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We present an exact mapping of models of interacting fermions onto boson models. The bosons
correspond to collective excitations in the initial fermionic models. This bosonization is applicable in
any dimension and for any interaction between fermions. We show schematically how the mapping
can be used for Monte Carlo calculations and argue that it should be free from the sign problem.
Introducing superfields we derive a field theory that may serve as a new way of analytical study.
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The study of interacting fermionic systems in cases
when the Landau Fermi liquid theory fails to describe
all interesting effects is an open problem of condensed
matter theory. Very often conventional methods [1] are
not efficient due to divergencies in perturbation expan-
sions leading to the re-summation of complicated series.

It is difficult to list here all the problems encountered
in the study of e.g., strongly correlated systems. The
most clear examples are provided by one dimensional
(1D) systems where perturbative methods are especially
inconvenient but models suggested for describing high Tc

superconductivity, see, e.g. [2], are not simpler. Generi-
cally, the low temperature physics of systems of interact-
ing fermions is naturally described in terms of bosonic
collective excitations that can be expressed only by infi-
nite series of conventional diagrams.

The numerical study of fermionic systems encounters
difficulties as well. The powerful Monte Carlo (MC)
method suffers the well known sign problem [3–7] leading
to a drastic increase in the computing time.

All these examples call for a reformulation of the model
of interacting fermions in terms of a boson model. Such
an approach, called bosonization (see, e.g. [8, 9]), is
well known and successful for 1D fermionic systems. At-
tempts to bosonize fermionic models in the dimension-
ality d > 1 have been undertaken in the past, starting
from the works [10, 11] followed by [12]. However, these
schemes are applicable only for a long range interaction.

A more general low energy bosonization scheme sug-
gested recently [13] is based on quasiclassical equations
and can be used for an arbitrary range of the interaction.
New logarithmic contributions to anomalous dependence
of the specific heat [13] and spin susceptibility [14] were
found. However, working well for d = 1 the scheme of
Ref. [13] is not completely accurate for d > 1 because it
does not fully accounts for all effects of the Fermi surface
curvature [15].

All the previous bosonization methods are not exact;
hence they cannot be used for accurate numerical studies

of the initial fermionic problem.
In this paper, we present a new scheme that allows

one to map models of interacting fermions to interacting
bosons exactly. This mapping works in any dimension at
any temperature. The effective model obtained describes
interacting bosonic excitations. It can be written either
in a form of a model of non-interacting bosons in an
effective Hubbard-Stratonovich field with a subsequent
integration over these fields or in a form of a supersym-
metric field theory of superfields with quartic and cubic
interactions. The former version may be convenient for
MC study, while the latter one promises to be good for
analytical investigations.

We start with a general model of interacting electrons
described by the Hamiltonian

Ĥ = Ĥ0 + Ĥint, (1)

where Ĥ0 is the bare part,

Ĥ0 = −
∑

r,r′,σ

tr,r′c
+
rσcr′σ − µ

∑
r,σ

c+
rσcrσ, (2)

and Ĥint stands for an electron-electron interaction,

Ĥint =
1
2

∑

r,r′σ,σ′
Vr,r′c

+
rσc+

r′σ′cr′σ′crσ. (3)

In Eqs. (1-3) crσ (c+
rσ) are annihilation (creation) opera-

tors of the electrons on a lattice site r with spin σ = ±.
The function tr,r′ describes the tunnelling from the site
r to the site r′, Vr,r′ is the electron-electron interaction
between the r and r′ and µ is the chemical potential.

The scheme of the bosonization suggested here can be
developed for arbitrary functions trr′ and Vrr′ in an ar-
bitrary dimension. However, in order to make formulas
more compact we assume that

Vr,r′ = δr,r′V0, V0 > 0, (4)

which corresponds to an onsite repulsion.
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Then, the term Ĥint can be rewritten in the form

Ĥ
(0)
int = −V0

2

∑
r

(
c+
r,+cr,+ − c+

r,−cr,−
)2

(5)

while replacing the chemical potential µ by µ′ = µ−V0/2.
In this paper, we concentrate on studying thermody-

namics and calculate the partition function Z

Z = Tr exp
(
−Ĥ/T

)
. (6)

Following a standard route of the Hubbard-Stratonovich
transformation we decouple the interaction term, Eq. (5),
integrating over an auxiliary real field φ (r, τ) , where τ
is an imaginary time varying in the interval 0 ≤ τ < β,
β = 1/T. The field φ (r, τ) is periodic in τ , such that
φ (r, τ) = φ (r, τ + β).

Proceeding in this way one obtains a model of non-
interacting electrons in the external field φ (r, τ). This
allows one to calculate the trace over the electronic states
and reduce the partition function Z to the form

Z =
∫

Z [φ] exp

[
− 1

2V0

∑
r

∫ β

0

φ2 (r, τ) dτ

]
Dφ, (7)

Z [φ] = exp

[∫ β

0

Trr,σ ln
(
−∂/∂τ − ĥr,σ + µ′

)
dτ

]
,

ĥr,σ (τ) = ε̂r − σφr (τ) , (8)

where ε̂rfr ≡ −∑
r′ tr,r′fr′ for an arbitrary function fr

and Trr,σ means summation over r and σ.
In order to reduce the fermionic model, Eqs. (7-8), to

a bosonic one, we first introduce an additional variable
0 ≤ u ≤ 1 and write the function Z [φ] as [13]

Z [φ] = Z0 exp

[∑
r,σ

∫ β

0

∫ 1

0

σφr (τ) G(uφ)
r,r;σ (τ, τ + 0) dτdu

]

(9)
where Z0 is the partition function of the ideal Fermi gas
and G

(uφ)
r,r′;σ (τ, τ ′) is a fermionic Green function satisfying

(
− ∂

∂τ
− ĥr,σ (u) + µ′

)
G

(uφ)
r,r′;σ (τ, τ ′) = δr,r′δ (τ − τ ′) ,

ĥr,σ (τ, u) = ε̂r − σuφr (τ) , (10)

with the boundary conditions

G
(uφ)
r,r′;σ (τ, τ ′) = −G

(uφ)
r,r′;σ (τ + β, τ ′) = −G

(uφ)
r,r′;σ (τ, τ ′ + β) .

We look for the solution of Eq. (10) writing the Green
function G

(uφ)
r,r′;σ (τ, τ ′) as

G
(uφ)
r,r′;σ (τ, τ ′) =

∑
r1,r2

Tr,r1;σ,u (τ)G(0)
r1,r2

(τ−τ ′)T−1
r2,r′;σ,u (τ ′)

where G
(0)
r1,r2 (τ−τ ′) is the Green function of the ideal

Fermi gas and Tr,r′;σ,u (τ) is an unknown function
with the bosonic boundary condition Tr,r′;σ,u (τ) =
Tr,r′;σ,u (τ + β) and T−1

r,r′;σ,u (τ) is the inverse function,
∑

r′′
Tr,r′′ (z)T−1

r′′,r′ (z) = δrr′ , z = (τ, σ, u).

Substituting G
(uφ)
r;r′;σ (τ, τ ′) into Eq. (10), we obtain equa-

tions for the functions Tr,r′;σ,u (τ) and T−1
r,r′;σ,u (τ),

− ∂

∂τ
Tr,r′ (z)− (ε̂r − ε̂r′)Tr,r′ (z) + σuφr (τ)Tr,r′ (z) = 0,

∂

∂τ
T−1

r,r′ (z) + (ε̂r − ε̂r′)T−1
r,r′ (z) + σuφr′ (τ)T−1

r,r′ (z) = 0.

(11)

We can consider Tr,r′ (z) as a matrix with indices r, r′,
such that the sums of the space variables are simply
matrix products. In principle, one could try to solve
Eqs. (11) for the bosonic variable T (z) and directly cal-
culate the function Z [φ] but it is more convenient to
introduce a new function Ar,r′ (z) as

A (z) = − [T (z) , n̂] T−1 (z) , (12)

where [.., ..] is the commutator and n̂ is a matrix with the
matrix elements nr,r′ determined by the Fourier trans-
form in r − r′ of the Fermi distribution

n (p) = [exp [β (ε (p)− µ′)] + 1]−1 (13)

with ε (p) being the electron energy corresponding to ε̂r.
The function A (τ) is periodic, A (τ) = A (τ + β).

The function nr,r′ is just the Green function G
(0)
r,r′ (−0)

and we can write the partition function Z [φ] in terms of
the function A (z) as

Z [φ] = Z0 exp

[
−

∑
r,σ

∫ 1

0

∫ β

0

σφr (τ) Arr (z) dudτ

]
.

(14)
Remarkably, one can derive a closed equation for A (z).

Let us consider [..., n̂] as an operator acting on any
function f as [..., n̂] f = [f, n̂]. The equation for A (z)
can be obtained acting by the operator [..., n̂] on the first
equation (11) for T and multiplying the obtained equa-
tion by T−1 from the right. Then, one has to multiply
the second equation (11) for T−1 by [T, n̂] from the left
and subtract the two obtained equations from each other.
This gives the following equation for A (z):

∂

∂τ
Ar,r′ (z) + Hr,r′ (z) Ar,r′ (z) = uσΦr,r′ (τ)nr,r′ ,

Hr,r′ (z) = ĥr,σ (τ, u)− ĥr′,σ (τ, u) (15)

with ĥr,σ (τ, u) from Eq. (10) and

Φr,r′ (τ) = φr (τ)− φr′ (τ) .
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So, instead of calculating the fermionic determinant in
Eq. (8) we are to solve the linear equation (15) for
Ar,r′ (z) and substitute the solution into Eq. (14). This
reduction is similar to the one of Ref. [13] developed
in the quasiclassical approximation, whereas here all the
transformations are exact. The partial differential equa-
tion (15) admits the parasitic solution Ar,r′(z) = −unr,r′

which is not present in Eq. (10). It is excluded by com-
plementing Eq. (15) with the constraint TrrA = 0 that
follows from the definition of A, Eq. (12).

Eqs. (7, 14, 15) can serve as the starting point of
both numerical and analytical investigations. For ana-
lytical studies it is convenient to represent the solution
of Eq. (15) in a form of an integral over superfields, which
allows to integrate over the field φr (τ) in the beginning,
thus reducing the model to a model of interacting bosons.

Let us start with the form suitable for analytical stud-
ies. We are to integrate over the field φr (τ) exactly in or-
der to derive a field theory for interacting bosons. In Ref.
[13] this goal has been achieved by integrating over 48-
component supervectors, which has led to a rather cum-
bersome Lagrangian. Now we use another trick, known as
the Becchi-Rouet-Stora-Tuytin (BRST) transformation,
based on introducing superfields [16] (see also the book
[17]). A similar transformation was used in the quanti-
zation of non-abelian gauge theories [18]. In condensed
matter physics this trick has been used first in Ref. [19]
in the context of stochastic equations.

Within this method one replaces solving an equation

F (A) = 0, (16)

where F is a matrix function of a matrix function A, and
a subsequent calculation of a quantity B(A0), where A0

is the solution of Eq. (16), by an integral of the form

B =
∫

B(a)δ (F (a))
∣∣∣∣det

(
∂F

∂a

)∣∣∣∣ da. (17)

The δ-function can be written as

δ (F (a)) = C

∫
exp (ifF (a)) df,

where C is a coefficient, and the determinant is obtained
after integration of an exponential of a quadratic form in
Grassmann variables η and ρ.

Our problem of solving Eq. (15) and calculation of the
integral in Eq. (14) is exactly of this type and we proceed
following the above trick.

We introduce new anticommuting variables θ and θ∗

and a superfield Ψr,r′ (R), R = {z, θ, θ∗} ,

Ψr,r′ (R) = ar,r′ (z) θ+fT
r,r′ (z) θ∗+ηr,r′ (z)+η+

r,r′ (z) θ∗θ

where a, f are real and η is an anticommuting field. The
field Ψ is periodic as a function of τ , Ψ (τ) = Ψ (τ + β),
but is anticommuting. The hermitian conjugation “ + ”

implies both the complex conjugation and transposition
“T” with respect to r, r′.

As a result, one comes to an effective action quadratic
in Ψ and linear in φr(τ). This allows us to integrate over
φr(τ) with the Gaussian weight of Eq. (7) and we come
to the final expression for the partition function Z,

Z = Z0

∫
exp [−S0 [Ψ]− SB [Ψ]− SI [Ψ]] DΨ, (18)

where S0 [Ψ] is the bare part of the action,

S0 =
i

2

∑

r,r′

∫ [
Ψr′,r

(
∂

∂τ
+ (ε̂r − ε̂r′)

)
Ψr,r′

]
dR

and the interaction terms are given by

SB = −V0

2

∑
r

∫
δ(τ − τ1)Ψr,r (R) θ∗

×
[
Ψr,r (R1) θ∗1 + 2iΠr (R1)

]
σσ1dRdR1 ,

SI =
V0

2

∑
r

∫
δ(τ − τ1)Πr (R)Πr (R1) σσ1dRdR1,

Πr (R) = u
∑

r′

[
(Ψr′,r (R) + nr,r′θ) (Ψr,r′ (R) + nr,r′θ)

]

Integration over R in Eq. (18) implies summation over
σ and integration over u, τ, θ, θ∗. The bare action S0 and
the interaction term SI are invariant under the transfor-
mation of the fields Ψ

Ψr,r′ (θ, θ∗) → Ψr,r′ (θ + κ, θ∗ + κ∗) + κnr,r′ (19)

with κ and κ∗ being anticommuting variables, whereas
the term SB breaks the invariance. The invariance un-
der the transformation (19) is stronger than the standard
BRST symmetry for stochastic field equations (invari-
ance under the transformation Ψ (θ∗) → Ψ (θ∗ + κ∗)),
Ref. [17], and reflects additional symmetries of Eq. (15).
It differs from the full supersymmetry by the presence of
the term κnr,r′ in Eq. (19) but still can lead to interest-
ing Ward identities.

The model described by Eqs. (18) can be studied using
standard methods of field theory. One can, e.g., expand
in the interaction V0 or develop a renormalization group
scheme analogous to the one of Ref. [13]. In both the
cases one can use the Wick theorem with simple contrac-
tion rules following from the form of the bare action S0.
We leave such calculations for future publications.

Neglecting cubic and quartic in Ψ terms in SB and SI

in Eq. (18) one has a purely quadratic action and the
partition function Z yields an RPA-like expression,

Z ' Z0 exp

[
−T

2

∑
ω

∫
ddk

(2π)d
ln K

]
, (20)

K = 1 + V0

∫
n (p− k/2)− n (p + k/2)

iω + ε (p− k/2)− ε (p + k/2)
ddp

(2π)d
.
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The same result can be obtained using Eqs. (14, 15) and
neglecting the field φr(τ) in the L.H.S. of Eq. (15).

In Eq. (20), (K − 1) is the contribution of non-
interacting bosonic excitations. Considering their inter-
action one can fully describe the initial fermionic system.

In the remaining of this paper, we sketch a pos-
sible route for MC simulations. The supersymmetric
form (18) obtained after the averaging over φr (τ) is not
proper for the numerical study and we want to show how
one may calculate Z [φ] in a way suitable for the MC
method. Following Ref. [3] one subdivides the interval
[0, β] into many slices [τi, τi + ∆τ ], i = 1, 2, ..., N, where
∆τ = β/N. Then, one calculates Z [φ] for different φ̃r (τi)
defined on the times τi. An efficient algorithm demands
the positivity of Z[φ̃], which is not the case when using
Eq. (8) directly. This is the famous sign problem.

We start with Eqs. (14-15). The solution of Eq. (15)
and the function Z [φ] can be written in terms of a Green
function Gσ,uφ

r,r′;r1,r′1
(τ, τ1) introduced as the solution of

(
∂

∂τ
+Hr,r′ (τ)

)
Gσ,uφ

r,r′;r1,r′1
(τ, τ1) = δ(τ − τ1)δr,r1δr′,r′1 .

Then, we obtain for the function Z [φ]

Z [φ] = Z0 exp
[
−

∑

σ,r,r1,r′1

∫ 1

0

∫ β

0

∫ β

0

Gσ,uφ
r,r;r1,r′1

(τ, τ1)

×φr (τ)nr1,r′1Φr1,r′1 (τ1) dτdτ1du
]
. (21)

In analogy with the representation for the fermionic
Green functions suggested in Ref. [3], we represent the
function Gσ,uφ

r,r;r1,r′1
(τ, τ1) for β > τ > τ1 > 0 in the form

Gσ,uφ
r,r′;r1,r′1

(τ, τ1) = P̂r,r′ (τ, τ1) (22)

×
(
1− P̂r,r′ (τ1, 0) P̂r,r′ (β, τ1)

)−1

δr,r1δr′,r′1 .

Herein, the operator P̂ is given by the expression

P̂r,r′ (τ, τ1) = Tτ exp
(
−

∫ τ

τ1

Hr,r′ (τ ′′, σ, u) dτ ′′
)

(23)

where Tτ is the time ordering operator. The function
Gσ,uφ

r,r′;r1,r′1
(τ, τ1) satisfies the symmetry relation

Gσ,uφ
r,r′;r1,r′1

(τ, τ1) = −Gσ,uφ
r′1,r1;r′,r

(τ1, τ) , (24)

which allows also to consider times β > τ1 > τ > 0.
The form of the Green function Eq. (22) is typical for

bosons. By construction, it is real unless a singularity
is present, in which case an imaginary part might be
generated. We argue that a possible zero in the Bose-
denominator in Eq. (22) is compensated by the function
Φr1,r′1 , Eq. (15), vanishing at r1 = r′1. Alternatively, one
can antisymmetrize in the beginning the function G in

r1, r
′
1 by antisymmetrizing the δ-functions in Eq. (15).

This compensation is clearly seen in the RPA, Eq. (20).
In the absence of any singularity, the result is insensi-

tive to the way of subdividing the interval [0, β] into the
slices determining the operator P̂r,r′ . Therefore, Z[φ] re-
mains positive in the process of the calculation for any
φ excluding the sign problem. Since Z can be expanded
in a sum of positive terms, we believe that a procedure
similar to the one of Refs. [3, 4] can be efficient within
our new bosonization scheme.

In conclusion, the exact bosonization method pre-
sented here opens new possibilities of both numerical
and analytical investigations of models of interacting
fermions. There is a reasonable chance that this new for-
malism is free from the sign problem which is generically
NP-hard [7] or problems of equivalent complexity.
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