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General aims:
•understand quantum gauge theories at any coupling
[applications to both perturbative and non-perturbative issues]
•understand string theories in non-trivial backgrounds
[e.g. RR ones for flux compactifications]

AdS/CFT duality:
•relates the two questions suggesting solving them together
rather than separately is best strategy
•relates simplest most symmetric theories
use of symmetries on both sides to make progress

Integrability:
Existence of powerful hidden symmetries
allowing to solve problem “in principle”



Strategy:
solve simplest most symmetric (“harmonic oscillator”) case
then hope to treat other cases “in perturbation theory”

“Harmonic oscillator” (or “Ising”, or “WZW”):
planar N = 4 SYM theory = free superstring in AdS5 × S5

most symmetric 4-d gauge th. = most symmetric 10-d string th.

N = 4 SYM:
•maximal supersymmetry; conformal invariance;
•integrability? its precise meaning? in which observables?
could be expected in anomalous dimensions
[1-loop gluonic sector – known emergence of XXX spin chain:
Lipatov; Faddeev-Korchemsky, ...]
•in fact,∞ of hidden symmetries should play broader role:
“inherited” via AdS/CFT from 2-d integrable QFT –
string σ-model: use 2-d int. QFT to solve 4-d CFT



Superstring in AdS5 × S5 :
•integrable in “canonical” sense: sigma-model on symmetric space
classical equations admit infinite number of conserved charges
closely related (via Pohlmeyer reduction) to
(super) sine-Gordon and non-abelian Toda eqs
e.g. special motions of strings are described by
the integrable 1-d mechanical systems (Neumann, etc.)
•integrability extends to quantum level:
evidence directly on string-theory side to 2 loops
and also indirectly via AdS/CFT “bootstrap” reasoning

Quantum integrability: should control
•spectrum of string energies on R× S1

[anom. dim’s of 2-d primary operators = vertex operators on R1,1]
•correlation functions of vertex operators (to which extent?)∗

[closed-string scattering amplitudes]
∗not clear even in flat space; string field theory is not “integrable”



Integrability = hidden infinite dimensional symmetry
– if valid in quantum string theory –

i.e. at any value of string tension
√

λ
2π

– any λ = g2
YMNc

should be “visible” also – via AdS/CFT – in
perturbative SYM theory

Integrability should then control:
•spectrum of dimensions of gauge-inv. single tr primary operators
[or spectrum of gauge-theory energies on R× S3]
•correlation functions of these operators (to which extent?)



What about scattering amplitudes and Wilson loops?
Amplitudes – IR divergent; Cusped Wilson loops – UV divergent
Hidden (Yangian) symmetries broken at loop level in a “useful” way?

Are there “better” observables? (from integrability point of view)
Cross-sections? Effective actions?
Relation to correlation functions of gauge-inv. ops.?
Hints from string theory ?



Recent remarkable progress:
Spectrum of states

I. Spectrum of “long” operators = “semiclassical” string states
determined by Asymptotic Bethe Ansatz (2002-2007)
•its final (BES) form found after intricate superposition
of information from perturbative gauge theory (spin chain, BA,...)
and perturbative string theory (classical and 1-loop phase,...),
use of symmetries (S-matrix), and assumption of exact integrability
•consequences checked against all available gauge and string data
Key example:
cusp anomalous dimension Tr(ΦDSΦ)
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Extensions to subleading terms in large S expansion



II. Spectrum of “short” operators = all quantum string states
Thermodynamic Bethe Ansatz (2005-2009)
•reconstructed from ABA using solely
methods/intuition of 2-d integrable QFT, i.e. string-theory side
( how to incorporate wrapping terms directly on gauge-theory side?)
•highly non-trivial construction – lack of 2-d Lorentz invariance
in the standard “BMN-vacuum-adapted” l.c. gauge
•in few cases ABA “improved” by Luscher corrections is enough:
4- and 5-loop Konishi dimension, 4-loop minimal twist op. dimension
•crucial to check predictions against perturbative gauge and string data



Key example:
anomalous dimension of Konishi operator Tr(Φ̄iΦi)
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Suppose sum up weak-coupling expansion and re-expand at large λ –
values of b0, b1, b2, ... ?
directly from string theory ?
from TBA/Y-system that should be describing string spectrum ?
talks by Kazakov and Gromov



Many open questions:
Analytic form of strong-coupling expansion from TBA/Y-system?
Matching onto string spectrum in near-flat-space expansion?
No level crossing?
Strong-coupling expansion is Borel (non)summable?

Exponential corrections e−a
√

λ like in cusp anomaly case?
...

Deeper issues:
Solve string theory from first principles –
•fundamental variables? preserve 2-d Lorentz invariance?
•prove quantum integrability?
lattice version of “supercoset” sigma model?



Another remarkable recent progress:
Amplitudes, Wilson loops and their symmetries

Weak coupling:
various connections to hidden symmetries and integrability
conformal symmetry, dual conformal symmetry,
their “unification” in the Yangian (at classical level)
Other suggestions about role of integrability in the amplitudes
[talk by Lipatov]

Strong coupling:
use of integrability of string theory to determine (via relation to WL’s)
leading contributions to certain gluon scattering amplitudes
[Alday and Maldacena,...]



“tree-level” AdS5 × S5 superstring = planarN = 4 SYM
Recent remarkable progress in quantitative understanding
interpolation from weak to strong ‘t Hooft coupling
based on/checked by perturbative gauge theory (4-loop in λ)
and perturbative string theory (2-loop in 1√

λ
) “data”

and (strong evidence of) exact integrability
string energies = dimensions of local Tr(...) operators

E(
√
λ,C,m, ...) = ∆(λ,C,m, ...)

C - “charges” of SO(2, 4)× SO(6): S1, S2; J1, J2, J3

m - windings, folds, cusps, oscillation numbers, ...
Operators: Tr(ΦJ1

1 ΦJ2
2 ΦJ3

3 DS1
+ DS2

⊥ ...Fmn...Ψ...)

Solve supersymmetric 4-d CFT
= Solve string in curved R-R background (2-d CFT):
compute E = ∆ for any λ (and any C,m)



Problem: perturbative expansions are opposite
λ� 1 in perturbative string theory
λ� 1 in perturbative gauge theory
weak-coupling expansion convergent – defines ∆(λ)

need to go beyond perturbation theory: integrability

Last 7 years – remarkable progress for subclass of states:
“semiclassical” string states with large quantum numbers
dual to “long” SYM operators (canonical dim. ∆0 � 1)
[BMN 02, GKP 02, FT 03,...]
E = ∆ – same (in some cases !) dependence on C,m, ...

coefficients = “interpolating” functions of λ



Current status:
1. “Long” operators = strings with large quantum numbers:
Asymptotic Bethe Ansatz (ABA) [Beisert, Eden, Staudacher 06]
firmly established (including non-trivial phase factor)
2. “Short” operators = general quantum string states:
partial progress based on improving ABA by

“Luscher corrections” [Janik et al 08]
generalize ABA to TBA [Abjorn et al; Arutyunov, Frolov 07-09]
underlying Y-system, TBA eqs. for excited states

[Gromov, Kazakov, Vieira 09]

To justify from first principles need better understanding
of quantum AdS5 × S5 superstring theory
1. Solve string theory on a plane R1,1 →
relativistic 2d S-matrix→ asymptotic BA for the spectrum
2. Generalize to finite-energy closed strings – the theory on R× S1

→ TBA (cf. integrable sigma models)



Superstring theory in AdS5 × S5

bosonic coset SO(2,4)
SO(1,4)

× SO(6)
SO(5)

generalized to supercoset PSU(2,2|4)
SO(1,4)×SO(5)

[Metsaev, AT 98]

S = T

∫
d2σ

[
Gmn(x)∂xm∂xn + θ̄(D + F5)θ∂x

+ θ̄θθ̄θ∂x∂x+ ...
]

tension T = R2

2πα′ =
√

λ
2π

Conformal invariance: βmn = Rmn − (F5)
2
mn = 0

Classical (Luscher-Pohlmeyer 76) integrability of coset σ-model
true for AdS5 × S5 superstring [Bena, Polchinski, Roiban 02]
Progress in understanding of implications of (semi)classical
integrability [Kazakov, Marshakov, Minahan, Zarembo 04,...]

Reformulation in terms of currents with Virasoro conditions solved:
“Pohlmeyer reduction”
[Grigoriev, AT 07; Mikhailov, Schafer-Nameki 07, Roiban, AT 09]



1-loop quantum superstring corrections
[Frolov, AT; Park, Tirziu, AT, 02-04, ...]
used as an input data to fix 1-loop term
in strong-coupling expansion of the phase θ(λ) in ABA
[Beisert, AT 05; Hernandez, Lopez 06]

2-loop quantum superstring corrections
[Roiban, Tirziu, AT; Roiban, AT 07]
– check of finiteness of the GS superstring
– implicit check of integrability of quantum string theory
– non-trivial confirmation of BES phase in ABA
[Benna, Benvenuti, Klebanov, Scardicchio 07;
Basso, Korchemsky, Kotansky 07]



AdS5 × S5 = SO(2,4)
SO(1,4)

× SO(6)
SO(5)

Killing vectors and Killing spinors of AdS5 × S5 :
PSU(2, 2|4) symmetry
replace G/H=SuperPoincare/Lorentz in flat GS case by

PSU(2, 2|4)

SO(1, 4)× SO(5)

PSU(2, 2|4) invariant action:

∫
Tr(g−1dg)2G/H + WZ-term

J = g−1dg = JmPm + JI
αQα

I + JmnMmn

I =

√
λ

2π

[ ∫
d2σ(JmJm + aJ̄IJI) + b

∫
Jm ∧ J̄IΓmJ

JsIJ

]
as in flat space a = 0, b = ±1 required by κ-symmetry
unique action with right symmetry and right flat-space limit



Formal argument for UV finiteness (2d conformal invariance):
1. global symmetry – only overall coefficient

of J2 term (radius) can run
2. non-renormalization of WZ term (homogeneous 3-form)
3. preservation of κ-symmetry at the quantum level
– relating coefficients of J2 and WZ terms



Equivalent form of the GS action:
AdS5 × S5 = SU(2,2)

Sp(2,2)
× SU(4)

Sp(4)

generalized to
F̂
G

= PSU(2,2|4)
Sp(2,2)×Sp(4)

basic superalgebra f̂ = psu(2, 2|4)

bosonic part f = su(2, 2)⊕ su(4) ∼= so(2, 4)⊕ so(6)

admits Z4-grading:
(Berkovits, Bershadsky, Hauer, Zhukov, Zwiebach 89)

f̂ = f0 ⊕ f1 ⊕ f2 ⊕ f3 , [fi, fj ] ⊂ fi+j mod 4

f0 = g = sp(2, 2)⊕ sp(4)

f2 = AdS5 × S5

current J = f−1∂af, f ∈ F̂

Ja = f−1∂af = Aa +Q1a + Pa +Q2a

A ∈ f0, Q1 ∈ f1, P ∈ f2, Q2 ∈ f3 .

I =

∫
STr

(
P ∧ ∗P +Q1 ∧Q2

)



How to solve quantum string theory in AdS5 × S5 ?

GS string on supercoset PSU(2,2|4)
SO(1,4)×SO(5)

not of known solvable type (cf. free oscillators; WZW)
analogy with exact solution of O(n) model (Zamolodchikovs) or
principal chiral model (Polyakov-Wiegmann ...) ?
but 2d CFT – no mass generation

By analogy with flat space –
light-cone gauge: analog of x+ = p+τ, p+ = const, Γ+θ = 0

Two natural options:
(i) null geodesic parallel to the boundary in Poincare patch –
action/Hamiltonian quartic in fermions (Metsaev, Thorn, AT, 01)
(ii) null geodesic wrapping S5:
complicated action



Common problem:
lack of manifest 2d Lorentz symmetry
hard to apply known 2d integrable field theory methods –
S-matrix depends on two rapidities, not on their difference
constraints on it are a priori unclear...

An alternative approach: “Pohlmeyer reduction”
conformal gauge, solve Virasoro conditions
find “reduced” action in terms of currents
use it as a starting point for quantization



Aim: PR version for AdS5 × S5 superstring
(i) introduce new fields locally related to supercoset currents
(ii) solve Virasoro condition explicitly
(iii) find local 2d Lorentz-invariant
action for independent (8B+8F) d.o.f
→ fermionic generalization of non-abelian Toda theory

PR: a nonlocal map that preserves integrable structure
1. gauge-equivalent Lax pairs; map between soliton solutions
gives integrable massive local field theory
2. quantum equivalence to original GS model ?
may expect for full AdS5 × S5 string model = CFT
3. integrable theory: semiclassical solitonic spectrum
may essentially determine quantum spectrum
the two solitonic S-matrices should be closely related:
Lorentz-invariant S-matrix of PR-model should lead to
effective magnon S-matrix



Reduced action for AdS5 × S5 superstring

(Grigoriev, AT 07; Mikhailov, Schafer-Nameki 07)
classical gauge-fixed 1-st order equations in terms of currents
follow from an action!
fermionic generalization of “gWZW+ potential” theory for

G
H

= Sp(2,2)
SU(2)×SU(2)

× Sp(4)
SU(2)×SU(2)

L = LgWZW (g,A+, A−) + µ2 STr(g−1TgT )

+ STr (ΨLTD+ΨL + ΨRTD−ΨR)

+ µ STr
(
g−1ΨLgΨR

)
sum of PR theories for AdS5 and S5 “glued” by fermions

L = L̃AdS5(ga, A±,a) + L̃S5(gs, A±,s)

+ ψLD+ψL + ψRD+ψR +O(µ)

similar but not same as susy gWZW:
fermions are in “mixed” representation



standard 2d kin. terms

LF = STr(ΨLT∂+ΨL + ΨRT∂−ΨR) + ...

= −2i Tr(ξt
L
∂+ξL + ηt

L
∂+ηL + ξt

R
∂−ξR + ηt

R
∂−ηR) + ...

classically integrable model:
fermionic generalization of non-abelian Toda model
Lax pair encoding equations of motion

L− = ∂− +A− + `−1√µg−1ΨLg + `−2µg−1Tg ,

L+ = ∂+ + g−1∂+g + g−1A+g + `
√
µΨR + `2µT

Quantum properties:
• UV finite theory [Roiban, AT 09]
• semiclassical (1-loop) partition function
same as in GS theory [Hoare, Iwashita, AT 09]



Comments:

• gWZW model coupled to the fermions interacting minimally and through
the “Yukawa term”

• 2d Lorentz invariant with ΨR ,ΨL as 2d Majorana spinors
• 8 real bosonic and 16 real fermionic independent variables
• 2d supersymmetry? yes, inAdS2×S2 case: n = 2 super sine-Gordon
• µ-dependent interactions are equal to GS Lagrangian; gWZW pro-

duces MC eq.: path integral derivation via change from fields to cur-
rents?

• quadratic in fermions (like susy version of gWZW); integrating out
A± gives quartic fermionic terms (reflecting curvature)

• linearisation of EOM in the gauge A± = 0 around g = 1 describes
8+8 massive bosonic and fermionic d.o.f. with mass µ: same as in
BMN limit

• symmetry of resulting relativistic S-matrix: H = [SU(2)]4 – as
bosonic part of magnon S-matrix symmetry [PSU(2|2)]2



Open questions

• Quantum equivalence of reduced theory and GS theory?
Path integral argument of equivalence?

• Indication of equivalence: semiclassical expansion
near analog of (S, J) rigid string in AdS5 × S5 leads to same char-
acteristic frequencies
– same 1-loop partition function
(Roiban, AT 08; Hoare, Iwashita, Tseytlin 09)

• Tree-level S-matrix for elementary excitations?
Manifest SU(2)× SU(2)× SU(2)× SU(2) symmetry?
Relation to magnon S-matrix in BA?



Gauge states vs string states: principles of comparison
1. compare states with same global SO(2, 4)× SO(6) charges
e.g., (S, J) – “sl(2) sector” – Tr(DS

+ΦJ)

2. assume no “level crossing” while changing λ
min/max energy (S, J) states should be in correspondence
Gauge theory:
∆ ≡ E = S + J + γ(S, J,m, λ) ,

γ =
∑∞

k=1 λ
kγk(S, J,m)

fix S, J, ... and expand in λ;
then may expand in large/small S, J, ...
Semiclassical string theory:
E = S + J + γ(S,J ,m,

√
λ) ,

γ =
∑∞

k=−1
1

(
√

λ)k γ̃k(S,J ,m)

fix semiclassical parameters S = S√
λ
, J = J√

λ
, m

To match in general will need to resum – beyond ABA



Dimensions of short operators
= energies of quantum string states:
progress in understanding spectrum of conformal dimensions
of planar N = 4 SYM or spectrum of strings in AdS5 × S5

based on quantum integrability
Spectrum of states with large quantum numbers –
solution of ABA equations
Recent proposal of how to extend this to “short” states
with any quantum numbers – TBA / Y-system approach
compare to direct quantum string results

Aim: compute leading α′ ∼ 1√
λ

correction to dimension of
“lightest” massive string state dual to
Konishi operator in SYM theory
– check against (numerical) prediction of Y-system approach



Konishi operator:
operators (long multiplet) related to singlet by susy
[J2 − J3, J1 − J2, J2 + J3]

∆0
(sL,sR) = [0, 0, 0]2(0,0)

∆ = ∆0 + γ(λ), ∆0 = 2, 5
2
, 3, ..., 10

– same anomalous dimension γ
singlet eigen-state of anom. dim. matrix with lowest eigenvalue
examples:
Tr(Φ̄iΦi), i = 1, 2, 3, ∆0 = 2

Tr([Φ1,Φ2]
2) in su(2) sector ∆0 = 4

Tr(Φ1D
2
+Φ1) in sl(2) sector ∆0 = 4

Weak-coupling expansion of γ(λ): λ = g2
YMNc

γ(λ) = 12
[ λ

(4π)2
− 4

λ2

(4π)4
+ 28

λ3

(4π)6

+ [−208 + 48ζ(3)− 120ζ(5)]
λ4

(4π)8
+ ....

]
+ 5− loop

[Fiamberti et al; Bajnok,Janik; Velizhanin 08; Banjok et al 09]



Long Konishi multiplet
∆0 min = 2, [m,n, k](s,s′) = [0, 0, 0](0,0)

SO(6) and SO(4) labels
[Andreanopoli,Ferrara 98; Bianchi,Morales,Samtleben 03]
see table



Finite radius of convergence (Nc = ∞) – if we could sum up
and then re-expand at large λ – what to expect? (cf. f(λ))

AdS/CFT duality: Konishi operator dual to
“lightest” among massive AdS5 × S5 string states

large
√
λ = R2

α′ :
– “small” string at center of AdS5 – in nearly flat space



Flat space case:
m2 = 4(n−1)

α′ , n = 1
2
(N + N̄) = 1, 2, ..., N = N̄

n = 1: massless IIB supergravity (BPS) level
l.c. vacuum |0 >: (8 + 8)2 = 256 states
n = 2: first massive level (many states, highly degenerate)
[(ai

−1 + Sa
−1)|0 >]2 = [(8 + 8)× (8 + 8)]2

in SO(9) reps:
([2, 0, 0, 0] + [0, 0, 1, 0] + [1, 0, 0, 1])2 = (44 + 84 + 128)2

e.g. 44× 44 = 1 + 36 + 44 + 450 + 495 + 910

84× 84 = 1 + 36 + 44 + 84 + 126 + 495 + 594 + 924 + 1980 + 2772

switching on AdS5 × S5 background fields lifts degeneracy
states with “lightest mass” at first excited string level
should correspond to Konishi multiplet



string spectrum in AdS5 × S5 :
long multiplets A∆

[k,p,q](j,j′) of PSU(2, 2|4)

highest weight states: [k, p, q](s,s′) labels of SO(6)× SO(4)

Remarkably, flat-space string spectrum can be re-organized
in multiplets of SO(2, 4)× SO(6) ⊂ PSU(2, 2|4)

[Bianchi, Morales, Samtleben 03; Beisert et al 03]
SO(4)× SO(5) ⊂ SO(9) rep.
lifted to SO(4)× SO(6) rep. of SO(2, 4)× SO(6)

Konishi long multiplet
T̂1 = (1 +Q+Q ∧Q+ ...)[0, 0, 0](0,0)

determines the KK “floor” of 1-st excited string level
H1 =

∑∞
J=0[0, J, 0](0,0) × T̂1



One expects for scalar massive state in AdS5

(−∇2 +m2)Φ + ... = 0

∆(∆− 4) = (mR)2 +O(α′) = 4(n− 1)R2

α′ +O(α′)

∆ = 2 +
√

(mR)2 + 4 +O(α′)

∆(λ� 1) =

√
4(n− 1)

√
λ+ ...

[Gubser, Klebanov, Polyakov 98]
e.g., for first massive level:

n = 2 : ∆ = 2
√√

λ+ ...

Subleading corrections?



Comparison between gauge and string theory states non-trivial:

GT (λ� 1): operators built out of free fields,
canonical dimension ∆0 determines states that can mix
ST (λ� 1): near-flat-space string states built out of
free oscillators, level n determines states that can mix

meaning of ∆0 at strong coupling?
meaning of n at weak coupling?

1. relate states with same global charges;
2. assume “non-intersection principle” [Polyakov 01]:
no level crossing for states with same quantum numbers
as λ changes from strong to weak coupling



Approaches to computation of corrections to string energies:

(i) vertex operator approach:
use AdS5 × S5 string sigma model perturbation theory to find
leading terms in anomalous dimension of corresponding
vertex operator
[Polyakov 01; AT 03]

(ii) space-time effective action approach:
use near-flat-space expansion and NSR vertex operators
to reconstruct α′ ∼ 1√

λ
corrections to corresponding

massive string state equation of motion
(iii) “light-cone” quantization approach:
start with light-cone gauge AdS5 × S5 string action
and compute corrections to energy of
corresponding flat-space oscillator string state
[Metsaev, Thorn, AT 00 ]



(iv) semiclassical approach:
identify short string state as small-spin limit of
semiclassical string state
– reproduce the structure of strong-coupling corrections
to short operators
[ Tirziu, AT 08; Roiban, AT 09]



Spectrum of quantum string states
from target space anomalous dimension operator
Flat space: k2 = m2 = 4(n−1)

α′

e.g. leading Regge trajectory (∂x∂̄x)S/2eikx, n = S/2

spectrum in (weakly) curved background:
solve marginality (1,1) conditions on vertex operators

e.g. scalar anomalous dimension operator γ̂(G)

on T (x) =
∑
cn...mx

n...xm or on coefficients cn...m

differential operator in target space
found from β-function for the corresponding perturbation

I =
1

4πα′

∫
d2z[Gmn(x)∂xm∂̄xn + T (x)]

βT = −2T − α′

2
γ̂ T +O(T 2)

γ̂ = ΩmnDmDn + ...+ Ωm...kDm...Dk + ...
Ωmn = Gmn +O(α′3), Ω.... ∼ α′nRp

....

Solve −γ̂ T +m2T = 0: diagonalize γ̂



similarly for massless (graviton, ...) and massive states
e.g. βG

mn = α′Rmn +O(α′3)

gives Lichnerowitz operator as anomalous dimension operator

(γ̂h)mn = −D2hmn + 2Rmknlh
kl − 2Rk(mh

k
n) +O(α′3)

Massive string states in curved background:∫
dDx

√
g

[
Φ...(−D2 +m2 +X)Φ... + ...

]
m2 = 4

α′ (n− 1) , X = R.... +O(α′)

case of AdS5 × S5 background

Rmn − 1
96

(F5F5)mn = 0, R = 0 , F 2
5 = 0

Find leading-order term in X ?
leading α′ correction to scalar string state mass =0 (?!)

[−D2 +m2 +O( 1√
λ
)]Φ = 0

∆ = 2 +
√

4(n− 1) + 4 +O( 1√
λ
)



∆(n=2) = 2 + 2

√√
λ

[
1 + 1

2
√

λ
+O( 1

(
√

λ)2
)
]

prediction (?) for leading term in strong-coupling expansion
of singlet Konishi state dimension
... but possible subtleties... 10d scalar vs singlet state...

What about non-singlet Konishi descendant states ?
– they should have the same dimension
Tr[Φ1,Φ2]

2 corresponds to SO(6) (2,2,0) state J1 = J2 = 2

tensor wave function Φmn;kl

or vertex operator like (see below)
∼ N−∆

+ ∂nx∂̄nx∂ny∂̄ny

S5: nana = 1, nx = n1 + in2, ny = n3 + in4

AdS5: N+ = N0 + iN5, N+N− −NkNk = 1

Tr(Φ1D
2
+Φ1) should correspond to state with spins S = J = 2



How to find γ̂: Effective action approach
derive equation of motion for a massive string field
in curved background from quadratic effective action S
reconstructed from flat-space NSR S-matrix
Example: totally symmetric NS-NS 10-d tensor
– state on leading Regge trajectory in flat space

symmetric tensor Φµ1...µ2n (m2 = 4(n−1)
α′ )

in metric+RR background

L = R− 1
2·5!F

2
5 +O(α′3)

− 1
2
(DµΦDµΦ +m2Φ2) +

∑
k≥1

(α′)k−1ΦXk(R,F5, D)Φ + ...

assumption: α′nR� 1, i.e. n�
√
λ:

small massive string in the middle of AdS5:
near-flat-space expansion should be applicable

AdS5 × S5 background: Rab = − 4
R2 gab, Rmn = 4

R2 gmn



µ, ν, . . . = 0, 1, ...9; a, b, . . . in AdS5 and m,n, . . . in S5

L = 1
2
Φµ1···µ2n(−D2 +m2)Φµ1···µ2n

+
n2

R2
(Φa1a2µ3···µ2nΦa1a2µ3···µ2n − Φm1m2µ3···µ2nΦm1m2µ3···µ2n) + ...

background is direct product – can consider particular tensor
with S indices in AdS5 and K indices in S5:
end up with anomalous dimension operator

[−D2 + (m2 + K2−S2

2R2 )]Φ = 0 , D2 = D2
AdS5 +D2

S5

m2 = 4
α′ (n− 1) = 2

α′ (S +K − 2), 2n = S +K

symmetric transverse traceless tensor – highest-weight state –
Young table labels (∆, S, 0; J,K, 0),

extract AdS5 radius R and set
√
λ = R2

α′

(−D2
AdS5 +M2)Φ = 0

M2 = 2
√
λ(S +K − 2) +

1

2
(K2 − S2) + J(J + 4)−K



For symmetric traceless rank S tensor in AdS5:

∆− 2 =
√
M2 + S + 4

=
√

2
√
λ(S +K − 2) + 1

2
(S +K − 2)(K − S) + J(J + 4) + 4 +O( 1√

λ
)

[Burrington, Liu 05]
condition of marginality of (1,1) vertex operator
for (∆, S1, S2; J1, J2, J3) = (∆, S, 0;K,J, 0) state

0 = −
√
λ(S +K − 2)

+
1

2
[∆(∆− 4) +

1

2
S(S − 2)− 1

2
K(K − 2)− J(J + 4)] +O( 1√

λ
)

BPS level: n = 1
2
(S +K) = 1

First massive level: n = 1
2
(S +K) = 2

minimal dimension shift
S = 2, K = 2, J = 0 case: [1, 0, 1](1,1)

state with ∆0 = 4 or ∆0 = 6



To summarize: string states in AdS5 × S5 labeled by
SU(2, 2|4) ⊂ SO(2, 4)×SO(6) quantum numbers (∆, S1, S2; J1, J2, J3)

condition of marginality of (1,1) operator for (∆, S, 0;K,J, 0)

0 = −
√
λ(S +K − 2)

+
1

2
[∆(∆− 4) +

1

2
S(S − 2)− 1

2
K(K − 2)− J(J + 4)] +O( 1√

λ
)

symmetry: analytic continuation between AdS5 and S5

∆ ↔ −J, K ↔ S

Implications for Konishi state dimension ?
state from first massive level on leading Regge trajectory
S = K = 2, J = 0:

∆ = 2 +
√

4
√
λ+ 4 +O( 1√

λ
) = 2 + 2

4
√
λ(1 +

1√
λ

+O( 1

(
√

λ)2
))

constant term 2=∆0 − 4 for ∆0 = 6 operator



Vertex operator approach [Polyakov 01; AT 03]
calculate 2d anomalous dimensions from “first principles”–
superstring theory in AdS5 × S5 :

I =

√
λ

4π

∫
d2σ

[
∂Np∂̄N

p + ∂nk∂̄nk + fermions
]

N+N− −NuN
∗
u −NvN

∗
v = 1 , nxn

∗
x + nyn

∗
y + nzn

∗
z = 1

N± = N0 ± iN5, Nu = N1 + iN2, ..., nx = n1 + in2, ...

construct marginal (1,1) operators in terms of Np and nk

e.g. vertex operator for dilaton sugra mode (HW state)

VJ = (N+)−∆ (nx)J
[
− ∂Np∂̄N

p + ∂nk∂̄nk + fermions
]

N+ ≡ N0 + iN5 = 1
z
(z2 + xmxm) ∼ eit

nx ≡ n1 + in2 ∼ eiϕ

0 = 2− 2 +
1

2
√
λ

[∆(∆− 4)− J(J + 4)] +O( 1

(
√

λ)2
)



i.e. ∆ = 4 + J (BPS)
cf. vertex operator for bosonic string state
on leading Regge trajectory in flat space α′E2 = 2(S − 2)

VS = e−iEt(∂x∂̄x)S/2
, x = x1 + ix2

candidate operators for states on leading Regge trajectory:

VJ = (N+)−∆(
∂nx∂̄nx

)J/2
, nx ≡ n1 + in2

VS(ξ) = (N+)−∆(
∂Nu∂̄Nu

)S/2
, Nu ≡ N1 + iN2

+ fermionic terms
+ α′ ∼ 1√

λ
terms from diagonalization of anom. dim. op.

how they mix with ops with same charges and dimension?

in general
(
∂nx∂̄nx

)J/2 mixes with singlets

(nx)2p+2q(∂nx)J/2−2p(∂̄nx)J/2−2q(∂nm∂nm)p(∂̄nk∂nk)q

ops. for states on leading Regge trajectory

O`,s = fk1...k`m1...m2snk1 ...nk`∂nm1 ∂̄nm2 ...∂nm2s−1 ∂̄nm2s

their renormalization studied before [Wegner 90]



simplest case: fk1...k`nk1 ...nk` with traceless fk1...k`

same anom. dim. γ̂ as its highest-weight rep VJ = (nx)J

γ̂ = 2− 1

2
√
λ
J(J + 4) + ...

scalar spherical harmonic that solves Laplace eq. on S5

similarly for AdS5 or SO(2, 4) model:
replacing nJ

x and ∂nm∂̄nm with N−∆
+ and ∂Np∂̄Np, with

J = −∆ and 1√
λ
→ − 1√

λ

e.g. dimension of nJ
x∂nm∂̄nm:

γ̂ = − 1

2
√

λ
J(J + 4) +O( 1

(
√

λ)2
)

dimension of N−∆
+ ∂Np∂̄Np:

γ̂ = 1

2
√

λ
∆(∆− 4) +O( 1

(
√

λ)2
)



Example of scalar higher-level operator:

N−∆
+ [(∂nk∂̄nk)r + ...] , r = 1, 2, ...

[Kravtsov, Lerner, Yudson 89; Castilla, Chakravarty 96]

0 = −2(r − 1) +
1

2
√
λ

[∆(∆− 4) + 2r(r − 1)]

+
1

(
√
λ)2

[ 2
3
r(r − 1)(r − 7

2
) + 4r] + ...

r = 1: ground level
fermionic contributions should make r = 1 exact zero of γ̂
r = 2: first excited level
candidate for singlet Konishi state ∆0 = 2

∆(∆− 4) = 4
√
λ− 4 +O( 1√

λ
) ,

∆−∆0 = 2
4
√
λ
[
1 + 0× 1√

λ
+O( 1

(
√

λ)2
)
]

but fermionic contribution may change this



Operators with two spins J1 = J, J2 = K in S5:

VK,J = N−∆
+

K/2∑
u,v=0

cuvMuv

Muv ≡ nJ−u−v
y nu+v

x (∂ny)u(∂nx)K/2−u(∂̄ny)v(∂̄nx)K/2−v

highest and lowest eigen-values of 1-loop anom. dim. matrix

γ̂min = 2−K +
1

2
√
λ

[∆(∆− 4)− 1

2
K(K + 10)− J(J + 4)− 2JK] +O( 1

(
√

λ)2
)

γ̂max = 2−K +
1

2
√
λ

[∆(∆− 4)− 1

2
K(K + 6)− J(J + 4)] +O( 1

(
√

λ)2
)

fermions may alter terms linear in K
How to take fermionic contribution into account?



Semiclassical expansion: spinning strings

E = E(
J√
λ
,
√
λ) =

√
λE0(J ) + E1(J ) +

1√
λ
E2(J ) + ...

in “short” string limit J � 1

En =
√
J (a0n + a1nJ + a2nJ 2 + ...)

expansion valid for
√
λ� 1 and J = J√

λ
fixed: J ∼

√
λ� 1

but if knew all terms in this expansion – could express J
in terms of J , fix J to finite value and re-expand in

√
λ

E =

√√
λJ

[
a00 +

a10J + a01√
λ

+
a20J

2 + a11J + a02

(
√
λ)2

+ ...
]

to trust the coeff of 1

(
√

λ)n need coeff of up to n-loop terms

e.g. classical a10 and 1-loop a01 sufficient to fix 1√
λ

term
[cf. “fast string” expansion J � 1 for fixed J
positive powers of

√
λ – need to resum]



Logic: interested in short string probing flat-space limit–
(i) start with classical string solutions in flat space
representing states at 1-st excited string level
(ii) embed into AdS5 × S5 and compute 1-loop correction to energy
Two basic examples:
(1) circular string with 2 spins in two orthogonal planes
(2) folded spinning string
Rigid circular string rotating in two planes of R4

t = κτ , xx ≡ x1 + ix2 = a ei(τ+σ) , xy ≡ x3 + ix4 = a ei(τ−σ) ,

Eflat = κ
α′ =

√
4
α′ J , J1 = J2 = J = a2

α′ .

Identifying oscillator modes that are excited
associate it with the quantum string state created by

e−iEt
[
(∂nx∂̄xx)

J1
2 (∂ny∂̄xy)

J2
2 + ...

]
, α′E2 = 2(J1 + J2 − 2) .

J1 = J2 case - quantum-state analog – shift J → J − 1

Eflat =
√

4
α′ (J − 1) .

J1 = J2 = 2 corresponds to state on 1-st string level n = 2



Folded string rotating in a plane

t = κτ , x1 ≡ x1 + ix2 = a sinσ eiτ ,

Eflat =
√

2
α′ S , S = a2

2α′ ,

semiclassical counterpart of quantum string state
on the leading Regge trajectory

e−iEt
[
(∂xx∂̄xx)

S
2 + ...

]
, α′E2 = 2(S − 2) .

3 obvious choices how to embed these solutions into AdS5 × S5 :
(i) the two 2-planes may belong to S5: J1 = J2 “small string”
(ii) the two 2-planes may belong to AdS5: S1 = S2 “small string”
(iii) one plane in AdS5 and the other in S5: S = J “small string”

similar 3 choices for folded string:
study each case in AdS5 × S5 and interpolate to small values of S, J
match to states in Konishi table
verify universality of strong-coupling expansion of 4-d anom. dim
of dual gauge theory operators in same supermultiplet



Final result:

E = 2
4
√
λ+ b0 +

b1
4
√
λ

+
b2√
λ

+
b3

( 4
√
λ)3

...

b0 = ∆0 − 4 , b1 = 1

∆0 = 4 for 3 circular string cases
∆0 = 6 for 3 folded string cases
b2 is sensitive to 2-loop string corrections not computed
[conjecture b2 = 0 that it is zero due to supersymmetry:
cf. vertex op. approach]

Definite predictions:
b0 is integer; b1 is rational; b3 is transcendental
(contains ζ(3))



Example: circular rotating string in S5 with J1 = J2 = J :
cf. Konishi descendant with J1 = J2 = 2: Tr([Φ1,Φ2]

2)

try represent it by “short” classical string with same charges
flat space Rt ×R4: circular string solution

x1 + ix2 = a ei(τ+σ) , x3 + ix4 = a ei(τ−σ)

E =
√

4
α′ J, J = a2

α′

this solution can be directly embedded into
Rt × S5 in AdS5 × S5 [Frolov, AT 03] :
string on small sphere inside S5: X2

1 + ...+X2
6 = 1

X1 + iX2 = a ei(τ+σ), X3 + iX4 = a ei(τ−σ) ,

X5 + iX6 =
√

1− 2a2, t = κτ
J = J1 = J2 = a2, E2 = κ2 = 4J

Remarkably, exact E0 is just as in flat space

E0 =
√
λE =

√
4
√
λJ , J =

√
λJ



1-loop quantum string correction to the energy:
sum of bosonic and fermionic fluctuation frequencies (n = 0, 1, 2, ...)
Bosons (2 massless + massive):

AdS5 : 4× ω2
n = n2 + 4J

S5 : 2× ω2
n± = n2 + 4(1− J )± 2

√
4(1− J )n2 + 4J 2

Fermions:

4× ω2
n

f
± = n2 + 1 + J ±

√
4(1− J )n2 + 4J

E1 =
1

2κ

∞∑
n=−∞

[
4ωn + 2(ωn+ + ωn−)− 4(ωf

n+ + ωf
n−)

]
expand in small J and do sums (UV divergences cancel)

E1 =
1√
J

[
J − [3 + ζ(3)]J 2 − 1

4

[
5 + 6ζ(3) + 30ζ(5)

]
J 3 + . . .

]
E = E0 + E1 = 2

√√
λJ

[
1 +

1

2
√
λ
− 3

4
[1 + 2ζ(3)]

J

(
√
λ)2

+ ...
]



To interpolate to quantum short string in flat space shift J → J − 1

then for finite J = J1 = J2 = 2

that would suggest for Konishi state [2, 0, 2](0,0)

E = 2
4
√
λ
[
1 +

1

2
√
λ

+O( 1

(
√

λ)2
)
]

dual state in Konishi table has ∆0 = 4

thus: b1 = 1

b2 = 0 (at least 1-loop contribution to it)
b3 = 0 (contains ζ(3) – at least 1-loop contribution to it)

consistent results are found for 2+3 other solutions
representing 5 other states at the 1st massive string level
dual to 5 operators in Konishi table



Conclusion

Beginning of understanding
of quantum string spectrum in AdS5 × S5

= spectrum of “short” SYM operators

need to understand the origin of partial disagreement
b1 = 1 vs b1 = 2

with numerical solution of TBA by Gromov, Kazakov, Vieira

need better understanding of quantum string theory in AdS5 × S5

in particular, near flat space expansion



∆0

2 [0, 0, 0](0,0)
5
2

[0, 0, 1](0, 1
2 ) + [1, 0, 0]( 1

2 ,0)

3 [0, 0, 0]( 1
2 , 1

2 ) + [0, 0, 2](0,0) + [0, 1, 0](0,1)+(1,0) + [1, 0, 1]( 1
2 , 1

2 ) + [2, 0, 0](0,0)

7
2

[0, 0, 1]( 1
2 ,0)+( 1

2 ,1)+( 3
2 ,0) + [0, 1, 1](0, 1

2 )+(1, 1
2 ) + [1, 0, 0](0, 1

2 )+(0, 3
2 )+(1, 1

2 ) + [1, 0, 2]( 1
2 ,0)

+[1, 1, 0]( 1
2 ,0)+( 1

2 ,1) + [2, 0, 1](0, 1
2 )

4 [0, 0, 0](0,0)+(0,2)+(1,1)+(2,0) + [0, 0, 2]( 1
2 , 1

2 )+( 3
2 , 1

2 ) + [0, 1, 0]2( 1
2 , 1

2 )+( 1
2 , 3

2 )+( 3
2 , 1

2 ) + [2, 0, 2](0,0) + [2, 1, 0](0,1)

+[0, 1, 2](1,0) + [0, 2, 0]2(0,0)+(1,1) + [1, 0, 1](0,0)+2(0,1)+2(1,0)+(1,1) + [1, 1, 1]2( 1
2 , 1

2 ) + [2, 0, 0]( 1
2 , 1

2 )+( 1
2 , 3

2 )

6 [0, 0, 0]3(0,0)+3(1,1)+(2,2) + [0, 0, 2]3( 1
2 , 1

2 )+( 1
2 , 3

2 )+( 3
2 , 1

2 )+( 3
2 , 3

2 ) + [0, 1, 0]4( 1
2 , 1

2 )+2( 1
2 , 3

2 )+2( 3
2 , 1

2 )+2( 3
2 , 3

2 )

+[0, 1, 2](0,0)+2(0,1)+2(1,0)+(1,1) + [0, 2, 0]3(0,0)+(0,1)+(0,2)+(1,0)+3(1,1)+(2,0) + [0, 2, 2]( 1
2 , 1

2 )

+[0, 3, 0]2( 1
2 , 1

2 ) + [0, 4, 0](0,0) + [1, 0, 1](0,0)+3(0,1)+3(1,0)+4(1,1)+(1,2)+(2,1) + [1, 0, 3]( 1
2 , 1

2 ) + [0, 0, 4](0,0)

+[1, 1, 1]4( 1
2 , 1

2 )+2( 1
2 , 3

2 )+2( 3
2 , 1

2 ) + [1, 2, 1](0,0)+(0,1)+(1,0) + [2, 0, 0]3( 1
2 , 1

2 )+( 1
2 , 3

2 )+( 3
2 , 1

2 )+( 3
2 , 3

2 )

+[2, 0, 2](0,0)+(1,1) + [2, 1, 0](0,0)+2(0,1)+2(1,0)+(1,1) + [2, 2, 0]( 1
2 , 1

2 ) + [3, 0, 1]( 1
2 , 1

2 ) + [4, 0, 0](0,0)

17
2

[0, 0, 1](0, 1
2 )+(0, 3

2 )+(1, 1
2 ) + [0, 1, 1]( 1

2 ,0)+( 1
2 ,1) + [1, 0, 0]( 1

2 ,0)+( 1
2 ,1)+( 3

2 ,0) + [1, 0, 2](0, 1
2 )

+[1, 1, 0](0, 1
2 )+(1, 1

2 ) + [2, 0, 1]( 1
2 ,0)

9 [0, 0, 0]( 1
2 , 1

2 ) + [0, 0, 2](0,0) + [0, 1, 0](0,1)+(1,0) + [1, 0, 1]( 1
2 , 1

2 ) + [2, 0, 0](0,0)

19
2

[0, 0, 1]( 1
2 ,0) + [1, 0, 0](0, 1

2 )

10 [0, 0, 0](0,0)


