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General aims:

eunderstand quantum gauge theories at any coupling
[applications to both perturbative and non-perturbative issues]
eunderstand string theories in non-trivial backgrounds

[e.g. RR ones for flux compactifications]

AdS/CFT duality:

erclates the two questions suggesting solving them together
rather than separately is best strategy

erclates simplest most symmetric theories

use of symmetries on both sides to make progress

Integrability:
Existence of powerful hidden symmetries
allowing to solve problem ““in principle”



Strategy:
solve simplest most symmetric (“harmonic oscillator”) case

then hope to treat other cases “in perturbation theory”

“Harmonic oscillator” (or “Ising”, or “WZW”):
planar N" = 4 SYM theory = free superstring in AdSs x S°

most symmetric 4-d gauge th. = most symmetric 10-d string th.

N =4 SYM:

emaximal supersymmetry; conformal invariance;
eintegrability? its precise meaning? in which observables?
could be expected in anomalous dimensions

[1-loop gluonic sector — known emergence of XXX spin chain:
Lipatov; Faddeev-Korchemsky, ...]

ein fact, oo of hidden symmetries should play broader role:
“inherited” via AdS/CFT from 2-d integrable QFT —

string o-model: use 2-d int. QFT to solve 4-d CFT



Superstring in AdSs x S° :

eintegrable in “canonical” sense: sigma-model on symmetric space
classical equations admit infinite number of conserved charges
closely related (via Pohlmeyer reduction) to

(super) sine-Gordon and non-abelian Toda eqs

e.g. special motions of strings are described by

the integrable 1-d mechanical systems (Neumann, etc.)
eintegrability extends to quantum level:

evidence directly on string-theory side to 2 loops

and also indirectly via AdS/CFT “bootstrap” reasoning

Quantum integrability: should control

espectrum of string energies on R x S

[anom. dim’s of 2-d primary operators = vertex operators on R1!]
ecorrelation functions of vertex operators (to which extent?)*

[closed-string scattering amplitudes]
*not clear even in flat space; string field theory is not “integrable”



Integrability = hidden infinite dimensional symmetry

—if valid in quantum string theory —

1.e. at any value of string tension 2£7i —any \ = go Ve

should be “visible” also — via AdS/CFT —in
perturbative SYM theory

Integrability should then control:
espectrum of dimensions of gauge-inv. single tr primary operators
[or spectrum of gauge-theory energies on R x S°]

ecorrelation functions of these operators (to which extent?)



What about scattering amplitudes and Wilson loops?
Amplitudes — IR divergent; Cusped Wilson loops — UV divergent
Hidden (Yangian) symmetries broken at loop level in a “useful” way?

Are there “better” observables? (from integrability point of view)
Cross-sections? Effective actions?
Relation to correlation functions of gauge-inv. ops.?

Hints from string theory ?



Recent remarkable progress:

Spectrum of states

I. Spectrum of “long” operators = “semiclassical” string states
determined by Asymptotic Bethe Ansatz (2002-2007)

eits final (BES) form found after intricate superposition

of information from perturbative gauge theory (spin chain, BA,...)
and perturbative string theory (classical and 1-loop phase,...),

use of symmetries (S-matrix), and assumption of exact integrability
econsequences checked against all available gauge and string data
Key example:

cusp anomalous dimension Tr(® D" ®)
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Extensions to subleading terms in large S expansion



II. Spectrum of “short” operators = all quantum string states
Thermodynamic Bethe Ansatz (2005-2009)

ereconstructed from ABA using solely

methods/intuition of 2-d integrable QFT, 1.e. string-theory side

( how to incorporate wrapping terms directly on gauge-theory side?)
ehighly non-trivial construction — lack of 2-d Lorentz invariance

in the standard “BMN-vacuum-adapted” l.c. gauge

ein few cases ABA “improved” by Luscher corrections is enough:

4- and 5-loop Konishi dimension, 4-loop minimal twist op. dimension

ecrucial to check predictions against perturbative gauge and string data



Key example:

anomalous dimension of Konishi operator Tr(®;®;)
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Suppose sum up weak-coupling expansion and re-expand at large A —
values of bg, b1, ba, ... ?

directly from string theory ?

from TBA/Y-system that should be describing string spectrum ?

talks by Kazakov and Gromov



Many open questions:

Analytic form of strong-coupling expansion from TBA/Y-system?
Matching onto string spectrum in near-flat-space expansion?

No level crossing?

Strong-coupling expansion is Borel (non)summable?

Exponential corrections e~V like in cusp anomaly case?

Deeper issues:

Solve string theory from first principles —

efundamental variables? preserve 2-d Lorentz invariance?
eprove quantum integrability?

lattice version of “supercoset” sigma model?



Another remarkable recent progress:

Amplitudes, Wilson loops and their symmetries

Weak coupling:

various connections to hidden symmetries and integrability
conformal symmetry, dual conformal symmetry,

their “unification” in the Yangian (at classical level)

Other suggestions about role of integrability in the amplitudes
[talk by Lipatov]

Strong coupling:

use of integrability of string theory to determine (via relation to WL's)
leading contributions to certain gluon scattering amplitudes

[Alday and Maldacena,...]



“tree-level” AdSs x S° superstring = planar A" = 4 SYM
Recent remarkable progress in quantitative understanding
interpolation from weak to strong ‘t Hooft coupling

based on/checked by perturbative gauge theory (4-loop in \)
and perturbative string theory (2-loop in % ) “data”

and (strong evidence of) exact integrability

string energies = dimensions of local Tr(...) operators

E(\/X, C,m,...) = AN C,m,...)

C' - “charges” of SO(2,4) x SO(6): S1, S2; Ji, J2, J3
m - windings, folds, cusps, oscillation numbers, ...
Operators: Tr(®)! ®32 oy Dil D32 Frp.. W)

Solve supersymmetric 4-d CFT
= Solve string in curved R-R background (2-d CFT):
compute £ = A for any A (and any C,m)



Problem: perturbative expansions are opposite

A > 1 in perturbative string theory

A < 1 in perturbative gauge theory

weak-coupling expansion convergent — defines A(\)

need to go beyond perturbation theory: integrability

Last 7 years — remarkable progress for subclass of states:
“semiclassical” string states with large quantum numbers
dual to “long” SYM operators (canonical dim. Ag > 1)
[BMN 02, GKP 02, FT 03,...]

E = A —same (in some cases !) dependence on C, m, ...

coefficients = “interpolating” functions of A



Current status:

1. “Long” operators = strings with large quantum numbers:
Asymptotic Bethe Ansatz (ABA) [Beisert, Eden, Staudacher 06]
firmly established (including non-trivial phase factor)

2. “Short” operators = general quantum string states:

partial progress based on improving ABA by

“Luscher corrections” [Janik et al 08]

generalize ABA to TBA [Abjorn et al; Arutyunov, Frolov 07-09]
underlying Y-system, TBA eqs. for excited states

[Gromov, Kazakov, Vieira 09]

To justify from first principles need better understanding

of quantum AdSs x S° superstring theory

1. Solve string theory on a plane R*' —

relativistic 2d S-matrix — asymptotic BA for the spectrum

2. Generalize to finite-energy closed strings — the theory on R x S*
— TBA (cf. integrable sigma models)



Superstring theory in AdSs x S°
SO(2,4) _ SO(6)
SO(1,4) ™ SO(5)

bosonic coset X

generalized to supercoset 5 (if(i)(i’?é)( 5) [Metsaev, AT 98]
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tension 1" =
Conformal invariance:  Bmn = Rmn — (Fg,)?nn =0
Classical (Luscher-Pohlmeyer 76) integrability of coset o-model
true for AdSs x S° superstring [Bena, Polchinski, Roiban 02]
Progress in understanding of implications of (semi)classical

integrability [Kazakov, Marshakov, Minahan, Zarembo 04,...]

Reformulation in terms of currents with Virasoro conditions solved:

“Pohlmeyer reduction”
[Grigoriev, AT 07; Mikhailov, Schafer-Nameki 07, Roiban, AT 09]



[-loop quantum superstring corrections

[Frolov, AT; Park, Tirziu, AT, 02-04, ...]

used as an input data to fix 1-loop term

in strong-coupling expansion of the phase 6(\) in ABA
[Beisert, AT 05; Hernandez, Lopez 06]

2-loop quantum superstring corrections

[Roiban, Tirziu, AT; Roiban, AT 07]

— check of finiteness of the GS superstring

— mmplicit check of integrability of quantum string theory
— non-trivial confirmation of BES phase in ABA

[Benna, Benvenuti, Klebanov, Scardicchio 07;

Basso, Korchemsky, Kotansky 07]



5 SO(2,4) SO(6)
AdSs x S° = SO(1,4) ~ SO(5)

Killing vectors and Killing spinors of AdS5 x S° :
PSU(2,2|4) symmetry
replace G/ H=SuperPoincare/Lorentz in flat GS case by

PSU(2,2[4)
SO(1,4) x SO(5)

PSU(2,2|4) invariant action:

[ Te(97 dg)e /i + WZ-term
J=¢g tdg=J"Pm + JLQF + J™" Mynn

I= ? [/d%(,]m,]m +aJ'JY) + b/ J"NT' T d” s15
s
as in flat space a = 0, b = %1 required by x-symmetry

unique action with right symmetry and right flat-space limit



Formal argument for UV finiteness (2d conformal invariance):
1. global symmetry — only overall coefficient
of J? term (radius) can run
2. non-renormalization of WZ term (homogeneous 3-form)
3. preservation of k-symmetry at the quantum level

— relating coefficients of J? and WZ terms



Equivalent form of the GS action:

5 SU(2,2) _, SU(4)
AdSs x §° = Sp22) X Sp(D)

generalized to

F _  PSU(2,2|4)
G Sp(2,2)xSp(4)

basic superalgebra f = psu(2, 2[4)

bosonic part f = su(2,2) ® su(4) = so(2,4) ® so(6)
admits Z4-grading:

(Berkovits, Bershadsky, Hauer, Zhukov, Zwiebach 89)

}\:fo@fl@fQ@f'?)) [fi, 5] C fitjmoda
fo=19=1sp(2,2) ®sp(4)
fo = AdSs X S°

current J = f 10, f, f € F
Jo=f"0af = Aa+ Qia + Pa+ Q2a
A€o, Q1€f1, PeEfe, Q2€f;3.
lz/STr(P/\*P—i—QlAQz)



How to solve quantum string theory in AdSs x S° ?

PSU(2,2]4)
SO(1,4)xS0(5)

not of known solvable type (cf. free oscillators; WZW)

GS string on supercoset

analogy with exact solution of O(n) model (Zamolodchikovs) or
principal chiral model (Polyakov-Wiegmann ...) ?

but 2d CFT — no mass generation

By analogy with flat space —

light-cone gauge: analog of z7 = p*7, p™ = const, I'"0 = 0
Two natural options:

(1) null geodesic parallel to the boundary in Poincare patch —
action/Hamiltonian quartic in fermions (Metsaev, Thorn, AT, 01)
(i) null geodesic wrapping S°:

complicated action



Common problem:

lack of manifest 2d Lorentz symmetry

hard to apply known 2d integrable field theory methods —
S-matrix depends on two rapidities, not on their difference

constraints on it are a priori unclear...

An alternative approach: “Pohlmeyer reduction”
conformal gauge, solve Virasoro conditions
find “reduced” action in terms of currents

use 1t as a starting point for quantization



Aim: PR version for AdSs x S° superstring

(1) introduce new fields locally related to supercoset currents
(11) solve Virasoro condition explicitly

(i11) find local 2d Lorentz-invariant

action for independent (8B+8F) d.o.f

— fermionic generalization of non-abelian Toda theory

PR: a nonlocal map that preserves integrable structure

1. gauge-equivalent Lax pairs; map between soliton solutions
gives integrable massive local field theory

2. quantum equivalence to original GS model ?

may expect for full AdSs x S° string model = CFT

3. integrable theory: semiclassical solitonic spectrum

may essentially determine quantum spectrum

the two solitonic S-matrices should be closely related:
Lorentz-invariant S-matrix of PR-model should lead to

effective magnon S-matrix



Reduced action for AdS5 x S° superstring

(Grigoriev, AT 07; Mikhailov, Schafer-Nameki 07)
classical gauge-fixed 1-st order equations in terms of currents
follow from an action!

fermionic generalization of “gWZW+ potential” theory for

G _ __Sp(2,2) Sp(4)
H — SUQ)xSU@) X SU@) xS0
L = Lyy,w (9, Ay, A) + :LL2 STI‘(g_ngT)

+ STr (v, TD VYV, +V . TD_V,)
+ ,uSTr(g_llIng\I!R)

sum of PR theories for AdSs and S° “glued” by fermions

L = ZAdS5(ga7A:|:,a)+ES5(987A2|273>
+ ¢LD+¢L +¢RD+¢R+O(M)

similar but not same as susy gWZW:

fermions are in “mixed” representation



standard 2d kin. terms

Lp =STr(V, TOL ¥, +V_ TO_V,.)+..
= —2i Tr(€ 04¢, +nfdsm, +€50-€, +nh0-n,) + ...

classically integrable model:
fermionic generalization of non-abelian Toda model

Lax pair encoding equations of motion

Lo=0_4+A_ +0 g 'V, g+ ug Ty,
Li=04+9 0ig+g "Arg+ /¥, +CuT

Quantum properties:

e UV finite theory [Roiban, AT 09]

e semiclassical (1-loop) partition function
same as in GS theory [Hoare, Iwashita, AT 09]



Comments:

e gWZW model coupled to the fermions interacting minimally and through

the “Yukawa term”

2d Lorentz invariant with W ., W as 2d Majorana spinors

8 real bosonic and 16 real fermionic independent variables

2d supersymmetry? yes, in AdS2 x.S? case: n = 2 super sine-Gordon

p-dependent interactions are equal to GS Lagrangian; gWZW pro-

duces MC eq.: path integral derivation via change from fields to cur-
rents?

e quadratic in fermions (like susy version of gWZW); integrating out
A4 gives quartic fermionic terms (reflecting curvature)

e linearisation of EOM in the gauge A+ = 0 around g = 1 describes
8+8 massive bosonic and fermionic d.o.f. with mass p: same as in
BMN limit

e symmetry of resulting relativistic S-matrix: H = [SU(2)]* - as
bosonic part of magnon S-matrix symmetry [PSU(2]2)]?



Open questions

e (Quantum equivalence of reduced theory and GS theory?
Path integral argument of equivalence?

e Indication of equivalence: semiclassical expansion

near analog of (S, J) rigid string in AdS5 x S° leads to same char-
acteristic frequencies

— same 1-loop partition function
(Roiban, AT 08; Hoare, Iwashita, Tseytlin 09)

e Tree-level S-matrix for elementary excitations?
Manifest SU(2) x SU(2) x SU(2) x SU(2) symmetry?

Relation to magnon S-matrix in BA?



Gauge states vs string states: principles of comparison

1. compare states with same global SO(2,4) x SO(6) charges
e.g., (S, J) - “sl(2) sector” — Tr(D3 ®7)

2. assume no “level crossing” while changing A

min/max energy (S, J) states should be in correspondence
Gauge theory:

A=FE=S+J4+~(S,J,m,\),

V=D ke Ny (S, J,m)

fix S, J, ... and expand in A;

then may expand in large/small S, J, ...

Semiclassical string theory:
E=S+J+~(8,J,mv\),
V=D e ﬁ%(&j, m)

fix semiclassical parameters S = X J = X m

To match in general will need to resum — beyond ABA



Dimensions of short operators

= energies of quantum string states:

progress in understanding spectrum of conformal dimensions
of planar N = 4 SYM or spectrum of strings in AdSs x S°
based on quantum integrability

Spectrum of states with large quantum numbers —

solution of ABA equations

Recent proposal of how to extend this to “short” states

with any quantum numbers — TBA / Y-system approach
compare to direct quantum string results

Aim: compute leading o’ ~ % correction to dimension of
“lightest” massive string state dual to

Konishi operator in SYM theory

— check against (numerical) prediction of Y-system approach



Konishi operator:

operators (long multiplet) related to singlet by susy

[Jo = Ja, Ju = J2, Jo + J5] 0 =10,0,01F 0y

A=Ag+v(N), Ap=2,2,3,..,10

— same anomalous dimension -y

singlet eigen-state of anom. dim. matrix with lowest eigenvalue

examples:

Tr(®;®;), i=1,2,3, Ag=2

Tr([®1, ®2]?) in su(2) sector Ay = 4

Tr(®1 D3 ®1) in sl(2) sector Ag = 4

Weak-coupling expansion of y(A): A = g2 N

2 3

() = 12[# . 4«37)4 + 28(27)6
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[Fiamberti et al; Bajnok,Janik; Velizhanin 08; Banjok et al 09]



Long Konishi multiplet
A0 min — 27 [m7 n, k](s,sl) — [07 07 O](O’O)
SO(6) and SO(4) labels

[ Andreanopoli,Ferrara 98; Bianchi,Morales,Samtleben 03]
see table



Finite radius of convergence (N, = oco) — if we could sum up
and then re-expand at large \ — what to expect? (cf. f(\))

AdS/CFT duality: Konishi operator dual to

“lightest” among massive AdSs x S° string states
2
large V=R

(0

— “small” string at center of AdS5 — in nearly flat space



Flat space case:
m? =200 LN+ N)=1,2,.., N

(87

N

n = 1: massless IIB supergravity (BPS) level

l.c. vacuum |0 >: (8 + 8)% = 256 states

n = 2: first massive level (many states, highly degenerate)

[((aZy +821)]0 >]* = [(8 +8) x (8 +8)]"

in SO(9) reps:

([2,0,0,0] +[0,0,1,0] + [1,0,0,1])* = (44 + 84 + 128)?

e.g. 44 x 44 =1+ 36 + 44 + 450 + 495 + 910

84 x84 =1+36+44+4 84+ 126 + 495 + 594 4 924 + 1980 + 2772

switching on AdSs x S° background fields lifts degeneracy
states with “lightest mass™ at first excited string level
should correspond to Konishi multiplet



string spectrum in AdSs x S° :
long multiplets A@’p,q](j,j/) of PSU(2,2|4)

highest weight states: [k, p, q](s,s) labels of SO(6) x SO(4)

Remarkably, flat-space string spectrum can be re-organized
in multiplets of SO(2,4) x SO(6) C PSU(2,2|4)
[Bianchi, Morales, Samtleben 03; Beisert et al 03]

SO(4) x SO(5) C SO(9) rep.

lifted to SO(4) x SO(6) rep. of SO(2,4) x SO(6)

Konishi long multiplet
T'=(14+Q+QANQ+...)[0,0,0]0,0)
determines the KK “floor” of 1-st excited string level
Hy =327.,[0,J,0]0,0) X T1



One expects for scalar massive state in AdSs
(=V24+m?)®+...=0

A(A —4) = (mR) +0(a) = 4(n - 1B + 0(a)
A=24+./(mR)2+4+0()

AA>1) \/4n—1

[Gubser, Klebanov, Polyakov 98]
e.g., for first massive level:

n=2: A=2VV\+ ..

Subleading corrections?



Comparison between gauge and string theory states non-trivial:

GT (A < 1): operators built out of free fields,
canonical dimension Ag determines states that can mix
ST (A > 1): near-flat-space string states built out of

free oscillators, level n determines states that can mix

meaning of A at strong coupling?

meaning of n at weak coupling?

1. relate states with same global charges;
2. assume ‘“‘non-intersection principle” [Polyakov O1]:
no level crossing for states with same quantum numbers

as A changes from strong to weak coupling



Approaches to computation of corrections to string energies:

(1) vertex operator approach:
use AdSs x S° string sigma model perturbation theory to find
leading terms in anomalous dimension of corresponding

vertex operator
[Polyakov O1; AT 03]

(11) space-time effective action approach:

use near-flat-space expansion and NSR vertex operators
to reconstruct o’ ~ % corrections to corresponding
massive string state equation of motion

(111) “light-cone” quantization approach:

start with light-cone gauge AdSs x S° string action
and compute corrections to energy of

corresponding flat-space oscillator string state

[Metsaev, Thorn, AT 00 ]



(1iv) semiclassical approach:

identify short string state as small-spin limit of
semiclassical string state

— reproduce the structure of strong-coupling corrections

to short operators
[ Tirziu, AT 08; Roiban, AT 09]



Spectrum of quantum string states

from target space anomalous dimension operator
Flat space: k* = m? = %

e.g. leading Regge trajectory (9zdx)°/2e*®, n = 5/2
spectrum in (weakly) curved background:

solve marginality (1,1) conditions on vertex operators

e.g. scalar anomalous dimension operator 7(G)

onT(x) => cn..mzx™...x2" or on coefficients ¢,,...m
differential operator in target space

found from B3-function for the corresponding perturbation

4;, / 822 (G ()02 B + T()]
Br = —2T — < 3T 4 O(T?)
3=Q""DpDp+ ...+ Q" Dpp...Di + ...
an _ Gmn + 0(04/3)7 Q -~ Oé/nR?)m

I =

Solve —4 T 4+ m*T = 0: diagonalize ¥



similarly for massless (graviton, ...) and massive states
G / /3
e.g. Bon = & Rimn + O(a°)
gives Lichnerowitz operator as anomalous dimension operator

Massive string states in curved background:

/stc\/§ [<I>,,,(—D2 +m +X)® .+ ...
m’=24(n-1), X=R. . +0()

_a/

case of AdSs x S° background

Run — 55 (F5F5)mn =0, R=0, Fi=0

Find leading-order term in X ?

leading o’ correction to scalar string state mass =0 (?!)
[—D* +m” + O(5)]® =0
A:2—|—\/4(n—1)—i—4+0( L)

>



Anezy = 2+ 21/ VA 1+ 5k + O(As)]

prediction (?) for leading term in strong-coupling expansion
of singlet Konishi state dimension

... but possible subtleties... 10d scalar vs singlet state...

What about non-singlet Konishi descendant states ?

— they should have the same dimension

Tr[®;, P2]° corresponds to SO(6) (2,2,0) state J; = Jo = 2
tensor wave function @, k1

or vertex operator like (see below)

~ N;Aﬁnwénxanyény

S%: Nang = 1, ng = n1 + ina, Ny = N3 + N4

AdSs: Ny = No+iNs, NiN_ — NgNp=1
Tr(®1 D3 ®1) should correspond to state with spins S = J = 2



How to find 7:  Effective action approach

derive equation of motion for a massive string field

in curved background from quadratic effective action .S
reconstructed from flat-space NSR S-matrix

Example: totally symmetric NS-NS 10-d tensor

— state on leading Regge trajectory in flat space

symmetric tensor ®,,,. ., (m* = %)
in metric+RR background
—%(D CI)D“<I>—|—m ) +Z ) ' ®X (R, F5, D)® + ...
k>1

assumption: a’'nR < 1, i.e. n < VX
small massive string in the middle of AdSs:

near-flat-space expansion should be applicable

AdSs x S° background: Rg, = —%gab, Ryn = %gmn



uv,...=0,1,...9; a,b,...in AdSs and m,n,...in S

a a oo
14243 "H2n q)mlmg,ug---,ugnq)

+@ ((I)ala2,u3-“uznq)

background is direct product — can consider particular tensor
with S indices in AdSs and K indices in S°:

end up with anomalous dimension operator

[—D? 4+ (m? + 21;252)]@:0, D? = D45, + D2,

mQ—i,(n—l) Z(S+K-2), 2n=S+K

symmetric transverse traceless tensor — highest-weight state —
Young table labels (A, S, 0; J, K, 0),
extract AdSs radius R and set v\ = i‘—?

(—Dias; + M*)® =0
M? = 2VA(S + K —2) + 3 (K = §%) + J(J +4) — K

m1m2 oo 2
u3-p n)_|_



For symmetric traceless rank S tensor in AdSs:

A—2=+M2+5+4

= \2VA(S + K —2) + L(S+ K —2)(K — 8) + J(J +4) + 4+ O

[Burrington, Liu 05]
condition of marginality of (1,1) vertex operator
for (A, S1,59; J1, J2, Jg) = (A, S,0; K, J, O) state

0=—-VAS+K-2)
i 1

+%[A(A—4)+ 505 =2) = SK(K =2) = J(J+4)] + O()

Sl

BPSlevel: n=1(S+K)=1

First massive level: n = (S 4+ K) = 2
minimal dimension shift
S=2,K=2,J=0case: [1,0,1]1 1)
state with Ag =4 or Ag = 6

Sl

)



To summarize: string states in AdSs x S° labeled by
SU(2,2|4) C SO(2,4)xSO(6) quantum numbers (A, S1, S2; J1, J2, J3)
condition of marginality of (1,1) operator for (A, .S, 0; K, J,0)
0
_|_

= VS + K —2)

1 1 1 1
E[A(A —4) + QS(S —2) — QK(K —2)—J(J+4)]+ O(ﬁ)
symmetry: analytic continuation between Ad.Ss and S°

A——J K< S

Implications for Konishi state dimension ?

state from first massive level on leading Regge trajectory
S=K=2,J=0:

1 1
o5+ Ol

A=2+/4VA+4+0(%) =2+2VA(1+

constant term 2=Ag — 4 for Ay = 6 operator



Vertex operator approach [Polyakov 01; AT 03]
calculate 2d anomalous dimensions from “first principles”—

superstring theory in AdSs x S° :

I = VA d a[(?N ONP + OniOng —I—fermlons}

4

NyN_ —NyN; —NyN;, =1, ngn,+nyn, +n.n, =1
Ny = Ng£iNs, N, =Ni+1Na, ..., ny =n1+ 1na,..

construct marginal (1,1) operators in terms of /N, and ng
e.g. vertex operator for dilaton sugra mode (HW state)

Vj= (N+)_A ()’ [ — ON,ONP? + OniOny + fermions}

N1 = Ng + iNs5 = %(z2 + T Tm) ~ et

Ne = N1 + 1no ~ e*¥

0_2_2+2\—F[ (A—4)—J(J+4)]+0(—=)




ie. A =4+ J (BPS)
cf. vertex operator for bosonic string state
on leading Regge trajectory in flat space o’ E* = 2(S — 2)

Vg =e P! (89{36—?:1:) 5/2 , T =x1+ 112

candidate operators for states on leading Regge trajectory:

Vy=(Ny)™ 2 (8nx5nm)J/2 : Ny = N1 + ino

Vs(€) = (N2) "2 (0NN Y2, Ny= N +iNs

+ fermionic terms
+a’ ~ % terms from diagonalization of anom. dim. op.
how they mix with ops with same charges and dimension?

in general (877,;,; 577,;,;) 712

(ne)?P 29 (Ong) " ? 72 (Onz)”/* 72U (O Onm )F (OO ) ?

mixes with singlets

ops. for states on leading Regge trajectory
OE,S — fkl ckpmy..mogNkqy .- Nk, anml 5nm2 ---anmgs_l éanS

their renormalization studied before [ Wegner 90]



simplest case: fr. ,Nk,...nk, With traceless fr, &
1 Y/ 1 £ 1 V4

same anom. dim. 7 as its highest-weight rep V; = (n.)’

1
— 9~ J(J+4)+ ..
7y 2\F( )

scalar spherical harmonic that solves Laplace eq. on S°
similarly for AdSs or SO(2,4) model:

replacing n: and On, On., with NJ:A and ONPON,, with
J=—-Aand = — ———

VA VA
e. g dimension of n'](‘?nmgnm'

dimension of N +A8N p 8N
V=5 5AA -4) +0(

e)



Example of scalar higher-level operator:
N2 [(Onkdng)” +...], r=1,2,..

[Kravtsov, Lerner, Yudson 89; Castilla, Chakravarty 96]

0=—-2(r—1) [A(A —4) 4+ 2r(r — 1)]

1
T
Zr(r—1)(r—I)+4r]+ ...

T

r = 1: ground level
fermionic contributions should make r = 1 exact zero of
r = 2: first excited level

candidate for singlet Konishi state Ag = 2

— 1
A(A—4) =4VA -4+ 0(),
A—Ag=2VA 1+0x -+ O(757)

but fermionic contribution may change this



Operators with two spins J; = J, Jo = K in S°:

K/2
‘/K',J:]\]'_;A Z CuvMuv

u,v=0
Muv—nJ u— ’Unu—i—’l)(any) (anx)K/Q—U(ény)v(577/36)}(/2—1)

highest and lowest eigen-values of 1-loop anom. dim. matrix

_ 1
vminzz—KJrz\—r[ (A —4) = SK(K +10) = J(J +4) — 2J K] + O(

1
AA—-4)—--K(K+6)—-J(J+4)]+0
2\F[( ) — 5 K( ) —J(J +4)] + O
fermions may alter terms linear in K

77
;?max =2—-K +

57)
RYSE

How to take fermionic contribution into account?



Semiclassical expansion: spinning strings

o E(\%, V) = VAENT) + EL(T) + ——E(T) + ..

in “short” string limit 7 < 1

>

En = \/7 (aOn +aind + a2nj2 + )

expansion valid for VA> land J = % fixed: J ~ V> 1
but if knew all terms in this expansion — could express J

in terms of .J, fix J to finite value and re-expand in v\

J+ao1 . a20J?+aind + aoe
E =\ V) J|agy + 22° + T
{ 00 % )? }

1
(V2

e.g. classical a1o and 1-loop ap; sufficient to fix % term
[cf. “fast string” expansion [/ > 1 for fixed J
positive powers of v/ — need to resum]

to trust the coeff of

need coeff of up to n-loop terms



Logic: interested in short string probing flat-space limit—

(1) start with classical string solutions in flat space

representing states at 1-st excited string level

(ii) embed into AdS5 x S° and compute 1-loop correction to energy
Two basic examples:

(1) circular string with 2 spins in two orthogonal planes

(2) folded spinning string

Rigid circular string rotating in two planes of R*

t=KT, Xz=x1+1ix2= aez(ﬁLU), Xy =T3+1ixs = ae

2

Ean = 5 =1/ %J, Si=h=J=%.

(81 (8

i(t—o0o) ,

Identifying oscillator modes that are excited

associate it with the quantum string state created by

. _ J _ J
e Pt {(8nxﬁxx)71(8nyaxy)72 + } : B =2(J1+ J2—2).
J1 = J2 case - quantum-state analog — shift J — J — 1

Faat = \/§(J—1).

J1 = Ja = 2 corresponds to state on 1-st string level n = 2




Folded string rotating in a plane

t=kKkT, X1 =1 +1ir2= asinoe’ ,
2 a?
Eﬂat — ?37 S — 2q/

semiclassical counterpart of quantum string state

on the leading Regge trajectory

e P {(Gxxgxm)% + ] , o E*=2(5-2).

3 obvious choices how to embed these solutions into AdSs x S° :
(i) the two 2-planes may belong to S°: J; = Jo “small string”

(i) the two 2-planes may belong to AdSs: S1 = S2 “small string”
(iii) one plane in AdSs and the other in S°: S = J “small string”

similar 3 choices for folded string:

study each case in AdSs x S 5 and interpolate to small values of S, J
match to states in Konishi table

verify universality of strong-coupling expansion of 4-d anom. dim

of dual gauge theory operators in same supermultiplet



Final result:

b1 bo b3
E =2V + by + + +
CTIAN TV ()3
bo = Ao — 4, b1 =1

Ao = 4 for 3 circular string cases

Ao = 6 for 3 folded string cases

b 1s sensitive to 2-loop string corrections not computed
[conjecture bo = 0 that it is zero due to supersymmetry:

cf. vertex op. approach]

Definite predictions:

bo 1s integer; b; is rational; b3 is transcendental
(contains ((3))



Example: circular rotating string in S° with J; = Jo = J:
cf. Konishi descendant with J; = Ja = 2:  Tr([®1, ®2]?)
try represent it by “short” classical string with same charges
flat space R; x R*: circular string solution

1 +izs = a7 xsdiza= ae

E=.\/%J, J=%

this solution can be directly embedded into
R, x S°in AdSs x S° [Frolov, AT 03] :
string on small sphere inside S°: X7+ ..+ X5 =1

i(t—o)

X1 +1iXe=a €¢(7+a), X3 +iXy =aelT ;
X5 +iXe = V1 — 2a2, t = KT
TJ=Nh=F=d, & =k=47

Remarkably, exact Ejy 1s just as in flat space

= VAE =\ 4V T, J=V\T



I-loop quantum string correction to the energy:
sum of bosonic and fermionic fluctuation frequencies (n = 0,1, 2, ...)

Bosons (2 massless + massive):

AdSs: 4x  wi=n*+4T
S° 2x  why=n"+4(1—-7J)E£2/4(1 — T)n2 + 472

Fermions:

Ax  wil =0+ 14+T+V4(1 - T)n2 +4J

(©.)

1 / /
E = o Z [4wn + 2(wnt+ +wn—) — 4wy | +wn_)}

n=—oo

expand in small 7 and do sums (UV divergences cancel)

E1:i[j—[3+g(3)]j2—i[5+6g< 3) + 30¢(5

)| T° .
J
. ...}



To interpolate to quantum short string in flat space shift J — J — 1
then for finite J = J; = Jo = 2
that would suggest for Konishi state |2, 0, 2](o,0)

_9d 1 1
E = 2\/X{1+ oy +O((m2)}
dual state in Konishi table has Ag = 4
thus: b6; =1
ba = 0 (at least 1-loop contribution to it)

bs = 0 (contains ((3) — at least 1-loop contribution to it)

consistent results are found for 243 other solutions
representing 5 other states at the 1st massive string level
dual to 5 operators in Konishi table



Conclusion

Beginning of understanding
of quantum string spectrum in AdSs x S°

= spectrum of “short” SYM operators

need to understand the origin of partial disagreement
b1 = 1vs bl = 2
with numerical solution of TBA by Gromov, Kazakov, Vieira

need better understanding of quantum string theory in AdSs x S°

in particular, near flat space expansion
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