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Problem:

• Given an instance of the 2D Gaussian free field:

P [V (x)] ∝ exp− 1
g2

∫
[∇V (x)]2 d2x

characterized by the covariance

〈V (x1)V (x2)〉 = −2g2 ln |x1 − x2|

we wish to understand the statistics of its minima/maxima along
various curves in the plane, and ultimately in various planar domains.

• The problem turns out to be intimately connected to the mechanism of freezing
transitions in disordered systems theory (Random Energy Models, Dirac fermions
in random magnetic field). It has also interesting relations to Liouville Quantum
Gravity & conformal field theory, to multifractal random measures,1/f noises,
and processes arising in turbulence and mathematical finance, as well as to various
aspects of Random Matrix Theory.



Idea of the method: We concentrate on considering samples of the
Gaussian Free Field (GFF) along planar curves C parametrised by
x(t) = (x(t), y(t)) with real t ∈ [a, b].
Given a measure dµρ(t) = ρ(t) dt, we consider the integral

Zβ = εβ2g2
∫ b

a

e−βVε(x(t))dµρ(t), β > 0

where Vε(x) is the regularized version of the GFF with a short scale
cutoff ε ¿ 1, i.e. zero mean and the covariance

〈Vε(x)Vε(x′)〉 = −2g2 ln |x−x′|ε =
{ −2g2 ln |x− x′|, |x− x′| > ε

2g2 ln(1/ε), |x− x′| < ε

The integral is to be interpreted as the partition function of the
associated Random Energy Model at the temperature T = β−1. This
is to be studied in the limit ε → 0.



Note:

• For ρ(t) = 1 the Gibbs measure of the disordered system
identifies with the random Liouville measure (cf. Duplantier &
Sheffield 2008), and the partition function Zβ can be interpreted as
the (fluctuating) length of a curve in critical Liouville quantum gravity.

For example, the generating function (Laplace transform of the partition
function probability density) is given by:

〈
e−pZβ

〉 ∝
∫

DV e
− 1

g2

∫
[∇V (x)]2 d2x−p

∫
C e−βV (x(t))dl

which resembles the Liouville partition function, see e.g. Fateev,
Zamolodchikov & Zamolodchikov .



Guiding example: CIRCULAR LOGARITHMIC MODEL:
Let the contour C be the unit circle: x(t) = cos t, y(t) = sin t, with
t ∈ [0, 2π). Sample the Gaussian Free Field at M equidistant points
along the circle with tk = 2π

M (k − 1), k = 1, . . . , M

As the distance |x1−x2| between a pair of points is simply 2| sin t1−t2
2 |, we deal with

the collection of normally distributed variables with covariances

〈VkVm〉 = −2g2 ln |2 sin
2π

M
(k −m)|, for k 6= m

We have to choose the variance accordingly:

〈V 2
k 〉 = 2g2 ln M + W, with any W > 0

Equivalently, we consider 2π− periodic Gaussian 1
f noise:

V (t) =
∞∑

n=1

(vneint + vne−int) with i.i.d. coefficients 〈vnvk〉 =
g2

n
δn,k
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Observation: The positive integer moments 〈Zn(β)〉 , n = 1, 2, . . . of
the partition function Z(β) =

∑M
i=1 e−βVi for the circular model in the

high-temperature phase γ = β2g2 < 1 turn out to be given in the
thermodynamic limit M À 1 by

〈Zn
circ(β)〉 =

{
M1+γn2

O(1) n > 1/γ

M (1+γ)nDn(γ) n < 1/γ

where Dn(γ) is the Dyson-Morris Integral

Dn(γ) =
1

(2π)n

∫ 2π

0

dθ1 . . .

∫ 2π

0

dθn

∏

a<b

|eiθa−eiθb|−2γ =
Γ(1− nγ)
Γn(1− γ)

Aim: to reconstruct the distribution of the partition function P (Z) from
its moments in the high temperature phase γ ≤ 1.



Outcome of the analysis:
The probability density P(Z) of the partition function Zcirc(β) ≡ Z in
the high-temperature phase γ = β2g2 < 1 consists of two pieces. The
"body" of the distribution is given by:

P(Z) =
1
γ

1
Z

(
Ze

Z

)1
γ

e−(Ze
Z )

1
γ

, Z ¿ M2

which has a pronounced maximum at Z ∼ Ze = M1+γ

Γ(1−γ) ¿ M2, and
the powerlaw decay at Ze ¿ Z ¿ M2.
At Z À M2 the above expression is replaced by the lognormal tail:

P(Z) =
M√

4πγ ln M

1
Z

f

(
1
2

ln Z

lnM

)
e
− 1

4 ln Mγ ln2 Z where f(x) ∼ O(1) for x ∼ O(1)

Define z = Γ(1 − γ)Z = e−βf , the free energy f = −β−1 ln z is
distributed according to the Gumbel law: P(f) = AeAf−eAf

where
A = T/T 2

c for T ≥ Tc = g. From now on we put g = 1.



Freezing scenario: Consider the generating function

gβ(x) =
〈
exp(−eβxz)

〉
MÀ1

, β = 1/T

In the high-temperature phase β < βc = 1 the function turns out to
satisfy a remarkable duality relation:

gβ(x) = g1
β
(x) .

This however does not allow to continue to β > βc regime. The phase transition at β = βc

is believed to be described by the following freezing scenario: gβ(x) freezes to the temperature
independent profile gβc(x) in the "glassy" phase T ≤ Tc. The scenario is supported by
(i) a heuristic real-space renormalization group arguments for the logarithmic models (Carpentier,
Le Doussal ’01) revealing an analogy to the travelling wave analysis of polymers on disordered trees
(Derrida, Spohn 1989)
(ii) duality which implies

∂βgβ(x)|
β=β−c

= 0 , for all x

showing that the "temperature flow" of this function vanishes at the critical point β = βc = 1

(iii) our numerics.



Assuming validity of such scenario for the problem in hand, one finds
the frozen profile for the circular model:

gcirc
βc

(x) = 2ex/2K1(2ex/2)

where K1(z) is the Macdonald function. This allows to reconstruct the
distribution of the free energy f = −β−1 ln z for any T < Tc. The
corresponding formula takes a form of an infinite series:

PCLM
β>βc

(f) =
1

2π

∫ ∞

−∞
e
−isf 1

Γ(1 + is
β )

Γ
2

(
1 +

is

βc

)
ds

= − d

df


1 +

∞∑
n=1

enβcf

n!(n− 1)!Γ
(
1− nβc

β

)
(

βcf +
1

n
− 2ψ(n + 1) +

βc

β
ψ

(
1− n

βc

β

))



where ψ(x) = Γ′(x)/Γ(x). In the zero temperature limit β → ∞ the
free energy distribution yields the extreme value probability density.



The minimum of the random potential is simply given by
Vmin = − limT→0 f = const+x, with known const and the probability
density of x related to the frozen profile gβc(x) by

p(x) = −g
′
βc

(x) = − d

dx

[
2e

x/2
K1(2e

x/2
)
]

(1)

This is different from Gumbel distribution pGum(x) = − d
dx

[
exp−BeAx

]
.
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From circles to intervals:

Unfortunately, the direct methods which work for the circular case fail for problem of the interval
x ∈ [0, 1] of the real axis with the density ρ(x) = xa(1− x)b when

〈
Z

n
[0,1]

〉
=

∫ 1

0

. . .

∫ 1

0

∏

1≤i<j≤n

|xi − xj|−2γ
ε

n∏

i=1

x
a
i (1− xi)

b
dxi,

For a fixed n = 1, 2, .., a well defined and universal ε → 0 limits exists whenever the integrals
are convergent, that is for γ = β2g2 < 1/n, in which case they are given by celebrated Selberg
integral formula. Defining z = Γ(1− γ)Z = e−βf we obtain the moments

zn =
〈

z
n
[0,1]

〉
=

j=n∏

j=1

Γ[1 + a− (j − 1)γ]Γ[1 + b− (j − 1)γ]Γ(1− jγ)

Γ[2 + a + b− (n + j − 2)γ]

Exploiting the recursion relations we perform a continuation to negative integer moments:

z−k =

k∏

j=1

Γ[2 + a + b + (k + j + 1)γ]

Γ[1 + (j − 1)γ] Γ[1 + a + jγ]Γ[1 + b + jγ]

For a = b = 0 the negative moments were announced independently in Ostrovsky D 2008, Lett.
Math. Phys 83 265.



To restore the corresponding probability density we define the
generic moments

Mβ;a,b(s) =
〈
z1−s

〉
, Mβ;a,b(1) = 1

for any complex s, at fixed inverse temperature β and parameters a, b.

The probability density P (z) of the scaled partition function z and the
generation function g

β
(x) can be related to the function Mβ;a,b(s) via

the contour integrals:

P
(
e−t

)
= e2t 1

2iπ

∫ s0+i∞

s0−i∞
e−stMβ;a,b(s)ds

gβ(x) = ex 1
2iπ

∫ s0+i∞

s0−i∞
e−sxMβ;a,b(s)Γ(s− 1) ds

where the integration goes parallel to the imaginary axis to the right of
all singularities of the integrand.



For a somewhat simpler case of the critical temperature β = βc = 1 the moments Mβ;a,b(s) ≡
Ma,b(s) can be expressed via the Barnes function G(s) satisfying the functional equation

G(s + 1) = G(s)Γ(s), with G(1) = 1.

as

Ma,b(s) = 2
2s2+s(1+2(a+b))−3−2(a+b)

π
1−s G(2 + a)G(2 + b)G(4 + a + b)

Γ(2 + a+b
2 )G(2 + a+b

2 )2G(5
2 + a+b

2 )2

× Γ(1 + a+b
2 + s)G(1 + a+b

2 + s)2G(3
2 + a+b

2 + s)2

G(s)G(1 + a + s)G(1 + b + s)G(3 + a + b + s)
.

For example,

M0,0(s) =
22s2+s−2

G(5/2)2πs−1

Γ(s + 1
2)

2

Γ(s)Γ(s + 2)

G(s + 1
2)

2

G(s)2
, M−1/2,−1/2(s) = 2

2s2−s−1
π

1−sΓ(1
2 + s)

sΓ(3/2)

To guarantee that this is the correct continuation, we have checked

(i) positivity: Ma,b(s) given above is finite and positive on the interval s ∈ [0, +∞[

that is all real moments n = 1− s < 1 exist.

(ii) convexity: on this interval ∂2
s ln Ma,b(s) > 0.

(iii) For integer values of s gives back positive/negative moments.



Deforming the integration contour one obtains the frozen profile
gβc(x). For the general case the expression can be obtained as
expansion in powers of ex for x → −∞. For example, for a = b = 0

gβc(x → −∞) = 1 + (x + A
′
)e

x
+ (A + By + Cx

2
+

1

6
x

3
)e

2x
+ . . . (2)

with A′ = 2γE + ln(2π) − 1 and C = −0.253846, B = 1.25388, A = −5.09728. For the
special case a = b = −1/2 we obtain the closed form expression:

gβc(x) =
π

4

∫ +∞

−∞

dt√
2π

e
−t2

2 −2
√

ln 2t
∫ ∞

ex

(
1− ex

u

)
e
−
√

πu/2 e−
√

ln 2t
du

Although these expressions are different from the circle case, the
universal Carpentier-Le Doussal tail for the probability density of
extreme values

p(x → −∞) = −g
′
βc

(x → −∞) ∼ −xe
x

is shared by all these distributions. It has its origin in the characteristic
tail of the partition function density P (z À 1) ∝ 1/z2 developed at
criticality, with the first moment < z > becoming infinite.



High temperature phase for [0, 1] interval:

Let β < βc. Define the function Gβ(x) for <(x) > 0 by :

ln Gβ(x) =
x−Q/2

2
ln(2π) +

∫ ∞

0

dt

t

( e−
Q
2 t − e−xt

(1− e−βt)(1− e−t/β)
+

e−t

2
(Q/2− x)

2
+

Q/2− x

t

)

where Q = β +1/β. This function is self-dual: Gβ(x) = G1/β(x) and
satisfies the functional relation

Gβ(x + β) = β1/2−βx(2π)
β−1

2 Γ(βx) Gβ(x)

see e.g. [Fateev,Zamolodchikov,Zamolodchikov 2000]. With these
definitions Gβ=1(s) = G(s) is the Barnes function used by us
to perform the analytical continuation of moments at the critical
temperature. The function Gβ(s) provides us with a natural tool which
can be used to perform the required analytical continuation of moments
for any temperature above critical.



We find
Mβ(s) = Aβ2(s−1)(2+β2(2s+1))π1−s

×
Γ(1 + β2(s− 1))Gβ(β

2 + 1
β + βs)Gβ( 3

2β + βs)Gβ(β
2 + 3

2β + βs)

Gβ(β + 2
β + βs)Gβ(1

β + βs)2

with Aβ =
Gβ(1

β+β)2G(2β+2
β)

Gβ(3β
2 +1

β)Gβ( 3
2β+β)Gβ(3β

2 + 3
2β))

.

Further exploiting the relation between the moments Mβ(s) and the
generating function gβ(x)

ln
[
−

∫ ∞

−∞
g′β(x) exs dx

]
= ln Mβ(1 +

s

β
) + ln Γ(1 +

s

β
)

we can use the above expression to verify the duality relation:

gβ(x) = g1
β
(x) .

thus extending its validity to the case of the interval [0, 1].



Conclusions & Discussions:

• Using the methods of statistical mechanics we were able to
extract the explicit expressions for distributions of extrema of
the Gaussian Free Field sampled along (i) circles of unit radius
and (ii) intervals of unit length. The distributions are manifestly
non-Gumbel and show universal backward tail. The results are

expected to describe extreme value statistics for 1/f signals, and in this way could be

relevant for spectral fluctuations of quantum chaotic systems and Riemann zeta-function

(cf. e.g. Relaño et al PRL 89 (2002) 244102).

• We revealed a "duality relation" satisfied by specific generating
function of scaled free energies everywhere in the high
temperature phase. The same object is expected to show
freezing of its shape at critical temperature. It is tempting to
conjecture relation between freezing and self-duality.



• Our method is based on a few assumptions, most importantly
(i) freezing scenario for REM-type models, and (ii) ability to continue
analytically moments given by Selberg integrals away from positive
integers.
It remains a challenge:
– to verify/justify/extend the assumptions/steps of the derivation;

e.g. the continuation fails for the Gaussian density ρ(t) =

e−
t2

2 , t ∈ [−∞,∞]
– to understand universality of the results for other 1d curves
– access extreme value statistics of GFF in 2D domains.
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