

Nikita Nekrasov

(IHES, ITEP)

Euler Mathematical Institute symposium
July 5 2009

Based on

NN, S. Shatashvili,

arXiv:0901.4744, arXiv:0901.4748 + to appear ;

Earlier work

G. Moore, NN, S. Shatashvili.,

arXiv:hep-th/9712241;

A. Gerasimov, S. Shatashvili.

arXiv:0711.1472, arXiv:hep-th/0609024

In the past few years a connection between two seemingly different subjects was found:

The supersymmetric gauge (and perhaps more exotic) theories

With as little as 4 supersymmetries (N=1 d=4)

on the one hand

and

Quantum integrable systems

on the other hand

and

Quantum integrable systems soluble by Bethe Ansatz

on the other hand

The more precise slogan is:

The supersymmetric vacua of gauge theory

(possibly, in finite volume)

are the eigenstates of a quantum integrable system

The correspondence

The supersymmetric vacua of gauge theory

are the eigenstates of a quantum integrable system

The correspondence

The supersymmetric vacua of gauge theory

are the eigenstates of a quantum integrable system

The correspondence

The « twisted chiral ring » operators

$$\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_3, \ldots, \mathcal{O}_n$$

map to quantum Hamiltonians

$$\mathbf{H}_1, \mathbf{H}_2, \mathbf{H}_3, \ldots, \mathbf{H}_n$$

More precise correspondence

The vacuum expectation values of the twisted chiral ring operators

$$E_k(\lambda) = \langle \lambda \mid \mathcal{O}_k \mid \lambda \rangle$$

map to the energies and other eigenvalues on the integrable side

$$H_k \Psi_{\lambda} = E_k(\lambda) \Psi_{\lambda}$$

For example,

the XXX Heisenberg magnet: the spin 1/2 SU(2) isotropic spin chain of length L

For example,

the XXX Heisenberg magnet in the Sector with N spins up

Maps to the

d=2 U(N)

N=4 gauge theory with L

fundamental

hypermultiplets

With the N=4 SUSY SOFTLY
broken down to N=2
by the generic
twisted mass terms

There are two types of special

Potential terms:

The F-terms

And the Twisted F-terms

Fayet-Iliopoulos and theta terms

$$\tau = ir + \theta/2\pi.$$

Give an example of the twisted superpotential coupling

Twisted superpotential terms

$$= \int d^2y \left(\sqrt{2W'}(\sigma)(D - iv_{01}) + 2\widetilde{W''}(\sigma)\overline{\lambda}_{+}\lambda_{-} \right) + h.c.$$

Twisted mass terms

$$\mathcal{L}_{\widetilde{\mathrm{mass}}} = \int \mathrm{d}^4 \theta \ \mathrm{tr} \left(\mathbf{\Phi}^{\dagger} e^{\widetilde{V}} \otimes \mathrm{Id}_{\mathrm{color\,space}} \mathbf{\Phi} \right)$$

$$\widetilde{V}=\widetilde{m}\,\theta_+\overline{\theta}_-$$
 - Background vector field for global symmetry

Cf. the ordinary mass terms

$$\mathcal{L}_{mass} = \sum_{i,\widetilde{j}} \int d^2\theta \ m_i^{\widetilde{j}} \widetilde{Q}_{\widetilde{j}} Q^i + h.c. \,,$$

Which are just the superpotential terms

Unbroken global symmetries

Allow the deformations by the

Twisted masses

Unbroken global symmetries

allow the deformations by the

Twisted masses

Alvarez-Gaume, Freedman Gates, Hull, Rocek Hanany-Hori

Unbroken global symmetries, not the R-symmetry allow the susy-preserving deformations by the

Twisted masses

Twisted masses

Background vector fields for global symmetry

$$\mathcal{L}_{\widetilde{\mathrm{mass}}} = \int \mathrm{d}^4 \theta \ \mathrm{tr} \left(\mathbf{\Phi}^{\dagger} e^{\widetilde{V}} \otimes \mathrm{Id}_{\mathrm{color\,space}} \mathbf{\Phi} \right)$$

where $\widetilde{V} = \widetilde{m} \theta_{+} \overline{\theta}_{-}$, \widetilde{m} acts in a flavour space, and, to preserve susy:

$$[\widetilde{m},\widetilde{m}^*]=0$$

Take an N=2 d=2 gauge theory with matter,

in some representations R_f

of the gauge group G

integrate out the massive matter fields

Study the effective theory

compute the effective

twisted super-potential

on the Coulomb branch

$$W_{\text{eff}} = \sum_{f} \text{Tr}_{R_f} \left(\sigma + m_f \right) \left(\log \left(\sigma + m_f \right) - 1 \right) + 2\pi i \tau \, \text{Tr} \sigma$$

compute the effective

twisted super-potential

on the Coulomb branch

$$W_{\text{eff}} = \sum_{f} \text{Tr}_{R_f} \left(\sigma + m_f \right) \left(\log \left(\sigma + m_f \right) - 1 \right) + 2\pi i \tau \text{Tr} \sigma$$

Plus the non-perturbative corrections

compute the effective

twisted super-potential

on the Coulomb branch

$$W_{\text{eff}} = \sum_{f} \text{Tr}_{R_f} \left(\sigma + m_f \right) \left(\log \left(\sigma + m_f \right) - 1 \right) + 2\pi i \tau \text{Tr} \sigma$$

Plus the non-perturbative corrections
If the theory is secretly d>2

Vacua of the gauge theory

For
$$G = U(N)$$

$$\sigma \to \operatorname{diag}\left(\sigma_1,\ldots,\sigma_N\right)$$

$$\frac{\partial W_{\text{eff}}}{\partial \sigma_i} = \lambda_i - i + \frac{1}{2} \left(N + 1 \right)$$

Due to quantization of the gauge flux

$$\lambda_i \in \mathbf{Z}$$

A typical example

Field content

```
Gauge group: G=U(N) \sigma \to \operatorname{diag}(\sigma_1, \ldots, \sigma_N)

Matter chiral multiplets:

1 Adjoint twisted mass M

N_f fundamentals ... mass m_f

N_{\overline{f}} anti-fundamentals ... mass
```

Effective twisted Superpotential:

$$N_f \left(\sigma_i + m_f\right) \left(\log\left(\sigma_i + m_f\right) - 1\right) + \\ N_{\overline{f}}(-\sigma_i + m_{\overline{f}}) \left(\log(-\sigma_i + m_{\overline{f}}) - 1\right) + \\ \sum_{i,j} \left(\sigma_i - \sigma_j + M\right) \left(\log\left(\sigma_i - \sigma_j + M\right) - 1\right) + \\ + \left(N_{\overline{f}} - N_f\right) \log\Lambda \sum_i \sigma_i$$

Equations for vacua

$$\Lambda^{N_{\overline{f}}-N_f} \frac{\left(\sigma_i + m_f\right)^{N_f}}{\left(-\sigma_i + m_{\overline{f}}\right)^{N_{\overline{f}}}} = \prod_{j \neq i} \frac{\sigma_i - \sigma_j + M}{\sigma_i - \sigma_j + M}$$

Non-anomalous, UN finite case

$$N_f = N_{\overline{f}} = L$$

Non-anomalous, UN finite case

Can be related to the Sigma model on T*Gr(N, L)

The twisted chiral ring

equivariant quantum cohomology

Non-anomalous, UN finite case

$$\sigma_j=rac{1}{2}\left(m_{\overline{f}}-m_f
ight)-iM\lambda_j$$
 Redefine: $rac{1}{2}\left(m_{\overline{f}}+m_f
ight)=Ms$

Vacua of gauge theory

$$\left(rac{\lambda_i + is}{\lambda_i - is}
ight)^L = \prod_{j
eq i} rac{\lambda_i - \lambda_j + i}{\lambda_i - \lambda_j - i}$$

Vacua of gauge theory

$$\left(rac{\lambda_i + is}{\lambda_i - is}
ight)^L = \prod_{j
eq i} rac{\lambda_i - \lambda_j + i}{\lambda_i - \lambda_j - i}
ightarrow e^t$$

$$t = r + i\vartheta$$

Gauge theory - spin chain

Identical
to the
Bethe
equations
for spin s
XXX magnet

$$\left(rac{\lambda_i + is}{\lambda_i - is}
ight)^L = \prod_{j
eq i} rac{\lambda_i - \lambda_j + i}{\lambda_i - \lambda_j - i}$$

Gauge theory - spin chain

Identical to
the Bethe
equations for
spin s XXX
magnet
With twisted
boundary
conditions

$$\left(\frac{\lambda_i + is}{\lambda_i - is}\right)^L = \prod_{j \neq i} \frac{\lambda_i - \lambda_j + i}{\lambda_i - \lambda_j - i} > e^t$$

Gauge theory - spin chain

Gauge theory
vacua eigenstates of the
spin Hamiltonian
(transfer-matrix)

$$H = \sum_{n=1}^{L} \sigma_n^a \otimes \sigma_{n+1}^a$$

XXX spin chain SU(2) L spins N excitations

$$\left(rac{\lambda_i+is}{\lambda_i-is}
ight)^L=\prod_{j
eq i}rac{\lambda_i-\lambda_j+i}{\lambda_i-\lambda_j-i}$$

U(N) d=2 N=2

Chiral

multiplets:

I adjoint

L fundamentals

L anti-fund.

Consider a d=2+k gauge theory With N=2 d=2 Supersymmetry

For example, N=1,2 d=4 would do

Viewed as the N=2 d=2 theory it has a global symmetry group:

Poincare(k)

One has several possibilities for the twisted masses, corresponding to the

abelian subalgebras in Poincare(k)

One has several possibilities for the twisted masses, abelian subalgebras in Poincare(k)

Translations in R^l
Rotations in R^{k-l}

XXZ spin chain SU(2) L spins

$$\left(rac{\sinh\left(\lambda_i+is\gamma
ight)}{\sinh\left(\lambda_i-is\gamma
ight)}
ight)^L = \prod_{j
eq i} rac{\sinh\left(\lambda_i-\lambda_j+i\gamma
ight)}{\sinh\left(\lambda_i-\lambda_j-i\gamma
ight)}$$

N excitations

U(N) d=3 N=2

Compactified on a circle

Chiral multiplets:

1 adjoint

L fundamentals

Lanti-fund.

XYZ spin chain SU(2), L = 2N spins N excitations

$$H = \sum_{n=1}^{L} J_x \sigma_n^x \otimes \sigma_{n+1}^x + J_y \sigma_n^y \otimes \sigma_{n+1}^y + J_z \sigma_n^z \otimes \sigma_{n+1}^z$$

Compactified on a 2-torus = elliptic curve E

Chiral multiplets:

1 adjoint

L = 2N fundamentals

L = 2N anti-fund.

Masses = wilson loops of the flavour group

It is remarkable that the spin chain has precisely those generalizations: rational (XXX), trigonometric (XXZ) and elliptic (XYZ) that can be matched to the 2, 3, and 4 dim cases.

$$H = \sum_{n=1}^{L} J_x \sigma_n^x \otimes \sigma_{n+1}^x + J_y \sigma_n^y \otimes \sigma_{n+1}^y + J_z \sigma_n^z \otimes \sigma_{n+1}^z$$

 $J_x = 1 + k \operatorname{sn}^2 2\eta$, $J_y = 1 - k \operatorname{sn}^2 2\eta$, $J_z = \operatorname{cn} 2\eta \operatorname{dn} 2\eta$

Yang-Yang counting function = effective twisted superpotential

Commuting hamiltonians (expansion of transfer matrix) = the twisted chiral ring generators, e.g.

$$\mathcal{O}_{M} = \operatorname{Tr} \sigma^{M}$$

Gauge theory theta angle (complexified) is mapped to the spin chain theta angle (twisted boundary conditions)

Algebraic Bethe Ansatz

Faddeev et al.

The spin chains are solved algebraically using certain operators,

 $A(\lambda), B(\lambda), C(\lambda), D(\lambda)$

obeying exchange commutation relations

Algebraic Bethe Ansatz

 $A(\lambda), B(\lambda), C(\lambda), D(\lambda)$

Faddeev, Takhtajan, Reshetikhin, Jimbo, Drinfeld, Sklyanin, Lusztig

Yangian, quantum affine $U_q(sl_2)$, Elliptic quantum group,

Algebraic Bethe Ansatz

The eigenvectors, Bethe vectors, are obtained by applying these operators to the (pseudo)vacuum.

$$\Psi_{\vec{\lambda}} = B(\lambda_1)B(\lambda_2)\dots B(\lambda_N)\Omega$$

Algebraic Bethe Ansatz VS GAUGE THEORY

For the spin chain it is natural to fix L = total number of spins and consider various N = excitation levels

In the gauge theory context N is fixed.

Algebraic Bethe Ansatz vs STRING THEORY

However, if the theory is embedded into string theory via brane realization

then changing N is easy: bring in an extra brane.

One might use the constructions of Witten'96, Hanany-Hori'02

Algebraic Bethe Ansatz V5 STRING THEORY

THUS:

 $B(\lambda)$ is for BRANE!

 λ is for location!

Gauge theoretically this is a miracle

N number of colors

Non-local operators from domain walls

Non-local operators from domain walls

Non-local operators from domain walls

Are these models too special, or the gauge theory/integable lattice model Correspondence is more general?

Extends to every spin group/supergroup, spin representations, inhomogeneity, anisotropy....

S.Shatashvili's lecture

So far we were dealing with «very» quantum systems:

the Planck constant is guantized

Spins were half-integers

The classical limit unnatural?

More formally,
we studied the finitedimensional representations
of

spin algebras
(compact spin groups)

Can we cross over to the infinite-dimensional representation theory?

Non-compact spin groups?

Many-body systems? continuous degrees of freedom?

Many-body systems

The mother: Calogero system

$$H_{\text{eCM}} = \frac{1}{2} \sum_{i=1}^{N} p_i^2 + g^2 \sum_{i < j} U(x_i - x_j; q)$$

$$p_k = -i\hbar \frac{\partial}{\partial x_k}$$

Calogero-Moser-Sutherland system

$$H_{\text{eCM}} = \frac{1}{2} \sum_{i=1}^{N} p_i^2 + g^2 \sum_{i < j} U(x_i - x_j; q)$$

$$p_k = -i\hbar \frac{\partial}{\partial x_k}$$

Elliptic Calogero-Moser system

$$H_{\text{eCM}} = \frac{1}{2} \sum_{i=1}^{N} p_i^2 + g^2 \sum_{i < j} U(x_i - x_j; q)$$

$$U(x; \mathbf{q}) = U(-x; \mathbf{q}) = \sum_{n \in \mathbf{Z}} \frac{1}{\sinh^2(x + 2\pi n\beta)}$$

F.Calogero, '69-70

The elliptic Calogero-Moser system describes a system of identical particles on a circle of radius

Elliptic Calogero-Moser

A system of identical particles on a circle of radius

β

subject to the pair-wise interaction potential, given by the elliptic (double-periodic) function

$$U(x; \mathbf{q}) = U(-x; \mathbf{q}) = \sum_{n \in \mathbf{Z}} \frac{1}{\sinh^2(x + 2\pi n\beta)}$$

Elliptic Calogero-Moser

One is interested in the β -periodic symmetric, L²-normalizable wavefunctions

$$\Psi(x_1,\ldots,x_N)$$

Elliptic Calogero-Moser

β-periodic, symmetric, L²-normalizable wavefunctions

$$\Psi(x_1,\ldots,x_N)$$

The spectrum is infinite discrete

One should get an infinite discrete spectrum

Our main claim: infinite discrete spectrum the integrable many-body system The vacua of the N=2 d=2 theory

The vacua of the N=2 d=2 theory, Obtained by subjecting the N=2 d=4 Theory to an Ω -background in ${\bf R}^2$

The Ω -background

The N=2 d=4 theory in the Ω -background in ${\bf R}^2$

The Ω -background

The Ω -background

The Ω -background: Lagrangian of the theory

L -> 0 limit gives back the 4d theory

$$\operatorname{tr} \|F_A\|^2 + \operatorname{tr} (D_A \phi - \iota_V F_A) \star (D_A \overline{\phi} - \iota_{\overline{V}} F_A) +$$

$$+ \operatorname{tr} \|[\phi, \overline{\phi}] + \iota_V D_A \overline{\phi} - \iota_{\overline{V}} D_A \phi + \iota_V \iota_{\overline{V}} F_A\|^2$$

The Ω -background: Lagrangian of the theory

$$\operatorname{tr} \|F_A\|^2 + \operatorname{tr} (D_A \phi - \iota_V F_A) \star (D_A \overline{\phi} - \iota_{\overline{V}} F_A) +$$

$$+ \operatorname{tr} \|[\phi, \overline{\phi}] + \iota_V D_A \overline{\phi} - \iota_{\overline{V}} D_A \phi + \iota_V \iota_{\overline{V}} F_A\|^2$$

$$V = \varepsilon \left[x^2 \partial_{x^3} - x^3 \partial_{x^2} \right]$$

$$\overline{V} = \overline{\varepsilon} \left[x^2 \partial_{x^3} - x^3 \partial_{x^2} \right]$$

The Ω -background: Lagrangian of the theory

$$V = \varepsilon \left[x^2 \partial_{x^3} - x^3 \partial_{x^2} \right]$$

$$\overline{V} = \overline{\varepsilon} \left[x^2 \partial_{x^3} - x^3 \partial_{x^2} \right]$$

Rotation in two dimensions

Looks two dimensional in the infrared:

localization at the #cosmic string*

X2=X3=0

The two dimensional theory

Has N=2 d=2 susy

It has an

effective twisted

superpotential

The effective twisted superpotential

$$\widetilde{W}^{\text{eff}}(a_1,\ldots,a_N;\varepsilon;\tau,m)$$

The effective twisted superpotential

$$\widetilde{W}^{\text{eff}}(a_1,\ldots,a_N;\varepsilon;\tau,m)$$

The special coordinates
$$\sigma_i=a_i$$
 on the moduli space of vacua of the original four dimensional N=2 theory

The effective twisted superpotential

$$\widetilde{W}^{\mathrm{eff}}(a_1,\ldots,a_N;\varepsilon;\tau,m)$$

Computed by the instanton Partition function

$$Z(a, \varepsilon_1, \varepsilon_2; m, \tau)$$

The effective twisted superpotential

$$Z(a,\varepsilon_1,\varepsilon_2;m,\tau) \sim e^{\frac{1}{\varepsilon_2}\widetilde{W}^{\mathrm{eff}}(a_1,...,a_N;\varepsilon_1;\tau,m)+...}$$

as
$$\varepsilon_2 \to 0$$

$$\exp\frac{\partial W(a)}{\partial a_i} = 1$$

$$\exp\frac{\partial \widetilde{W}(a)}{\partial a_i} = 1$$

Lift the 4d vacuum

Degeneracy!

$$\exp\frac{\partial \widetilde{W}(a)}{\partial a_i} = 1$$

The solutions are isolated: Discrete spectrum

$$\exp\frac{\partial \widetilde{W}(a)}{\partial a_i} = 1$$

KAttractor SW curves>

An interesting possibility for the brane world scenarios

The effective twisted superpotential has one-loop perturbative and all-order instanton corrections

$$\widetilde{W}^{\text{eff}}(a;\tau) = \widetilde{W}^{\text{pert}}(a) + \sum_{n=1}^{\infty} q^n \widetilde{W}_{n-\text{inst}}(a)$$

For example, for the $N=2^*$ theory (adjoint hypermultiplet with mass m)

$$\exp \frac{\partial \widetilde{W}^{\text{pert}}(a)}{\partial a_i} =$$

$$e^{\frac{\pi i \tau a_i}{\varepsilon}} \prod S(a_i - a_j)$$

$$S(x) = \frac{\Gamma\left(\frac{-m+x}{\varepsilon}\right)}{\Gamma\left(\frac{-m-x}{\varepsilon}\right)} \frac{\Gamma\left(1-\frac{x}{\varepsilon}\right)}{\Gamma\left(1+\frac{x}{\varepsilon}\right)}$$

 $j \neq i$

Bethe equations Factorized S-matrix

$$S(x) = \frac{\Gamma\left(\frac{-m+x}{\varepsilon}\right)}{\Gamma\left(\frac{-m-x}{\varepsilon}\right)} \frac{\Gamma\left(1-\frac{x}{\varepsilon}\right)}{\Gamma\left(1+\frac{x}{\varepsilon}\right)}$$

This is the two-body scattering In hyperbolic Calogero-Sutherland

Bethe equations Factorized S-matrix

$$S(x) = \frac{\Gamma\left(\frac{-m+x}{\varepsilon}\right)}{\Gamma\left(\frac{-m-x}{\varepsilon}\right)} \frac{\Gamma\left(1-\frac{x}{\varepsilon}\right)}{\Gamma\left(1+\frac{x}{\varepsilon}\right)}$$

$$U_0(x) = \frac{1}{\sinh^2(x)}$$
 Two-body potential

Bethe equations Factorized S-matrix

$$S(x) = \frac{\Gamma\left(\frac{-m+x}{\varepsilon}\right)}{\Gamma\left(\frac{-m-x}{\varepsilon}\right)} \frac{\Gamma\left(1-\frac{x}{\varepsilon}\right)}{\Gamma\left(1+\frac{x}{\varepsilon}\right)}$$

Harish-Chandra, Gindikin-Karpelevich, Olshanetsky-Perelomov, Heckmann, final result: Opdam

The full superpotential of $N=2^*$ theory leads to the vacuum equations

Momentum phase shift

$$e^{\frac{\pi i \tau a_i}{\varepsilon}} \prod_{j \neq i} S(a_i - a_j) \times \left[1 + q \sum_{k \neq i} \prod_{l \neq k} \operatorname{rational}(a_i, a_l, a_k, m(m + \varepsilon), \varepsilon) + \ldots \right]$$

Two-body scattering

The finite size corrections

$$q = \exp(-N\beta)$$

The main slogan this year

Four dimensional gauge theories give rise to the Instanton corrected Bethe Ansatz equations

The main slogan this year

aka the
Bethe Ansatz
with
the finite size effects

Dictionary

Dictionary

Elliptic $CM \iff N=2* theory$ System

classical Elliptic ←→ 4d N=2* CM System

classical

Elliptic \iff 4d N=2*CM

System

Donagi-Witten, Martinec-Warner, Gorsky-Nekrasov

NN-Shatashvili

The (complexified) \iff Coupling τ $Size \beta$

The

Planck $\iff \Omega - bc$ constant pa

The Ω -background parameter

3

The correspondence
Extends to other
integrable sytems:
Toda, relativistic Systems,
Perhaps all 1+1 iQFTs

Classical Limit: back to 4d

In the limit $\varepsilon \longrightarrow 0$

$$\varepsilon \longrightarrow 0$$

$$\widetilde{W}(a;\varepsilon) \sim \frac{\mathcal{F}(a)}{\varepsilon} + \dots$$

The prepotential F(a) of the low-energy effective theory in 4d

The Classical Limit: back to 4d

The prepotential F(a) of the low-energy effective theory is governed by a classical (holomorphic) integrable system

Classical Limit: back to 4d

Liouville tori = Jacobians (Prims) of the Seiberg-Witten curves

Classical Limit: back to 4d

$$a^i = \frac{1}{2\pi} \oint_{A_i} \mathbf{p} d\mathbf{q}, \ a_{D,i} = \frac{1}{2\pi} \oint_{B_i} \mathbf{p} d\mathbf{q}$$

The Classical Limit: back to 4d

$$a^i = \frac{1}{2\pi} \oint_{A_i} \mathbf{p} d\mathbf{q}, \ a_{D,i} = \frac{1}{2\pi} \oint_{B_i} \mathbf{p} d\mathbf{q}$$

The redundant set of the action variables

The Classical Limit: back to 4d

$$a_{D,i} = \frac{\partial \mathcal{F}}{\partial a^i}$$

Enters prepotential F(a)

Classical integrable system vs Quantum integrable system

That system is quantized when the gauge theory is subject to the Ω -background

We have found a striking connection between the vacua of the N=2 theories and the eigenstates of the quantum integrable systems, both with finite and infinite number of degrees of freedom, Finite size effects etc.

The connection is fruitful for both gauge theorists and Bethe people

WISHFUL CONCLUSIONS

It would be nice to lift
this connection
further to string/M theory
constructions,
e.g. M5 branes wrapping curves
in K3

WISHFUL CONCLUSIONS

This would shed light on the Kreal? guantization of Hitchin systems (cf. Kcomplex?) quantization of Beilinson-Drinfeld)

WISHFUL CONCLUSIONS

This would shed light on the Kreal? quantization of Hitchin systems (cf. Kcomplex?) quantization of Beilinson-Drinfeld)

Kapustin-Witten (N=4 with boundaries)

VERY WISHFUL CONCLUSIONS

And perhaps push the geometric Langlands program beyond geometry back to the number theory....

VERY WISHFUL CONCLUSIONS

Another possibility is that the Planar N=4 super-Yang-Mills Is the integrable system....

VERY WISHFUL CONCLUSIONS

Dual to the TOTALITY of the N=2 d=4 theories of a certain quiver type In the VACUUM sector

These margins are
Too thin and the time
Is too short
To list them all....

The story is beautiful, complex, and rich, yet has real applications

THANK

