FLS
(bosonization)

Fermionic approach is more flexible (inelastic, out-of-equilibrium)
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Single particle scattering states

Scattering of spinless fermions by potential barrier:

cosf isinfe'®

~
et

isin e cosf

'w%
~

Single particle scattering states for right (left) moving particles (k>0) :

—ik

Up(z) = (™ + rke_iki’:)ch + tre :“"cgk, r <0

_ tk ?k:rc{k_'_(ﬂf ak::c_'_e ?kI)CQkﬂ >0

Neglect k-dependence of t, r in the following
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Interaction in scattering state representation

TS
potential barrier is viewed as a ! "\ 2
local magnetic field rotating the J ‘ / | /T
isospin vector of a wave packet, - '| 1
when it passes through the field. > -—
2] th e 2

“Nonlocal” interaction: (cf. M.Fabrizio, A.Gogolin, 1995)
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Interaction in scattering state representation

Jo+Js Jy—ily Vl(x)n(z)  Pf(x)(—r) Currents or

= y .- ¥ | chiral densities
Jitidy Jo— Ty Uh(—z)vn(x) Bh(—a)us(—x)

Kac-Moody algebras : [Jo(z), Jo(y)] = 553:5(:1? — )
™

(@) Ty)] = S0pdhd(x —y) + iz h(y)s(x — )

0 20 .
Hy = 2??1:;:] do (J§(x) + Ji(x)) —|—2?T’L-‘F/ dr (J3(z) + Ji(z))
o 0

0

L _
Hy = 2 [ do(h(=a)doa) = Jo(—2)Ffa)

i - ]‘ Y ol
Rotated current  J3 = (R.J)3 where R, = iT?“[U 0 S.0,,.5"]
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Perturbation theory in g, : Feynman diagrams

Diagram rules for nth order contributions in (energy-position)-representation:

(1) Draw n vertical wavy lines representing interaction (-2g,), the ith line

5

connecting the upper point -x. with vertex

1
2% ap @

and the lower point x, with vertex L R, T f,; ®

(2) Connect all points with two propagator lines entering and leaving the point:

G, (x,0,)= =0,, =sign(,)d (@ x)e Ui —»

ap vp

(3) In each fermion loop take trace of product of vertex matrices

(4) Take limit of external frequency Q - 0

Computer algebra up to 3" order in g, , ~10* diagrams
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Conductance in 1 st order

tdz L T,
Logarithmic correction: —=In(—) = lﬂ(?), L=v./T, a=v./T,
Z a

T
GO = - 82 4in2(20 ) In(>
A (20) (T)

Agrees with Yue, Matveev, and Glazman, 1995
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Corrections to conductance up to 3rd order

Y, = Y —cugA(l —Y?)
+ Y (1 =Y?) (=) (A* = ag) + caay (A —a1)/2)
TR e [ — g (A — 3Aay) (Y2 — 1/3)
+ ey (1l — Y Aas + C{ng}YQﬁl(ﬁl — aq)
— cun(1=Y?)(A*/4 — az\)
— cpaaay(1+ YA/
d=(2In2.7%/12. (In2 — 1)/2.0) cry =1

A = In(L/Ly) (at zero temperature)
— In(1y/T") at finite temperature
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RG equation in Callan-Symanzik scheme

Y, = Yo+ biigA

Renormalized value
via bare quantity

+b22g®A* + barg* A

_|_53393A3 + bggggﬂg + bglggﬂ + ...

Inverting, we obtain Yo = Y, +brigA
the bare quantity via B ~
renormalized value —i—bf}gggﬂg + b?lggﬂ

counterterms appear

—|—633g3ﬂg + ngggﬂg + Eglggﬂ + ...

o _ Yo _ oYy vy, - o
) A 5 _ oY,  IYy/0A

ON  0Y/0Y,
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Perturbative B-function

. , Y Y2 +1
BY) = 1=Y?)|—g+g5—g—
2 4
+ a3g’(1=Y?)? +0(g")
s ™ 1—In2
C3 = Uy as (g =— 12 5

Dressing of the interaction line in 1° order correction

/
—r —&I —r] —iI —&'y —aq —dy —d —AL2
(a)
_I_ ‘e
K ;
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Ladder equation for B-function

L obeys the Wiener-Hopf integral equation

L(x:w)=e"[-Arg—ga(Y + %)Jd:e_m:L(:; )]+ % gza}_[ d-e "L (= )
= 0 = 0

which is eventually solved, so that the RG equation now reads

Yy — 29(1-Y?)
AN 1+ /1 - g2 +gY

—c3g°(1 = Y?)?

Beyond Born approximation
Kane & Fisher similar to CFT exact solution
Yue, Matveev, Glazman different value c_3
1*' loop RG 3" loop RG
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Final formula for conductance

(T/To)* ) = ®(G)/D(Go) .

5(G) = S (K + 61— KB
1 _ | g lllustration
for K=1/2

(b)

CFT prediction
multiplied by 2 = 1/K
0.5f

G. ¢l h

+ CFT solution
.—-—- ladder summation, c3=[]' .

——— =14
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Why difference with CFT ?

Transition from the Hamiltonian with backscattering potential
to the observable transmission amplitude requires regularization of
delta-function potential

Exact solution of a boundary conformal field theory
Callan, Klebanov, Ludwig, Maldacena, Nucl. Phys. B422, 417 (1994).

CFT depends on short-scale regularization, when going beyond Born approximation
even for the case of non-interacting fermions

G = f (uns(To/T)*" ), K)

O (G, K) = upg(To/T)* ) = upeexp(2(1 — K)A). = wp =O(G.K =1)
db  dGdd 2(1 — K)upsexp(2(1 — K)A) =2(1 — K)®
aN ~ anac AW )ussexpl A) =
dg (I]
—2(1 — K = 4G K
dA { jd‘I}fdG B8(G, K)

Euler Symposium 2009



Conclusions

We re-visited the problem of impurity in the Luttinger liquid

Current algebra formulation with non-local interaction

Symbolic computation in fermionic approach: impurity renormalization
by interaction - up to 3™ order — about 10,000 diagrams

The ladder sequence identified and resummed, bosonization results
reproduced

A difference with CFT “complete solution” found at the level of 3™ loop
RG, explained by different regularizations.

The proposed fermionic approach is simpler in non-equilibrium (work in
progress)
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Fendley, Ludwig, Saleur, PRB 52, 8934 (1995)

problem, providing a sort of proof. The main source of
difficulty is that the zero-temperature action must be han-
dled with great care. Perturbation theory around the
zero-temperature fixed point is ill behaved and depends
on an infinite number of counterterms (see the discussion
at the end of Ref. 31 in the case of the flow from tricriti-
cal Ising to Ising model), so identifying the leading term
in the approach to this fixed point is not sufficient. This
is equivalent to saying that what one calls the strong-
barrier problem must actually be defined with great care.

The strong-barrier problem which is at the end of our
renormalization-group trajectory follows formally from
dimensional continuation of the integrals for the weak-
barrier problem. It is not in any case a generic strong-
barrier problem. For instance regularizing the integrals
by putting a UV cutoff would give very different results,
with a nonmonotonic conductance.*® Also, note that the
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Exact solution of a boundary conformal field theory
Callan, Klebanov, Ludwig, Maldacena, Nucl. Phys. B422, 417 (1994).

in(m| gl
sinfA(g, )] :%('ﬁ-l'g)Sm(|.!;’|igr )

This expression has a curious implication about the limit of infinite potential
strength. We expect that when | g | — « the boundary state | B) turns into a sum
over Dirichlet states with the field sitting at the minima of the potential (whose
locations are in turn set by the phase of g). This means that, in the limit of infinite
potential strength, 4 should approach the phase of the complex coupling g.
According to (2.22), this happens at | g | = J rather than at | g| — . This is just a
finite renormalization effect: As we remarked earlier, our coupling is related to the
usual one by a coupling constant redefinition of the form g’ = gf(gg) °. This can
have the effect of mapping infinite coupling strength to |g|=3 if f has a
singularity there.

(2.22)

®In fact, the regularization used in ref. [12] is the standard one and the coupling constant g’ used
there is related to ours by g' = g(1 + 57gg + ...).
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Exact solution of a boundary conformal field theory
Callan, Klebanov, Ludwig, Maldacena, Nucl. Phys. B422, 417 (1994).

The coincident-point product of e'*/V? with ¢ '*/V* evaluates to a divergent
constant which can be absorbed as a constant shift in the interaction potential.
This has no effect on the physics and can be dropped. When we try to extend this
sort of argument to higher order, we find another type of divergent commutator
which can this time be absorbed as a finite renormalization of the coupling
strength °. This procedure can be generalized to all orders but we will defer the
details of the argument to Appendix A. There we will show explicitly how to

> To be a bit more specific: With a standard short-distance cutoff e, all divergences can be absorbed
by choosing the “bare” coupling constant to be g /e. The procedure we are outlining amounts to
choosing the “bare” coupling to be a power series g(1+¢,|g 12 + ...) /€. This does not change the
physics of the theory, but does change the precise meaning of the parameter g.
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