

Dynamics of self-sustained vacuum cosmological "constant"

Landau Institute

G. Volovik Helsinki U. of Technology

Euler Institute, July 3, 2009

- * quantum vacuum as Lorentz invariant medium
- * dynamics of quantum vacuum and decay of cosmological constant
- * problem of remnant cosmological constant
- * remnant cosmological constant from quantum chromodynamics
- * remnant cosmological constant from electroweak physics

$$\Lambda_{\rm exp} \sim 2\text{--}3 \, \epsilon_{\rm Dark \, Matter} \sim 10^{-123} \Lambda_{\rm bare}$$

$$\Lambda_{\rm bare} \sim \varepsilon_{\rm zero\ point}$$

*it is easier to accept that $\Lambda = 0$ than 123 orders smaller

*magic word: regularization wisdom of particle physicist:

$$\frac{1}{0} = 0$$

*Polyakov conjecture: dynamical screening of Λ by infrared fluctuations of metric A.M. Polyakov Phase transitions and the Universe, UFN 136, 538 (1982)

De Sitter space and eternity, Nucl. Phys. **B 797**, 199 (2008)

*Dynamical evolution of Λ similar to that of gap Δ in superconductors after kick

V. Gurarie, Nonequilibrium dynamics of weakly and strongly paired superconductors: 0905.4498
A.F. Volkov & S.M. Kogan, JETP **38**, 1018 (1974)
Barankov & Levitov, ...

dynamic relaxation of vacuum to its equilibrium state

dynamics of Λ in cosmology

$$\Lambda(t) \sim \omega^2 \frac{\sin^2 \omega t}{t^2}$$

$$\omega \sim E_{\text{Planck}}$$

F.R. Klinkhamer & G.E. Volovik Dynamic vacuum variable & equilibrium approach in cosmology PRD 78, 063528 (2008) Self-tuning vacuum variable & cosmological constant, PRD 77, 085015 (2008)

dynamics of Δ in superconductor

$$\delta |\Delta(t)|^2 \sim \omega^{3/2} \frac{\sin \omega t}{t^{1/2}}$$

$$\omega = 2\Delta$$

$$t = +\infty$$

intial states:

final states:

nonequilibrium vacuum with $\Lambda \sim E_{\rm Planck}^4$ equilibrium vacuum with $\Lambda = 0$ superconductor with nonequilibrium gap Δ ground state of superconductor

$$\varepsilon(t) - \varepsilon_{\rm vac} \sim \omega \frac{\sin^2 \omega t}{t}$$

reversibility of the process

$$\Lambda(t) \sim \omega^2 \frac{\sin^2 \omega t}{t^2}$$

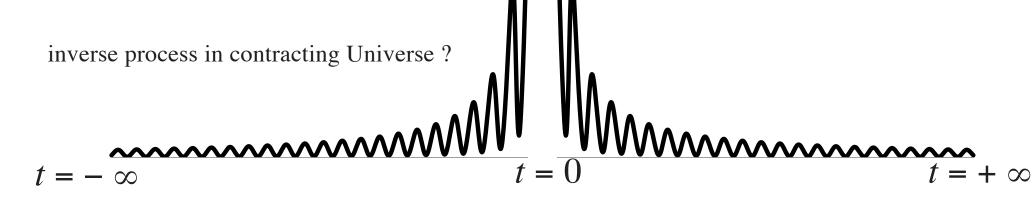
$$\delta |\Delta(t)|^2 \sim \omega^{3/2} \frac{\sin \omega t}{t^{1/2}}$$

$$\omega \sim E_{\rm Planck}$$

$$\omega = 2\Delta$$

reversible energy transfer from vacuum to gravity

reversible energy transfer from coherent degree of freedom (vacuum) to particles (Landau damping)



Phenomenology of quantum vacuum

how to describe quantum vacuum & vacuum energy Λ ?

$$\Lambda = \varepsilon_{\rm vac} = w_{\rm vac} P_{\rm vac}$$

* quantum vacuum has equation of state w=-1

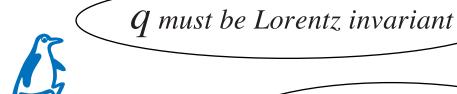
$$w_{\text{vac}} = -1$$

- * quantum vacuum is Lorentz-invariant
- * quantum vacuum is a self-sustained medium, which may exist in the absence of environment

Hawking suggested to introduce special field which describes the vacuum only Hawking, Phys. Lett. B **134**, 403 (1984)

Vacuum variable

- * quantum vacuum is a self-sustained medium, which may exist in the absence of environment
- * for that, vacuum must be described by conserved charge q
- * q is analog of particle density n in liquids



L q = q

charge density **n** is not Lorentz invariant

$$L n = \gamma (n + \mathbf{v} \cdot \mathbf{j})$$

does such $oldsymbol{q}$ exist ?

relativistic invariant conserved charges q

$\nabla_{\alpha} q^{\alpha\beta\gamma\dots} = 0$

possible vacuum variables

$$_{\mathrm{vac}}=q\ g^{\alpha\beta}$$

$$_{\rm vac} = q e^{\alpha\beta\mu\nu}$$

$$_{\rm vac} = q (g_{\alpha\mu}g_{\beta\nu}-g_{\alpha\nu}g_{\beta\mu})$$

impossible

$$_{\mathrm{vac}} = 0$$

Lorentz invariance of vacuum forbids vacuum vector fields: only even rank tensors may describe the vacuum state

distinct from: D. Gal'tsov

Non-Abelian condensates as alternative for dark energy, arXiv:0901.0115

possible

$$<\nabla_{\alpha} q_{\beta}>_{\text{vac}} = q g_{\alpha\beta}$$

Polyakov deformation field, modification of Jacobson Einstein-aether theory, ...

examples of vacuum variable q

4-form field

$$F_{\kappa\lambda\mu\nu} = \nabla_{[\kappa} A_{\lambda\mu\nu]}$$

Duff & van Nieuwenhuizen *Phys. Lett.* **B 94,** 179 (1980) Hawking *Phys. Lett.* **B 134,** 403 (1984)

$$F_{\kappa\lambda\mu\nu} = q (-g)^{1/2} e_{\kappa\lambda\mu\nu}$$

$$q^2 = -\frac{1}{24} F_{\kappa\lambda\mu\nu} F^{\kappa\lambda\mu\nu}$$

gluon condensates in QCD

$$<\mathbf{G}_{\alpha\beta}\mathbf{G}_{\mu\nu}> = \frac{q}{12}(g_{\alpha\mu}g_{\beta\nu}-g_{\alpha\nu}g_{\beta\mu})$$

$$q = \langle \mathbf{G}_{\alpha\beta} \mathbf{G}^{\alpha\beta} \rangle$$

$$\langle \mathbf{G}_{\alpha\beta} \rangle = 0$$

$$\langle \mathbf{G}_{\alpha\beta}\mathbf{G}_{\mu\nu}\rangle = \frac{\mathbf{q}}{24}(-\mathbf{g})^{1/2} e_{\alpha\beta\mu\nu}$$

$$q = \langle \widetilde{\mathbf{G}}_{\alpha\beta} \mathbf{G}^{\alpha\beta} \rangle$$

topological charge density

Einstein-aether theory (T. Jacobson)

$$\nabla_{\mu} u_{\nu} = q \ g_{\mu\nu}$$

dynamics of vacuum variable q and gravity $g_{\mu\nu}$ is universal does not depend on particular realization of q

thermodynamics in flat space the same as in cond-mat

conserved charge Q

$$Q = \int dV \, q$$

thermodynamic potential

$$E - \mu Q = \int dV \,\Omega$$

$$\Omega = \varepsilon (q) - \mu q$$

Lagrange multiplier or chemical potential μ

equilibrium vacuum

$$d\Omega/dq = 0$$

$$d\epsilon/dq = \mu$$

pressure

vacuum
pressure
$$P = -dE/dV = -\epsilon + q d\epsilon/dq = -\epsilon + \mu q = -\Omega$$

 $E = V \epsilon(Q/V)$

 Ω is candidate for cosmological constant

$$w_{\rm vac} = -1$$

equilibrium self-sustained vacuum

$$d\Omega/dq = 0$$
$$\Omega = -P = 0$$

$$\Omega = -P = 0$$

vacuum energies in equilibrium self-sustained vacuum

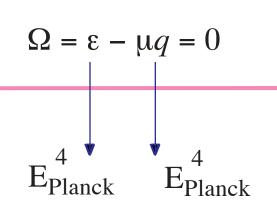
$$\Omega = \varepsilon - \mu q = -P$$

$$q \sim \mu \sim \text{E}_{\text{Planck}}^2$$

 $q \sim \mu \sim E_{\rm Planck}^2$ vacuum variable in equilibrium vacuum

$$\varepsilon(q) \sim E_{\text{Planck}}^4$$

energy of equilibrium vacuum



energy of equilibrium self-sustained vacuum

self-tuning:

two Planck-scale quantities cancel each other in equilibrium self-sustained vacuum

$$\Lambda = \Omega = -P = 0$$

nullification of cosmological constant in equilibrium self-sustained vacuum

dynamics of *q* in flat space whatever is the origin of Q the motion equation for Q is the same

$$S = \int dV \, dt \, \varepsilon \, (q)$$

motion equation

$$\nabla_{\kappa} \left(d\varepsilon/dq \right) = 0$$

solution

$$d\varepsilon/dq = \mu$$

integration constant μ in dynamics becomes chemical potential in thermodynamics

4-form field $F_{\kappa\lambda\mu\nu}$ as an example of conserved charge q in relativistic vacuum

$$q^{2} = -\frac{1}{24} F_{\kappa\lambda\mu\nu} F^{\kappa\lambda\mu\nu}$$

$$F_{\kappa\lambda\mu\nu} = \nabla_{[\kappa} A_{\lambda\mu\nu]}$$

$$F^{\kappa\lambda\mu\nu} = q e^{\kappa\lambda\mu\nu}$$

Maxwell equation

$$\nabla_{\kappa} \left(F^{\kappa \lambda \mu \nu} \ q^{-1} d\epsilon / dq \right) = 0$$
 $\nabla_{\kappa} \left(d\epsilon / dq \right) = 0$

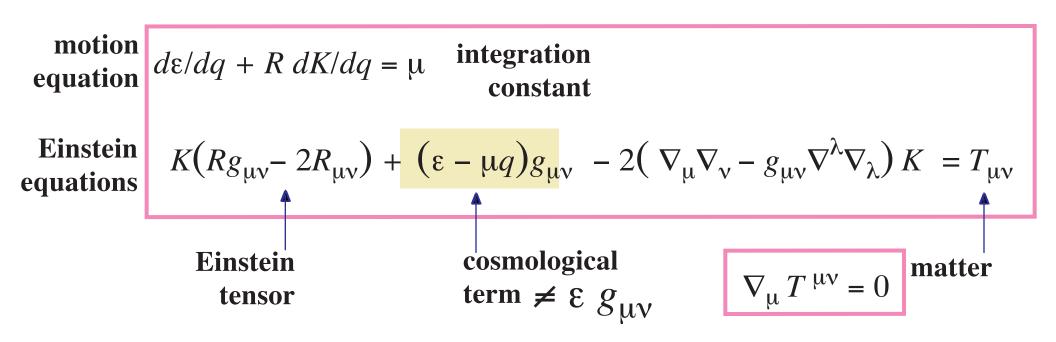
$$\nabla_{\kappa} \left(d\varepsilon/dq \right) = 0$$

general dynamics of q in curved space

action

$$S = \int d^4x (-g)^{1/2} [\epsilon(q) + K(q)R] + S_{\text{matter}}$$

gravitational coupling K(q) is determined by vacuum and thus depends on vacuum variable q



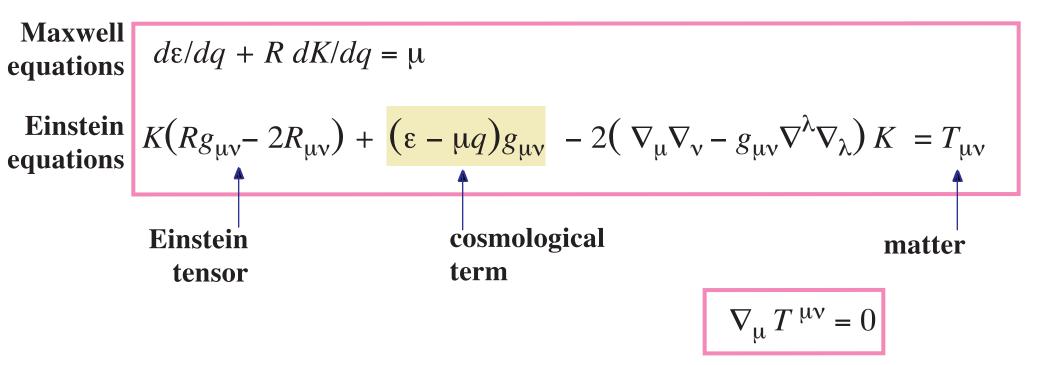
case of K=const restores original Einstein equations

$$K = \frac{1}{16\pi G}$$
 G - Newton constant

motion $d\varepsilon/dq = \mu$ q = constequation $\frac{1}{16\pi G} (Rg_{\mu\nu} - 2R_{\mu\nu}) + \Lambda g_{\mu\nu} = T_{\mu\nu} \qquad \Lambda = \varepsilon - \mu q$ original Einstein equations

 Λ - cosmological constant

Minkowski solution



$$R = 0 d\epsilon/dq = \mu$$
$$\Lambda = \epsilon(q) - \mu q = 0$$

vacuum energy in action: $\epsilon (q) \sim E_{Planck}^4$ thermodynamic vacuum energy: $\epsilon - \mu q = 0$

Model vacuum energy

$$\varepsilon(q) = \frac{1}{2\chi} \left(-\frac{q^2}{q_0^2} + \frac{q^4}{3q_0^4} \right)$$

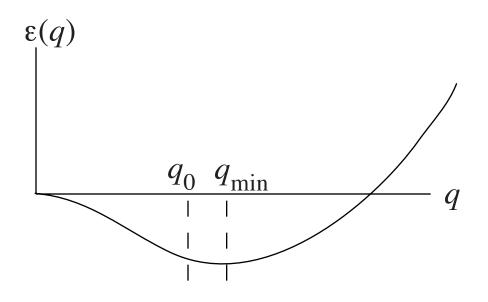
Minkowski vacuum solution

$$d\epsilon/dq = \mu$$

$$\varepsilon - \mu q = 0$$

$$q = q_0$$

$$\mu = \mu_0 = -\frac{1}{3\chi q_0}$$



$$\Omega(q) = \varepsilon(q) - \mu_0 q$$

$$\begin{array}{cccc} q_0 & & & \\ & & & \\ empty & self-sustained \\ space & vacuum \\ q = 0 & q = q_0 \end{array}$$

vacuum compressibility

$$\chi = - \frac{1}{V} \frac{dV}{dP}$$

$$\frac{1}{\chi} = \left(q^2 \, d^2 \varepsilon / dq^2\right)_{q=q_0} > 0$$

vacuum stability

Minkowski vacuum (q-independent properties)

$$P_{\mathrm{vac}} = - \, dE/dV = - \, \Omega_{\mathrm{vac}}$$
 $\chi_{\mathrm{vac}} = - (1/V) \, dV/dP$ compressibility of vacuum

$$<(\Delta P_{\rm vac})^2> = T/(V\chi_{\rm vac})$$

 $<(\Delta\Lambda)^2> = <(\Delta P)^2>$
pressure fluctuations

natural value of Λ determined by macroscopic physics

$$\Lambda = 0$$

natural value of χ_{vac} determined by microscopic physics

$$\chi_{\rm vac} \sim E_{\rm Planck}^{-4}$$

volume of Universe is large:

$$V > T_{\rm CMB} / (\Lambda^2 \chi_{\rm vac})$$

$$V > 10^{28} V_{\text{hor}}$$

dynamics of q in curved space: relaxation of Λ

motion

equation
$$d\varepsilon/dq + R dK/dq = \mu$$

Einstein equations

$$K(Rg_{\mu\nu} - 2R_{\mu\nu}) + g_{\mu\nu}\Lambda(q) - 2(\nabla_{\mu}\nabla_{\nu} - g_{\mu\nu}\nabla^{\lambda}\nabla_{\lambda})K = T_{\mu\nu}^{\text{matter}}$$

$$\Lambda(q) = \varepsilon(q) - \mu_0 q$$

dynamic solution: approach to equilibrium vacuum

$$q(t) - q_0 \sim q_0 \frac{\sin \omega t}{t}$$

$$\Lambda(t) \sim \omega^2 \frac{\sin^2 \omega t}{t^2}$$

$$q(t) - q_0 \sim q_0 \frac{\sin \omega t}{t} \qquad \Lambda(t) \sim \omega^2 \frac{\sin^2 \omega t}{t^2} \qquad H(t) = \frac{\dot{a}(t)}{a(t)} = \frac{2}{3t} \left(1 - \cos \omega t \right)$$

$$\omega \sim E_{\text{Planck}}$$

similar to scalar field with mass $M \sim E_{\rm Planck}$ A.A. Starobinsky, Phys. Lett. **B 91**, 99 (1980)

Relaxation of Λ (generic q-independent properties)

$$\Lambda(t) \sim \omega^2 \frac{\sin^2 \omega t}{t^2}$$

$$\Lambda(t) \sim \omega^2 \frac{\sin^2 \omega t}{t^2} \qquad H(t) = \frac{\dot{a}(t)}{a(t)} = \frac{2}{3t} \left(1 - \cos \omega t \right) \qquad G(t) = G_N \left(1 + \frac{\sin \omega t}{\omega t} \right)$$

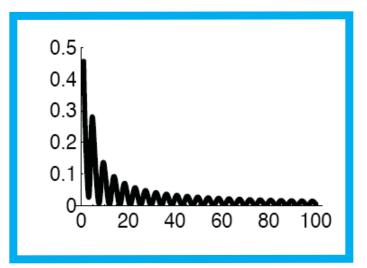
$$G(t) = G_N \left(1 + \frac{\sin \omega t}{\omega t} \right)$$

cosmological "constant"

Hubble parameter

Newton "constant"

$$\omega \sim E_{Planck}$$



$$<\Lambda(t_{\rm Planck})> \sim {\rm E}_{\rm Planck}^4$$

 $\Lambda(t=\infty)=0$

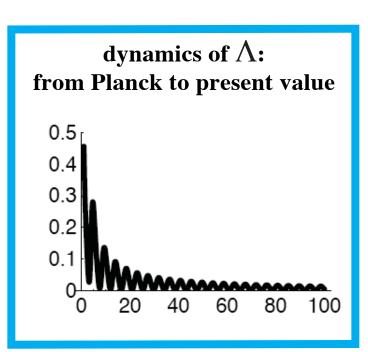
natural solution of the main cosmological problem?

 Λ relaxes from natural Planck scale value to natural zero value

present value of Λ

$$\Lambda(t) \sim \omega^2 \frac{\sin^2 \omega t}{t^2}$$

$$\omega \sim E_{Planck}$$



$$<\Lambda(t_{\rm Planck})> \sim {\rm E}_{\rm Planck}^4$$

$$<\Lambda(t_{\rm present})> \sim E_{\rm Planck}^2 / t_{\rm present}^2 \sim 10^{-120} \, {\rm E}_{\rm Planck}^4$$

coincides with present value of dark energy something to do with coincidence problem?

balance between vacuum and gravitational energies

K = const de Sitter expansion

K(q) relaxation with oscillations

vacuum energy Ω

$$\Omega \sim \omega^4$$

$$\omega \sim E_{\rm Planck}$$

t

$$\Omega + \varepsilon_{\rm grav} = 0$$

$$\Omega(t) \sim \omega^2 \frac{\sin^2 \omega t}{t^2}$$

vacuum energy Ω

gravitational energy ϵ_{grav}

relaxation of vacuum energy occurs due to coupling K(q) between vacuum & gravitational degrees of freedom

gravitational energy ϵ_{grav}

cold matter simulation

$$\Lambda(t) \sim \omega^2 \frac{\sin^2 \omega t}{t^2}$$

$$\Lambda(t) \sim \omega^2 \frac{\sin^2 \omega t}{t^2}$$
 $H(t) = \frac{\dot{a}(t)}{a(t)} = \frac{2}{3t} (1 - \cos \omega t)$ $\langle H(t) \rangle = \frac{2}{3t}$ $\langle a(t) \rangle \sim t^{2/3}$

$$\langle H(t) \rangle = \frac{2}{3t}$$

$$< a(t) > - t^{2/3}$$

$$<\Lambda(t)> \sim \frac{\text{E}^2_{\text{Planck}}}{t^2} \sim \text{E}^4_{\text{Planck}} \frac{a^3(t_{\text{Planck}})}{a^3(t)}$$

relaxation of vacuum energy mimics expansion of cold dark matter

$$\rho(t) \ a^3(t) = \text{const}$$

though equation of state corresponds to Λ

$$\Lambda = \Omega = -P$$

$$\Omega = \varepsilon(q) - \mu q$$

another example of vacuum variable: from 4-vector

version of Ted Jacobson's Einstein-Aether theory

$$\varepsilon_{\rm vac} (u^{\mu}_{\ \ v})$$

energy density $\varepsilon_{\text{vac}}(u^{\mu}_{\ \nu})$ of vacuum is function of $u^{\mu}_{\ \nu} = \nabla_{\nu} u^{\mu}$

equilibrium vacuum is obtained from equation

$$\delta \varepsilon_{\rm vac} / \delta u^{\mu} = \nabla_{\rm v} (\delta \varepsilon_{\rm vac} / \delta u^{\mu}_{\rm v}) = 0$$

equilibrium solution:

$$u_{\mu\nu} = qg_{\mu\nu}$$
 $q = const$

$$q = const$$
 vacuum variable

microscopic vacuum energy

$$\varepsilon_{\text{vac}}(q) \sim E_{\text{Planck}}^4$$

macroscopic thermodynamic vacuum energy:

from energy momentum tensor

$$T_{\mu\nu} = \delta S / \delta g^{\mu\nu} = (\epsilon_{\text{vac}}(q) - q d\epsilon_{\text{vac}}/dq) g_{\mu\nu}$$

cosmological constant

$$\Lambda = \Omega(q_0) = 0$$

It is $T_{\rm UV}$ which is gravitating, thus cosmological constant is

$$\Lambda = \Omega(q) = \varepsilon_{\text{vac}}(q) - q \, d\varepsilon_{\text{vac}}/dq$$

relativistic quantum vacuum vs cond-mat microscopic energy

natural Planck scale

natural atomic scale

$$\varepsilon_{\text{vac}}(q) \sim E_{\text{Planck}}^{4}$$

 ε (n) is atomic

macroscopic energy

$$\Omega = \varepsilon (q) - q d\varepsilon / dq = -P_{\text{vac}}$$

$$\Omega = \varepsilon (n) - n \, d\varepsilon/dn = -P$$

in the absence of environment

$$\Lambda = \Omega = -P_{\text{vac}} = 0$$

$$\Omega = -P = 0$$

two microscopic quantities cancel each other without fine tuning

self tuning due to **thermodynamics**

Why is the present Λ nonzero?

remnant cosmological constant from infrared QCD (highly speculative)

Klinkhamer -Volovik Gluonic vacuum, q-theory, and the cosmological constant Phys. Rev. **D 79**, 063527 (2009)

Klinkhamer

Gluon condensate, modified gravity, and the accelerating Universe arXiv:0904.3276

de Sitter expansion and nonzero Λ are induced by QCD anomaly

$$\Lambda \sim G^2 \lambda_{\rm QCD}^6$$

 $\lambda_{QCD} \sim 100 \; MeV \; is \; QCD \; energy \; scale$

close to present cosmological constant

supports suggestion by Zeldovich

$$\Lambda \sim G^2 m_{\text{proton}}^6$$

JETP Lett. 6, 316 (1967)

Lifshitz point

$$\omega^2 = k^2 + m^2(k)$$

$$m(k) = \frac{k^{z}}{\lambda^{z-1}}$$

Lifshitz point in QCD

effective gluon mass diverges in k -> 0 limit

$$z = -1$$

$$m(k) \sim \frac{\lambda_{\text{QCD}}^2}{k}$$

Gribov picture of confinement

$$z = -2$$

$$m(k) \sim \frac{\lambda_{QCD}^3}{k^2}$$

alternative picture of confinement Cabo et al. arXiv:0906.0494

remnant cosmological constant from QCD

estimation of vacuum energy in expanding Universe

$$\Omega = \frac{1}{2} \sum_{\mathbf{k}} \left[\omega(\mathbf{k}, \mathbf{H}) - \omega(\mathbf{k}, 0) \right] \sim \frac{1}{2} \sum_{\mathbf{k}} \left[m(\mathbf{k}, \mathbf{H}) - m(\mathbf{k}, 0) \right]$$

$$z = -1$$

$$m(k) \sim \frac{\lambda_{\text{QCD}}^2}{k}$$

Gribov scenario

$$m(k, H) \sim \frac{\lambda_{QCD}^2}{(k^2 + H^2)^{1/2}}$$

$$\Omega \sim \lambda_{\rm QCD}^2 \text{H}^2$$

negligible correction to Einstein action

$$z = -2$$

$$m(k) \sim \frac{\lambda_{QCD}^3}{k^2}$$

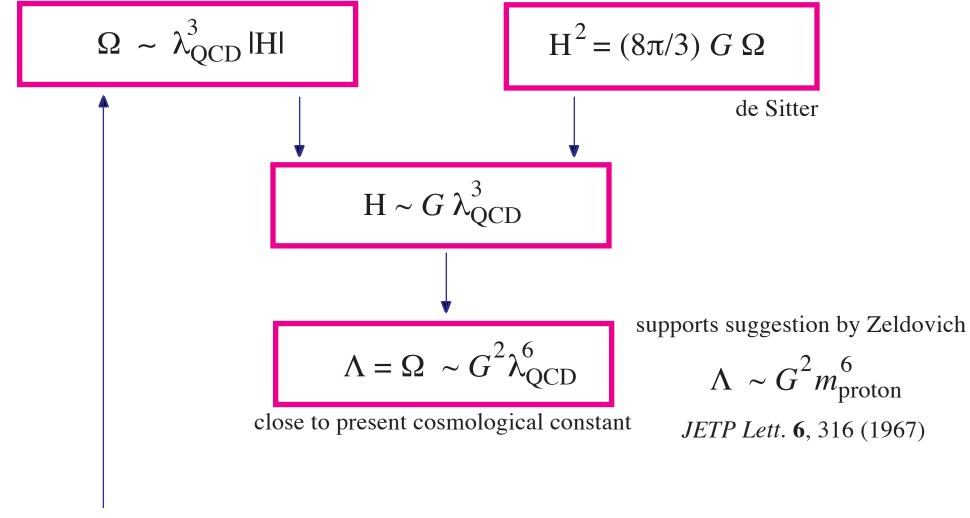
Cabo et al. arXiv:0906.0494

$$m(k, H) \sim \frac{\lambda_{QCD}^3}{k^2 + H^2}$$

$$\Omega \sim \lambda_{\rm QCD}^3 |H|$$

dominates at small Hubble parameter H

asymptotic de Sitter state due to infrared QCD



J. Bjorken, The classification of universes, astro-ph/0404233

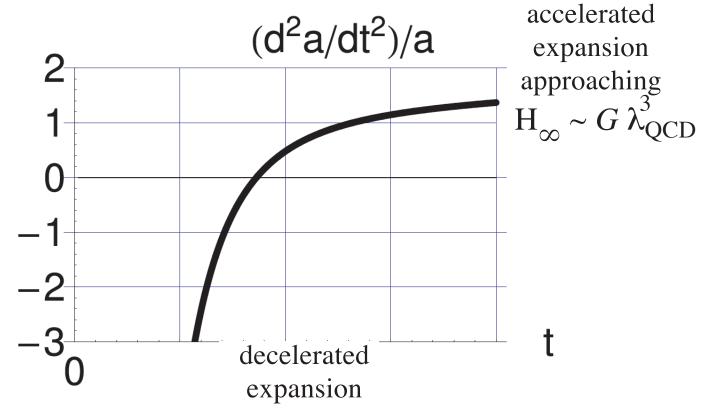
R. Schutzhold, Small cosmological constant from the QCD trace anomaly? *PRL* **89**, 081302 (2002) Klinkhamer & Volovik, Gluonic vacuum, q-theory & the cosmological constant, *PRD* **79**, 063527 (2009) Urban & Zhitnitsky,

The cosmological constant from the Veneziano ghost which solves the U(1) problem in QCD, 0906.2162 Cosmological constant, violation of cosmological isotropy & CMB, 0906.3541

asymptotic de Sitter state from q-theory with QCD

Klinkhamer

Gluon condensate, modified gravity, and the accelerating Universe arXiv:0904.3276



On vacuum density, the initial singularity and dark energy $H(t) = H_{\infty} \frac{\exp{(3H_{\infty}t)}}{\exp{(3H_{\infty}t)}}$

$$H(t) = H_{\infty} \frac{\exp(3H_{\infty}t)}{\exp(3H_{\infty}t) - 1}$$

q-theory with QCD and f(R) theory

at small curvature R approaches particular f(R) theory with $f(R) = R + |R|^{1/2}$

$$\lambda_{\text{QCD}}^{3} |H| \rightarrow \lambda_{\text{QCD}}^{3} |R|^{1/2}$$

$$q = \langle \mathbf{G}_{\alpha\beta} \mathbf{G}^{\alpha\beta} \rangle \sim \lambda_{\text{QCD}}^4$$

action

$$S = \int d^4 x \, (-g)^{1/2} \, \left[\, \epsilon \, (q) - \mu q + KR + q^{3/4} |R|^{1/2} \, \right] + S_{\text{matter}}$$

$$\varepsilon(q) - \mu q = q \ln \frac{q}{q_0}$$
 $q_0 = \lambda_{QCD}^4$

here q_0 is equilbrium value of gluon condensate in equilibrium vacuum with $\Omega = \Lambda = 0$

however instead of equilibrium vacuum the Universe approaches de Sitter state with

$$H \sim G q_0^{3/4}$$

$$\Lambda \sim G^2 q_0^{3/2}$$

two regimes of vacuum dynamics

decay with oscillations

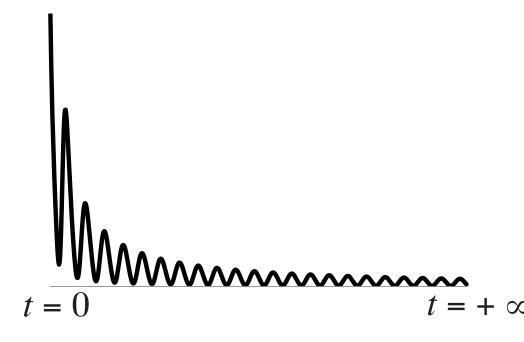
$$\Lambda(t) \sim \omega^2 \frac{\sin^2 \omega t}{t^2}$$

$$\omega \sim E_{\rm Planck}$$

response to perturbation of matter

$$\Lambda(t) \sim (w(t) - 1/3)^2 H^4(t)$$
 + small oscillations

w(t) matter equation of state



$$\Lambda(t) / H^{4}(t)$$
1.5
1
0.5
0
100 200 300 400 t

Klinkhamer & Volovik, arXiv:0905.1919

remnant cosmological constant from electroweak crossover

response to perturbation of matter without dissipation

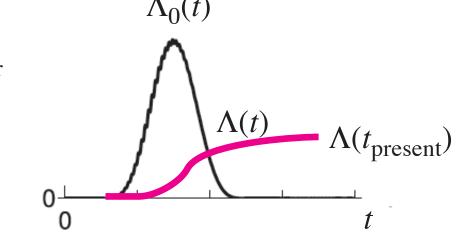
$$\Lambda_0(t) \sim (w(t) - 1/3)^2 \text{H}^4(t)$$

w(t)-1/3 \neq 0 during electroweak crossover, when $H(t_{\rm ew}) \sim E_{\rm ew}^2 / E_{\rm Planck}$

$$\Lambda_0(t_{\rm ew}) \sim \text{H}^4(t_{\rm ew}) \sim \text{E}^8_{\rm ew} / \text{E}^4_{\rm Planck} \sim \Lambda(t_{\rm present})$$

if for some reason $\Lambda(t)$ become frozen after crossover this may explain present value of Λ

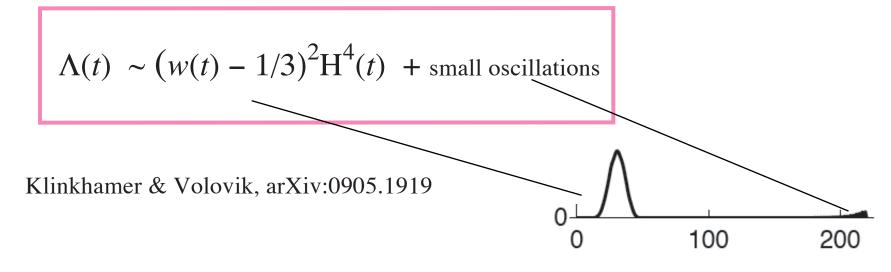
$$\dot{\Lambda} = -\Gamma(t) \left(\Lambda(t) - \Lambda_0(t) \right)$$

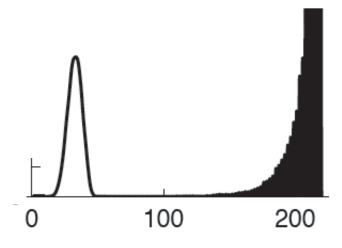


Klinkhamer & Volovik, arXiv:0905.1919

vacuum instability in contracting universe

response to perturbation of matter





catastrophic growth of oscillating vacuum energy & collapse

conclusion

properties of relativistic quantum vacuum as a self-sustained system

* quantum vacuum is characterized by conserved charge ${\cal Q}$ ${\cal Q}$ has Planck scale value in equilibrium

$$\varepsilon(q) \sim E_{\rm Planck}^{4}$$

* vacuum energy has Planck scale value in equilibrium but this energy is not gravitating

$$T_{\mu\nu} = \Lambda g_{\mu\nu} \neq \varepsilon(q) g_{\mu\nu}$$

* gravitating energy which enters Einstein equations is thermodynamic vacuum energy

$$\Omega(q) = \varepsilon - q \, d\varepsilon/dq$$

$$T_{\mu\nu} = \Lambda g_{\mu\nu} = \Omega(q) g_{\mu\nu}$$

* thermodynamic energy of equilibrium self-sustained vacuum

$$\Omega(q_0) = \varepsilon(q_0) - q_0 \, d\varepsilon/dq_0 = 0$$

- * non-equilibrium vacuum with large initial $\,\Lambda\,$ relaxes with fast oscillations
- * small remnant cosmological constant may come from: QCD, electroweak crossover, radiation/dissipation or other minor effects at late stage of expansion, which destroy perfect balance between vacuum and gravity
- * this is open question