

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Non-equilibrium Kinetics of Disordered Luttinger Liquid Dmitry A. Bagrets

(Instutute für Nanotechnologie, FZ Karlsruhe)

Collaboration: Igor Gornyi (FZ Karlsruhe & Ioffe Institute) Dmitry Polyakov (FZ Karlsruhe)

Symposium on Theoretical and Mathematical Physics, St. Petersburg, 4th July, 2009

Outline

- 1D disordered quantum nanowires Luttinger-type physics (High T) Anderson localization (Low T)
- Kinetic theory of strongly correlated (non-Fermi) disordered 1D liquids

Basis: Keldysh-type 1D ballistic σ -model.

- Result: coupled "quantum kinetic equations" for electrons and plasmons Output: relaxation times.
- Conclusions & Outlook

Fermion Action

• Single-channel wire

$$\psi(\mathbf{x}) = \psi_+(\mathbf{x})e^{ik_F\mathbf{x}} + \psi_-(\mathbf{x})e^{-ik_F\mathbf{x}} \qquad \rho_\mu(\mathbf{x}) \simeq \overline{\psi}_\mu(\mathbf{x})\psi_\mu(\mathbf{x})$$

1-D fermions: left/right movers

$$S = i \int_{C_{K}} dt \int_{0}^{L} dx \sum_{\mu=\pm} \overline{\psi}_{\mu} \left(\partial_{t} - (\mu v_{F} \partial_{x}) \psi_{\mu} + S_{e-e} \right)$$

linear spectrum !
$$+ \int_{C_{K}} dt \int_{0}^{L} \{ U_{b}(x) \overline{\psi}_{L} \psi_{R} + \text{h.c.} \}$$

• White-noise disorder:

$$au$$
 – elastic scattering time

$$\left\langle U_{b}^{*}(x_{1})U_{b}(x_{2})\right\rangle = \delta(x_{1}-x_{2})/(2v_{F}\tau)$$

Backscattering amplitude !

Fermion Action

• Bosonic modes are plasmons (charge density waves) !

$$u_{\rho} = v_{F} / K$$

$$K = \left(1 + \frac{V_q}{\pi} v_{\rm F}\right)^{-1/2} < 1$$

Interaction constant

DC conductance

Short wire, $L < (E_{Th})$, weak backscattering limit

Experiment on V-groove wires

E.Levy, A.Tsukernik, M.Karpovsky, A.Palevsky, B.Dwir, E.Pelucchi, A.Rudra, E.Kapon, Y.Oreg, PRL 97, 196802, 2007

Experiments on Energy Relaxation

F. Pierre, H. Pothier, D. Esteve, M.H. Devoret, A.B. Gougam and N.O. Birge, 2000–2003

Distribution function

Experiment

Non-equilibrium tunneling spectroscopy in carbon nanotube

Y.-F. Chen, T. Dirks, G. Al-Zoubi, N.O. Birge, N. Mason, PRL' 09

Energy Relaxation in 1D

• In the *clean* Luttinger Liquid (integrable model!) there is no energy relaxation!

- Disorder ⇒ allows for relaxation to equilibrium
 (This talk !)
- Energy relaxation beyond Luttinger Liquid
 Curvature in spectrum + finite range interaction
 (A.M. Lunde, K. Flensberg, L. Glazman' 07)

small in parameter $T/E_{F} < < 1$

How one should describe the *non-equilibrium* state of the Luttinger Liquid?

"Functional" bosonization

We use the Hubbard-Stratonovich decoupling scheme

• Semiclassical Keldysh Green's function at x=x*

$$g(x, t_1, t_2) = iv_F \left[G(x, x+0, t_1, t_2) + G(x, x-0, t_1, t_2) \right]$$

Using the ideas of the nonequilibrium superconductivity!

cf. Shelankov' 85

• Eilenberger equation (exact for linear spectrum in 1D !)

Equation of motion for electron in the fluctuating electic field

$$\begin{array}{c} iv_{F}\partial_{x}g + \left[(i\partial_{t} - \varphi)\tau_{z} - \frac{1}{2} \left(U_{b}\tau_{+} + U_{b}^{*}\tau_{-} \right), g \right] = 0 \\ & \\ \textbf{Impurity} \\ \textbf{backscattering} \\ \textbf{decoupling field} \\ \end{array}$$

1D Keldysh action

Based on ideas of Muzykantskii, Khmelnitskii '95 & Kamenev, Andreev '99 Born approximation over impurity scattering:

$$i\mu v_F \partial_x \overline{g}^{\mu} + \left[(i\partial_t - \varphi)\tau_z - \frac{i}{4\tau} \overline{g}^{-\mu}, \overline{g}^{\mu} \right] = 0$$

• Effective action

Keldysh-type 1D ballistic σ -model

$$S[g,\varphi] = -\frac{1}{2v_F} \operatorname{Tr}(i\partial_t - \varphi)\tau_z g - \frac{i}{2} \operatorname{Tr}\left(g_0 T^{-1}\partial_x T\right) - \frac{i}{8v_F \tau} \operatorname{Tr}\left(g_R g_L\right)$$

 $g_{0}^{\mu} = \begin{pmatrix} \hat{1} & 2(\hat{1} - (2f^{\mu})) \\ 0 & -\hat{1} \end{pmatrix} \qquad g = Tg_{0}T^{-1}$ $g = Tg_{0}T^{-1}$ $g = Tg_{0}T^{-1}$ $f(x) = \frac{1}{2} \int \frac{1}$

Electron distribution function

Kinetic equation for electrons

$$\begin{cases} \left(\partial_{t} - \dot{\varphi}_{R} \partial_{\varepsilon} + v_{F} \partial_{x}\right) f_{\varepsilon}^{R} = -\frac{1}{2\tau} (f_{\varepsilon}^{R} - f_{\varepsilon}^{L}) + St_{e}^{R} \\ \phi_{R} = g_{2} \rho_{L} \Leftarrow \text{"Poisson" equation} \\ \phi_{L}(t, x) \neq \frac{1}{2\pi v_{F}} \left[-\varphi_{L}(t, x) + \int d\varepsilon f_{\varepsilon}^{L}(t, x) \right] \end{cases}$$

Charge density

cf. the kinetic equations in plasma physics

• Motion of e⁻ in the dissipative bosonic environment

$$St_{e}^{\mu}(\varepsilon) = \sum_{\nu} \int d\omega \{ \mathcal{U}_{<}^{\mu\nu}(\omega) f_{\varepsilon-\omega}^{\nu}(1-f_{\varepsilon}^{\mu}) \} - \mathcal{U}_{>}^{\mu\nu}(\omega) f_{\varepsilon}^{\mu}(1-f_{\varepsilon-\omega}^{\nu}) \}$$
Absorption
Full rate of emission

Large energy transfer, $\omega >> T_1$

We treat contributions from different poles separately !

Resonant process!

Emission rate of plasmons:

$$I_{p,>}^{\mu\nu}(\boldsymbol{\omega}) = \sum_{\alpha} L_{\alpha}^{\mu\nu}(\boldsymbol{\omega})(1+n_{\boldsymbol{\omega}}^{\alpha})$$

$$L_{1,2}(\boldsymbol{\omega}) = \frac{1}{2\boldsymbol{\omega}^2 \boldsymbol{\tau}} \left(\frac{v_F}{u} \pm 1 \right), \quad L_3(\boldsymbol{\omega}) = -\frac{\boldsymbol{\alpha}}{2\boldsymbol{\omega}^2 \boldsymbol{\tau}} \frac{v_F}{u}$$

Weak interaction limit, $\alpha = V_q / \pi v_F <<1$

Small energy transfer, $\omega << T_1$

Plasmon-mediated two-fermion scattering

Emission rate:

$$I_{>}^{\mu\nu}(\boldsymbol{\omega}) = \sum_{\alpha\beta} \int d\boldsymbol{\varepsilon}' K_{\beta\nu}^{\alpha\mu}(\boldsymbol{\omega}) f_{\boldsymbol{\varepsilon}'-\boldsymbol{\omega}}^{\alpha}(1-f_{\boldsymbol{\varepsilon}'}^{\beta})$$

Weak interaction limit, $\alpha = V_q / \pi v_F <<1$

Kinetic equation (plasmons)

Decay and recombination of plasmons from/into electron-hole pairs

$$\partial_t n^R_{\omega} + u \partial_x n^R_{\omega} = -\frac{1-\alpha}{\tau} n^R_{\omega} + St^R_b(\omega)$$

Collision integral:

$$St_b^{\mu}(\boldsymbol{\omega}) = \frac{1}{2\tau} \left[\left(1 + \frac{u}{v_F} \right) N_{\boldsymbol{\omega}}^{\mu\mu} + \left(1 - \frac{u}{v_F} \right) N_{\boldsymbol{\omega}}^{-\mu,-\mu} - 2\alpha N_{\boldsymbol{\omega}}^{\mu,-\mu} \right]$$

$$N_{\omega}^{\mu\nu} = \frac{1}{2\omega} \int dE f_{E+\omega}^{\mu} (1 - f_E^{\nu}) + (\mu \leftrightarrow \nu)$$

Total Collision Kernel

Relaxation times

• Equilibration rate (Relaxation rate of the electron system to the locally equilibrium Fermi distribution)

 $T \gg T_1 = 1/\alpha^2 \tau$

$$\frac{1}{\tau_E(T)} \sim T^{-1} \int_0^T K(\boldsymbol{\omega}) \boldsymbol{\omega}^2 d\boldsymbol{\omega} \sim \frac{1}{\tau}$$

Out-scattering rate of electron

(It is determined by the out-term of kinetic equation)

$$\frac{1}{\tau_{out}(T)} \sim T \int_{0}^{T} K(\boldsymbol{\omega}) d\boldsymbol{\omega} = \boldsymbol{\alpha}^{2} T$$

Relevant for zero-bias anomaly, same as in clean limit

Electron distribution function

Summary

Kinetic theory approach to non-equilibrium Luttinger Liquids

- Formulated kinetic-equation description of a Luttinger liquid out of equilibrium
- Disorder-induced resonant enhancement of inelastic scattering
- Equilibration rate = elastic scattering rate