Instanton constituents in sigma models

Falk Bruckmann Univ. of Regensburg/Univ. of Erlangen

St. Petersburg, July 2009

FB: PRL 100 (2008) 051602 [0707.0775] Brendel, FB, Janssen, Wipf, Wozar: PLB 676 (2009) 116, [0902.2328] Harland: 0902.2303

Introduction

the O(3) model in 2D:

$$S = \int d^2 x \, \frac{1}{2} (\partial_\mu \phi^a)^2 \qquad \phi^a \phi^a = 1 \qquad (a = 1, 2, 3)$$

global O(3) symmetry \leftrightarrows SU(2) Yang-Millslater CP(N) models \leftrightarrows SU(N \ge 3)

condensed matter: from Heisenberg Hamiltonian $H = -J \sum_{\langle i,j \rangle} \vec{S}_i \vec{S}_j$

as a field theory similar to gauge theories:

- asymptotic freedom
- o dynamical mass gap
- discretisation on a lattice: cooling ...
- instantons, constituents, fermionic zero modes

Topology

finite action:

$$\phi^{a} \stackrel{r \to \infty}{\longrightarrow} \text{const.}$$

 $\Rightarrow \phi$ as a mapping: $\mathbb{R}^2 \cup \{\infty\} \sim S^2_{\chi} \longrightarrow S^2$ with winding number/degree

Topology

finite action:

$$\phi^a \stackrel{r \to \infty}{\longrightarrow} \text{const.}$$

 $\Rightarrow \phi$ as a mapping: $\mathbb{R}^2 \cup \{\infty\} \sim S_x^2 \longrightarrow S^2$ with winding number/degree

example $f: S_x^1 \to S^1$, images:

= how often S^n is wrapped by S_x^n through ϕ , for S^2 :

$$Q = \frac{1}{8\pi} \int d^2 x \, \epsilon_{\mu\nu} \epsilon_{abc} \phi^a \partial_\mu \phi^b \partial_\nu \phi^c \in \mathbb{Z}$$

topological quantum number invariant under small deformations of ϕ

Falk Bruckmann

 \Rightarrow instanton number

Bogomolnyi bound & Complex structure

Bogomolnyi trick...

$$(\partial_{\mu}\phi^{a} \pm \epsilon_{\mu\nu}\epsilon_{abc}\phi^{b}\partial_{\nu}\phi^{c})^{2} = (\partial_{\mu}\phi^{a})^{2} \pm 2\epsilon_{\mu\nu}\epsilon_{abc}\phi^{a}\partial_{\mu}\phi^{b}\partial_{\nu}\phi^{c} + (\partial_{\mu}\phi^{a})^{2} \ge 0$$

... and bound (integrated):

 $S \ge 4\pi |Q|$

equality iff: $\partial_{\mu}\phi^{a} = \mp \epsilon_{\mu\nu}\epsilon_{abc}\phi^{b}\partial_{\nu}\phi^{c}$ first order \Longrightarrow selfduality

Bogomolnyi bound & Complex structure

Bogomolnyi trick...

$$(\partial_{\mu}\phi^{a}\pm\epsilon_{\mu\nu}\epsilon_{abc}\phi^{b}\partial_{\nu}\phi^{c})^{2}=(\partial_{\mu}\phi^{a})^{2}\pm2\epsilon_{\mu\nu}\epsilon_{abc}\phi^{a}\partial_{\mu}\phi^{b}\partial_{\nu}\phi^{c}+(\partial_{\mu}\phi^{a})^{2}\geq0$$

... and bound (integrated):

 $S \ge 4\pi |Q|$

equality iff: $\partial_{\mu}\phi^{a} = \mp \epsilon_{\mu\nu}\epsilon_{abc}\phi^{b}\partial_{\nu}\phi^{c}$ first order \rightleftharpoons selfduality • complexification: \rightleftharpoons quaternions in ADHM formalism

$$\begin{array}{rcl} x_{1,2} & \to & z = x_1 + ix_2 \\ \phi^a & \to & u = \frac{\phi^1 + i\phi^2}{1 - \phi^3} & & \mathsf{N}: & \phi^a = (0,0,1) & u = \infty \\ & \mathsf{S}: & \phi^a = (0,0,-1) & u = 0 \end{array}$$

 \Rightarrow self-duality equations become Cauchy-Riemann conditions on u

= any meromorphic function u(z)

topological charge: Q = number of zeroes or poles topological charge density: $q = \frac{1}{\pi} \frac{1}{(1+|u|^2)^2} |\partial_z u|^2$

= any meromorphic function u(z)

topological charge: Q = number of zeroes or poles topological charge density: $q = \frac{1}{\pi} \frac{1}{(1+|u|^2)^2} |\partial_z u|^2$

• Q = 1 instanton [Belavin-Polyakov]

$$\begin{array}{c} u(z) = \frac{\lambda}{z - z_0} \\ u(z) = \frac{z - z_0}{\lambda} \end{array} \right\} \quad q = \frac{1}{\pi} \frac{\lambda^2}{(|z - z_0|^2 + \lambda^2)^2} \\ \text{location } z_0 \text{ and size} \end{array}$$

 \Rightarrow BPST instanton

1 pole and 1 zero to cover S_c^2 , one of them at infinity

= any meromorphic function u(z)

topological charge: Q = number of zeroes or poles topological charge density: $q = \frac{1}{\pi} \frac{1}{(1+|u|^2)^2} |\partial_z u|^2$

• Q = 1 instanton [Belavin-Polyakov]

$$\begin{array}{c} u(z) = \frac{\lambda}{z - z_0} \\ u(z) = \frac{z - z_0}{\lambda} \end{array} \right\} \quad q = \frac{1}{\pi} \frac{\lambda^2}{(|z - z_0|^2 + \lambda^2)^2} \\ \text{location } z_0 \text{ and size} \end{array}$$

 \Rightarrow BPST instanton

1 pole and 1 zero to cover S_c^2 , one of them at infinity

• Q = 1 instanton, pole and zero at finite *z*:

$$J(z)=\frac{z-z_{I}}{z-z_{II}}$$

λ

constituents at $z = \{z_I, z_{II}\}$? \rightsquigarrow 'instanton quarks'?!

= any meromorphic function u(z)

topological charge: Q = number of zeroes or poles topological charge density: $q = \frac{1}{\pi} \frac{1}{(1+|u|^2)^2} |\partial_z u|^2$

• Q = 1 instanton [Belavin-Polyakov]

$$\begin{array}{c} u(z) = \frac{\lambda}{z - z_0} \\ u(z) = \frac{z - z_0}{\lambda} \end{array} \right\} \quad q = \frac{1}{\pi} \frac{\lambda^2}{(|z - z_0|^2 + \lambda^2)^2} \\ \text{location } z_0 \text{ and size} \end{array}$$

 \Rightarrow BPST instanton

1 pole and 1 zero to cover S_c^2 , one of them at infinity

• Q = 1 instanton, pole and zero at finite *z*:

$$J(Z)=\frac{Z-Z_{I}}{Z-Z_{II}}$$

λ

constituents at $z = \{z_I, z_{II}\}$? \rightsquigarrow 'instanton quarks'?! NO! same profile q(x) as above \Rightarrow one lump conjecture: 2 complex moduli per $Q \rightsquigarrow$ locations of 2 constituents?!

Falk Bruckmann

• $Q \ge 2$ instantons

\leftrightarrows CFTW ansatz

$$u(z) = \prod_{j=1}^{Q} rac{\lambda}{z - z_{0,j}}$$
 poles at $z_{0,j}$

or a fraction as for Q = 1

• $Q \ge 2$ instantons

\leftrightarrows CFTW ansatz

$$u(z) = \prod_{j=1}^{Q} rac{\lambda}{z - z_{0,j}}$$
 poles at $z_{0,j}$

or a fraction as for Q = 1

finite temperature: $R^1 \times S^1_\beta$ with $\beta = 1/k_BT$

• periodic instantons

 \leftrightarrows HS calorons

$$u(z) = rac{\lambda}{\exp((z-z_0)rac{2\pi}{eta})-1}$$
 poles at $z_0 + j \cdot ieta$

Twisted boundary conditions

top. and action density invariant under global *SO*(3) rotations *SO*(2) subgroup rotating $\phi_{1,2} \Rightarrow U(1)$ on complex variable *u*: $u(x) \rightarrow e^{2\pi i \omega} u(x)$

let u be periodic in Im z up to that symmetry

 $u(z+i\beta)=e^{2\pi i\omega}u(z)$

FB '07

Twisted boundary conditions

top. and action density invariant under global *SO*(3) rotations *SO*(2) subgroup rotating $\phi_{1,2} \Rightarrow U(1)$ on complex variable *u*: $u(x) \rightarrow e^{2\pi i \omega} u(x)$

let *u* be periodic in Im *z* up to that symmetry

$$u(z+i\beta)=e^{2\pi i\omega}u(z)$$

- 'generalisations of finite temperature'??
- gauge theory at finite *T*: gauged away by time-dep. gauge trafo:
 generates A₀ ...
 ⇒ holonomy lim_{x→∞} P(x)
- spatial $R^1 \times S^1 \simeq$ 'tube': defect, when glued together

or flux through the tube ...

- SO(3)-inv. quantities like action density still periodic
- in which observable can we measure the twist ω ?

FB '07

 \Rightarrow topological profiles (ln q) for charge Q = 1: FB '07

copies overlap \sim dimensional reduction

 \Rightarrow topological profiles (In q) for charge Q = 1:

copies overlap \sim dimensional reduction

Falk Bruckmann

FB '07

novel solution:

$$u(z) = \frac{e^{\omega(z-z_0)\frac{2\pi}{\beta}} \cdot \lambda}{\exp((z-z_0)\frac{2\pi}{\beta}) - 1}$$

at $z_0 + j \cdot i\beta$: residues $e^{2\pi i\omega \cdot j}$ = rotation \leftrightarrows KvBLL calorons

novel solution:

$$u(z) = \frac{e^{\omega(z-z_0)\frac{2\pi}{\beta}} \cdot \lambda}{\exp((z-z_0)\frac{2\pi}{\beta}) - 1}$$

at $z_0 + j \cdot i\beta$: residues $e^{2\pi i\omega \cdot j}$ = rotation \Leftrightarrow KvBLL calorons

rewrite:

$$u(z) = \frac{1}{\exp(-\omega(z-z_1)\frac{2\pi}{\beta}) - \exp((1-\omega)(z-z_2)\frac{2\pi}{\beta})}$$

with $z_1 = z_0 - \beta \frac{\ln \lambda}{2\pi\omega}$, $z_2 = z_0 + \beta \frac{\ln \lambda}{2\pi(1-\omega)}$

novel solution:

$$u(z) = \frac{e^{\omega(z-z_0)\frac{2\pi}{\beta}} \cdot \lambda}{\exp((z-z_0)\frac{2\pi}{\beta}) - 1}$$

at $z_0 + j \cdot i\beta$: residues $e^{2\pi i\omega \cdot j}$ = rotation \Leftrightarrow KvBLL calorons

rewrite:

$$u(z) = \frac{1}{\exp(-\omega(z-z_1)\frac{2\pi}{\beta}) - \exp((1-\omega)(z-z_2)\frac{2\pi}{\beta})}$$

with $z_1 = z_0 - \beta \frac{\ln \lambda}{2\pi\omega}$, $z_2 = z_0 + \beta \frac{\ln \lambda}{2\pi(1-\omega)}$

= combination of two constituents

$$\Rightarrow$$
 dyons

$$u(z) = \exp\left(\omega(z-z_1)\frac{2\pi}{\beta}\right), \qquad u(z) = \exp\left(-(1-\omega)(z-z_2)\frac{2\pi}{\beta}\right)$$

transmutation of λ : instanton size \rightarrow constituent distance \Rightarrow same

Falk Bruckmann

Properties

simply exponential functions

(as such periodic in Im z up to a phase)

- fractional top. charges: $Q = \omega$ and $Q = 1 \omega \implies 2\omega$ and $1 2\omega$
- exp. localised in Re z, scale = β
- \Rightarrow decay algebraically

- static in isolation
- overlapping: one lump with Q = 1 and 'time-dependence'
- higher charge: more constituents

different kinds alternate in noncompact direction (see below)

carry the fermionic zero modes (see below)

 \Rightarrow everything very similar

CP(N) models

a constraint (n + 1)-dim. complex vector in 2D: \Rightarrow SU(N+1) YM

$$\begin{split} S = \int d^2x \, \left| D_{\mu} \vec{n} \right|^2 & \left| \vec{n} \right|^2 = 1 \\ D_{\mu} = \partial_{\mu} - iA_{\mu} & A_{\mu} \equiv -i\vec{n}^* \partial_{\mu} \vec{n} \text{ : dependent gauge field} \\ \text{note: } CP(1) \sim O(3) & \leftrightarrows \text{SU(2) YM} \end{split}$$

CP(N) models

a constraint (n + 1)-dim. complex vector in 2D: \Rightarrow SU(N+1) YM

$$\begin{split} S &= \int d^2 x \, \left| D_{\mu} \vec{n} \right|^2 \qquad \left| \vec{n} \right|^2 = 1 \\ D_{\mu} &= \partial_{\mu} - i A_{\mu} \quad A_{\mu} \equiv -i \vec{n}^* \partial_{\mu} \vec{n} \text{ : dependent gauge field} \\ \text{note: } CP(1) \sim O(3) \qquad \qquad \leftrightarrows \text{SU(2) YM} \end{split}$$

again:

- Bogomolnyi bound and complexification
- Cauchy-Riemann condition
- instantons as meromorphic functions, use

$$\vec{n} = \frac{\vec{v}(z)}{\left|\vec{v}(z)\right|}$$

as basic variable, then: $q = \frac{1}{4\pi} \Delta \ln \left| \vec{v}(z) \right|^2$

twisted bc.s in global symmetry U(n + 1):

$$v^j(z+i\beta)=e^{2\pi i\mu_j}v^j(z)$$

n + 1 constituents 'instanton quarks' with topological charges: $\mu_j - \mu_{j-1}$ $[\mu_0 \equiv 0, \mu_{n+1} \equiv 1, \text{ add up to } 1]$

 \Rightarrow dyon masses in SU(N)

FB et al. '09

twisted bc.s in global symmetry U(n + 1):

$$v^j(z+i\beta)=e^{2\pi i\mu_j}v^j(z)$$

n + 1 constituents 'instanton quarks' with topological charges: $\mu_j - \mu_{j-1}$ [$\mu_0 \equiv 0, \mu_{n+1} \equiv 1$, add up to 1]

• higher charge: $Q \cdot (n+1)$ constituents some Q = 2 solutions in CP(2):

 $\mu_j - \mu_{j-1} \in \{0.55, 0.15, 0.3\}$

 \Rightarrow dyon masses in SU(N)

 $\Rightarrow Q = 2$ in SU(3)

FB et al. '09

- ordered along noncompact direction
- time-dependent, when n + 1 (or more) constituents merge

Explanation

• the v(z)'s in these solutions are again exponentials:

$$v_j(z) = e^{2\pi\mu_j z} \times (\ldots + \ldots e^{2\pi z} + \ldots e^{2\pi (2z)} + \ldots)$$

v_j ~ exp(.. Re z), in top. density *q* ~ Δ ln |*v*|: generically one exponential term dominates *q* which one depends on the Re *z*-region and the parameters

 \Rightarrow ln $|\vec{v}|$ piecewise linear, *q* piecewise 0 up to corrections at transitions = constituent locations

- constituents top. fraction ~ difference of slopes (cf. ∂²_x at cusps) total *Q*: from the asymptotic slopes (here p₀, p₃) ✓
- constituents join to a bigger one:

Q from sum of slopes \checkmark

constituents cannot go through each other <geometric argument>

n + 1 constituents join: all their *p*'s 'low'
 the only time-dependent slope *p* becomes relevant

 \Rightarrow time-dependent lump

⇒ data in Nahm transformation

Fermionic zero modes

• minimal coupling via the gauge field

$$S = \int d^2 x \Big[\left| D_{\mu} \vec{n} \right|^2 + i \bar{\psi} \gamma^{\mu} D_{\mu} \psi \Big]$$

expect index theorem:

⇒ Atiyah-Singer index theorem

$$Q = n_R - n_L$$

for right-handed and left-handed zero modes of $i\gamma^{\mu}D_{\mu}$

instantons with Q > 0:

$$n_L = 0, \quad n_R = Q$$

• phase bc.s for fermions:

$$\psi(z+i\beta)=e^{2\pi i\zeta}\psi(z)$$

• phase bc.s for fermions:

$$\psi(z+i\beta)=e^{2\pi i\zeta}\psi(z)$$

we find explicitly

$$n_L = 0, \quad n_R = Q$$

unless $\zeta = 0 : n_R = Q - 1$

 $\zeta \in \{0.17, 0.25, 0.33\}$:

= exp. localized to constituents depending on phase ζ : hopping $\Rightarrow \checkmark$ and 'bridges' \Rightarrow alg. localised $\zeta = 0$: 'bridge' to infinity = non-normalisable \Rightarrow normalisable

Falk Bruckmann

Instanton constituents

chiral representation:

$$\psi = \left(egin{array}{c} 0 \ rac{1}{|
u|} e^{2\pi(s+\zeta)z} \end{array}
ight) \qquad ext{with } 0 < s+\zeta < Q$$

again considerations about these exponential terms and the old ones from ν (bosonic) explain the localisation behaviour 'bridges': two slopes parallel

similar on cooled lattice configurations

Summary

CP(N) on $R^1 \times S^1$:

instantons consist of N constituents (per charge Q)

when twisted boundary conditions

- = part of global symmetry
- YM on $R^3 \times S^1$: calorons

```
= part of local symmetry \Rightarrow holonomy
```

fermions hop with their phase boundary conditions

realisation in condensed matter?!

outlook: semiclassics, phase diagram, large N, ...

Supersymmetric coupling to fermions

linearised Dirac equation: $n_L = 0$

right-handed zero modes: exponential again

SUSY conservation restricts phases

localised on two (or one) consituent

```
'half-BPS state': profile = q(x)
```