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Object of study

Localization in quasi-one-dimensional wires

(single-particle quantum mechanics in a disordered potential)



Anderson localization

1. Free particle

2. Classical diffusion:
L2 ∝ t

3. Quantum interference:
|A1 +A2|2 = |A1|2 + |A2|2 + 2ReA∗1A2

4. Localization corrections:

In 1 and 2 dimensions, interference effects suppress the diffusion
completely at arbitrary strength of disorder: the particle stays in a
finite region of space (localization)



Localization in one dimension: 1D vs q1D

Particle on a line (1D):

ξ ∼ l

Thick wire (q1D):

ξ ∼ Nl

ξ — localization length
l — mean free path

Rescaled to the localization length ξ, localization looks similar in
the two models.
Which properties are universal?



Quantitative description of localization

Localization is not visible in the average of a single Green’s
function:

〈G(r)〉 decays at the length scale of the
mean free path

Averaging two Green’s functions (TWO types of averages):

1. 〈G(1, 1)G(2, 2)〉
(correlations of DOS)

2. 〈G(1, 2)G(2, 1)〉
(response function)



Exact results in one dimension

〈ρE(r1)ρE+ω(r2)〉 with ω � ∆ξ

(∆ξ: level spacing over the localization length ξ)
[Gor’kov, Dorokhov, Prigara, ’83] ⇐ strictly 1D model

compare
with q1D

LM ∼ log(∆ξ/ω) — Mott length scale



Mott argument (wave function hybridization)

1. For short distances (x . ξ), the two eigenfunctions have the
same profile (single localized wave function)

2. Hybridization is important as long as the splitting
∆ξ exp(−L/2ξ) > ω ⇔ L < LM

⇒ Mott length LM = 2ξ ln(∆ξ/ω)



Exact approach in q1D (sigma model)

Averaging over disorder ⇒ Nonlinear supersymmetric sigma model
[Efetov, ’83]

For simplicity, we consider the unitary symmetry class (time-
reversal symmetry completely broken: e.g., by a magnetic field).

Z =
∫

[DQ] e−S , S = −1
4

STr
∫
dx

[
1
2

(
dQ

dx

)2

+ iωΛQ

]

x and ω in the units of ξ and ∆ξ, respectively
Q is a 4×4 supermatrix with constraint Q2 = 1 (from N � 1),
fermion-boson (FB) and retarded-advanced (RA) sectors

Λ =
(

1 0
0 −1

)
RA



Transfer-matrix formalism

Relation to the correlations of the density of states:

R(ω, x) ≡ ν−2〈ρE(0)ρE+ω(x)〉 =
1
2
[
1− Re〈QRRBB(0)QAABB(x)〉

]

R(ω, x) = 1 +
1
2

Re〈Ψ0|e−Hx|Ψ0〉

Ψ0(λB, λF ) – known ground state (in terms of Bessel functions)
[Skvortsov, Ostrovsky ’06, D.I., Skvortsov, ’08]



Separation of variables

Luckily, the variables in the Hamiltonian separate

λB ∈ [1,+∞) , λF ∈ [−1, 1]

H = HB +HF

HB = −∂λB
(λ2
B − 1)∂λB

+ ΩλB
HF = −∂λF

(1− λ2
F )∂λF

− ΩλF

where Ω = −iω/2.

Fermionic part: compact, can be solved perturbatively in ω.

Bosonic part: non-compact, expansion contains both powers and
logarithms of ω.

For calculation, we assume Ω real positive, then analytically
continue.



Bosonic sector: matching Legendre and Bessel asymptotics

If one “unfolds” the λB axis (λB = cosh θ)

Hθ = − d2

dθ2
+ U(θ) , U(θ) =

1
4
− 1

4 sinh2 θ
+ Ω cosh θ

Eigenstates may be constructed order by order in Ω by matching
the asymptotics of Legendre (at small θ) and modified Bessel (at
large θ) functions (technical part)



Results
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The leading asymptotics is
the same as in 1D: single-
wave-function correlations
at small x and erf

(
x−LM

2
√
LM

)
at large x

Subleading terms in ω are different. At x . ξ

R(x, ω) = R0 +O(ω2 ln2 ω) in q1D

R(x, ω) = R0 +O(ω2 lnω) in 1D



Summary and perspectives

• We have obtained a perturbative expansion in ω (including
log’s) of the correlations of DOS in q1D (in the unitary
symmetry class)

• We have confirmed the universal properties of 1D/q1D
localization

• for the single-wave function statistics (known result)
• at the Mott length scale (new result)

and studied non-universal corrections in ω

• The method and results will be useful for further studies of
localization in 1D/q1D:

• dynamical response function 〈GR
E(0, x)GA

E+ω(x, 0)〉
• improving the hybridization argument (especially at the Mott

length scale)
• finite number of channels (crossover from N = 1 to N =∞)
• other symmetry classes?


