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1 Introduction

Mandelstam and ’t Hooft 1970’s:

Confinement is a dual Meissner effect upon condensation of monopoles.

Electric charges condense → magnetic Abrikosov-Nielsen-Olesen flux

tubes (strings) are formed → monopoles are confined

Monopoles condense → electric Abrikosov-Nielsen-Olesen flux tubes are

formed → electric charges are confined

monopole

anti-monopole

Higgs phase
for charges



Seiberg and Witten 1994 : Abelian confinement in N = 2 QCD

Cascade gauge symmetry breaking:

• SU(N)→ U(1)N−1 VEV’s of adjoint scalars

• U(1)N−1 → 0 (or discrete subgroup) VEV’s of quarks/monopoles

At the last stage Abelian Abrikosov-Nielsen-Olesen flux tubes are

formed.

π1(U(1)N−1) = ZN−1

(N −1) infinite towers of strings. In particular (N −1) elementary strings

→ Too many degenerative hadron states



In search for non-Abelian confinement non-Abelian strings were

suggested in N = 2 U(N) QCD

Hanany, Tong 2003

Auzzi, Bolognesi, Evslin, Konishi, Yung 2003

Shifman Yung 2004

Hanany Tong 2004

ZN Abelian string: Flux directed in the Cartan subalgebra, say for

SO(3) = SU(2)/Z2

flux ∼ τ3

Non-Abelian string :
Orientational zero modes

Rotation of color flux inside SU(N).



Non-Abelian strings were first found in N = 2 QCD with U(N) gauge

group and Nf = N fundamental flavors (quarks).

Fayet Iliopoulos parameter ξ triggers quark condensation.

The theory is in the Higgs phase

To ensure weak coupling regime

ξ � Λ2, g2(
√

ξ) � 1

QUESTION:

What happens to the bulk theory and to non-Abelian strings in the

strong coupling at

ξ � Λ2?



What do we know about duality?

• Seiberg-Witten electromagnetic duality

Example: SU(2) gauge theory. Near monopole vacuum it is described

in terms of dual U(1) Abelian gauge theory of light monopoles.

monopoles condense ⇒ quarks are confined

• N = 1 Seiberg Nonabelian duality

SU(N) ⇒ SU(Nf − N)

Common belif: As we deform N = 2 QCD with mass term for the

adjoint matter µ(Φa)2 Seiberg-Witten Abelian duality smoothly goes

into Seiberg non-Abelian duality.

Non-Abelian monopoles condense ⇒ quarks are confined



Two implicit assumptions:

• Duality exchanges quarks and monopoles

• Smooth transition with respect to µ

We show:

• Non-Abelian duality is not the electro-magnetic duality.

Monopoles are confined in both original and dual theories

• Crossover with respect to ξ

Fayet-Iliopoulos term ξ ∼ µΛ or ξ ∼ µm



I

III

II

∆ m

ξ

Λ

2
Λ

Three different regimes separated by crossovers

For Nf = N

I:

• N2 non-Abelian degrees of freedom

• non-Abelian strings with N orientational moduli and

〈(non − Abelian flux)〉 = 0

III:

• N Abelian degrees of freedom

• Abelian ZN strings with fixed flux



For Nf > N

III:

• Gauge theory with dual gauge group

U(Ñ) × U(1)(N−Ñ),

where Ñ = Nf − N .

• non-Abelian strings with Ñ orientational moduli



Why do we think it is a crossover rather then a phase transition?

Arguments which support this assumption:

• In the equal quark mass limit regions I and III have Higgs branches

of the same dimensions

dimH = 4NÑ

and the same pattern of global symmetry breaking

• At generic masses all three regimes has the same number of isolated

vacua at non-zero ξ,

CN
Nf

= CÑ
Nf

• Each of these vacua has the same number (= N) of different

elementary strings in all three domains. Moreover, BPS spectra of

excitations on the non-Abelian string are the same in regions I and

III,

Still both the perturbative spectrum and confining strings are

dramatically different in the regimes I, II and III.



2 Bulk theory with Nf = N

N = 2 QCD with gauge group U(N) = SU(N) × U(1) and

Nf = N flavors of fundamental matter – quarks

+

Fayet-Iliopoulos term of U(1) factor

The bosonic part of the action

S =
∫

d4x

[

1

4g2
2

(

F a
µν

)2
+

1

4g2
1

(Fµν)
2 +

1

g2
2

|Dµa
a|2 +

1

g2
1

|∂µa|2

+
∣

∣

∣∇µq
A
∣

∣

∣

2
+
∣

∣

∣∇µ
¯̃q

A
∣

∣

∣

2
+ V (qA, q̃A, aa, a)

]

.

Here

∇µ = ∂µ − i

2
Aµ − iAa

µ T a .



The potential is

V (qA, q̃A, aa, a) =
g2
2

2

(

i

g2
2

fabcābac + q̄A T aqA − q̃AT a ¯̃q
A

)2

+
g2
1

8

(

q̄AqA − q̃A
¯̃q

A − Nξ
)2

+ 2g2
2

∣

∣

∣q̃AT aqA
∣

∣

∣

2
+

g2
1

2

∣

∣

∣q̃AqA
∣

∣

∣

2

+
1

2

N
∑

A=1

{

∣

∣

∣(a +
√

2mA + 2T aaa)qA
∣

∣

∣

2

+
∣

∣

∣(a +
√

2mA + 2T aaa)¯̃q
A
∣

∣

∣

2
}

.



Vacuum

〈1
2

a + T a aa〉 = − 1√
2













m1 . . . 0

. . . . . . . . .

0 . . . mN













,

For special choice

m1 = m2 = ... = mN

U(N) gauge group is classically unbroken.

〈qkA〉 =
√

ξ













1 . . . 0

. . . . . . . . .

0 . . . 1













, 〈¯̃qkA〉 = 0,

k = 1, ..., N A = 1, ..., N ,



Note
• Color-flavor locking

Both gauge U(N) and flavor SU(N) are broken, however diagonal

SU(N)C+F is unbroken

〈q〉 → U〈q〉U−1

〈a〉 → U〈a〉U−1

All perturbative states come as singlets or adjoints of SU(N)C+F

msinglet = g1

√

ξ, madjoint = g2

√

ξ

• The way to stay at weak coupling:
√

ξ � Λ

8π2

g2
2(ξ)

= N log

√
ξ

Λ
� 1



Non-Abelian string

1

N


















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
























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



















1 ... 0 0

... ... ... ...

0 ... 1 0

0 0 ... −(N − 1)
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




















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









































A

B

= −nAn∗

B +
1

N
δA
B ,

with

n∗

AnA = 1

Then

q =
1

N
[(N − 1)φ2 + φ1] + (φ1 − φ2)

(

n · n∗ − 1

N

)

,

A
SU(N)
i =

(

n · n∗ − 1

N

)

εij

xj

r2
f3(r) ,

A
U(1)
i =

1

N
εij

xj

r2
f(r) ,



Profile functions of the string (for N = 2)
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r
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3 CP (N) model on the string

String moduli: x0i, i = 1, 2 and nA, A = 1, ..., N

Make them t, z-dependent

ZN solution breaks SU(N)C+F down to SU(N − 1) × U(1) Thus the

orientational moduli space is

SU(N)

SU(N − 1) × U(1)
∼ CP(N − 1)

Gauge theory formulation of N = (2, 2) supersymmetric CP (N − 1)

model, e2 → ∞

SCP(N−1) =
∫

d2x
{

|∇αnA|2 +
1

4e2
F 2

αβ +
1

e2
|∂ασ|2

+ 2 |σ +
mA√

2
|2|nA|2 +

e2

2

(

|nA|2 − 2β
)2 }

,



where

∇α = ∂α − iAα, α = 1, 2,

while σ is a complex scalar field, superpartner of Aα. The condition

n∗

AnA = 2β

is implemented in the limit e2 → ∞.

The coupling constant β is given by

β =
2π

g2
2

(ξ)

Gauge field can be eliminated:

Ak = − i

4β
n̄A

↔

∂α nA σ = 0

Number of degrees of freedom = 2N − 1 − 1 = 2(N − 1)



Non-Abelian flux of the string

∫

d2x (F ∗

3 ) SU(N) = 2π

(

n · n∗

2β
− 1

N

)

,

where F ∗

i = 1
2
εijkFjk , i, j, k = 1, 2, 3

We can introduce a gauge invariant flux

Φ =
∫

d2x aaF ∗a
3 .

As was shown by Witten (1979) in the CP(N − 1) model at zero (or

small) mA

〈nA〉 = 0

Therefore, in the region I

Φ ≈ 0,

while in the region II

〈nA〉 =
√

2β δAA0 〈σ〉 = − mA0√
2



Therefore, in the region II

Φ = −2π
√

2 mA0

For N = 2.

Λ

Φ

∆ m

I

II

Crossover



Note
• At N → ∞ : Crossover ⇒ Phase transition

• In non-SUSY CP (N − 1) model with ZN symmetry we have

phase transition

Region I: ZN unbroken; only one vacuum (string)

Region II: ZN broken; N vacua (strings)



4 Region III: small ξ, small ∆m

• Go to the Coulomb branch at ξ = 0 and large ∆mAB to the region II.

Abelian U(1)N gauge theory

• Then sitting at the r = 2 quark vacuum reduce ∆mAB using exact

Seiberg-Witten solution

Simplest case N = 2 (U(2) theory with Nf = 2 flavors)

y2 = (x − φ1)
2(x − φ2)

2 − 2Λ2

(

x +
m1√

2

)(

x +
m2√

2

)

,

φ1, φ2 – coordinates on the Coulomb branch

Argyres-Douglas point at

∆m2 = 4Λ2,

Here besides two massless quarks a SU(2) monopole becomes massless.



Monodromies

Quarks transform into dyons

q11 → D1, q22 → D2

(ne, nm; n3
e, n

3
m) =

(

1

2
, 0;

1

2
, 0
)

q11

⇒
(

1

2
, 0;

1

2
, 1
)

D1

,

(ne, nm; n3
e, n

3
m) =

(

1

2
, 0; −1

2
, 0
)

q22

⇒
(

1

2
, 0; −1

2
,−1

)

D2

while the monopole charge is

(ne, nm; n3
e, n

3
m) = (0, 0; 0, 1)

According to this charges light dyons interact with two U(1) gauge fields

Aµ

and

Bµ =
1√
5

(A3
µ + 2A3D

µ )



Effective action

SIII =
∫

d4x

[

1

4g̃2
2

(

FB
µν

)2
+

1

4g2
1

(Fµν)
2 +

1

g̃2
2

|∂µb|2 +
1

g2
1

|∂µa|2

+
∣

∣

∣∇1
µD1

∣

∣

∣

2
+
∣

∣

∣∇1
µD̃1

∣

∣

∣

2
+
∣

∣

∣∇2
µD2

∣

∣

∣

2
+
∣

∣

∣∇2
µD̃2

∣

∣

∣

2

+ V (D, D̃, b, a)
]

,

where

b =
1√
5

(a3 + 2a3
D)

is the scalar N = 2 superpartner of the photon.

Covariant derivatives

∇1
µ = ∂µ − i

(

1

2
Aµ +

1

2
A3

µ + A3D
µ

)

= ∂µ − i

2

(

Aµ +
√

5Bµ

)

,

∇2
µ = ∂µ − i

(

1

2
Aµ − 1

2
A3

µ − A3D
µ

)

= ∂µ − i

2

(

Aµ −
√

5Bµ

)

.



The potential is

V (D, D̃, b, a) =
5g̃2

2

8

(

|D1|2 − |D̃1|2 − |D2|2 + |D̃2|2
)2

+
g2
1

8

(

|D1|2 − |D̃1|2 + |D2|2 − |D̃2|2 − 2ξ
)2

+
5g̃2

2

2

∣

∣

∣D̃1D1 − D̃2D2

∣

∣

∣

2
+

g2
1

2

∣

∣

∣D̃1D1 + D̃2D2

∣

∣

∣

2

+
1

2

{

∣

∣

∣a +
√

5b +
√

2m1

∣

∣

∣

2 (|D1|2 + |D̃1|2
)

+
∣

∣

∣a −
√

5b +
√

2m2

∣

∣

∣

2 (|D2|2 + |D̃2|2
)

}

.

Vacuum

a = −
√

2 m,
√

5 b = −∆m√
2

,

D1 =
√

ξ, D2 =
√

ξ, D̃1 = D̃2 = 0



I: N2 quarks and gauge bosons– non-Abelian regime

III: N dyons and dual gauge bosons–Seiberg-Witten Abelian regime

unbroken global SU(N)C+F

Region I: quarks and gauge bosons are in adjoint

Region III: dyons and dual gauge bosons are singlets

Conclusion: These are different states

adjoints

singlets

Λ

Λ

mass

ξ



What is the physical nature of (N2 − 1) adjoints in the region III?

Consider W-boson and move from the region II to the region III along

Coulomb branch at ξ = 0. Consider N = 2. SU(2)C+F → U(1)τ3

W-boson is charged with respect to U(1)τ3

(ne, nm; n3
e, n

3
m) = (0, 0; 1, 0)

decay to (anti)monopole and dyon

(0, 0; 0,−1) + (0, 0; 1, 1)

Now switch on small ξ

At ξ 6= 0 monopoles/dyons are confined and cannot move apart

dyon antimonopole



5 Nf > N . Non-Abelian bulk duality

Region I. Large ξ Adjoint fields:

〈1
2

a + T a aa〉 = − 1√
2













m1 . . . 0

. . . . . . . . .

0 . . . mN













,

Quarks

〈qkA〉 =
√

ξ













1 . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . 1 0 . . . 0













, 〈¯̃qkA〉 = 0,

k = 1, ..., N A = 1, ..., Nf ,



In the equal mass limit U(N)gauge × SU(Nf)flavor is broken down to

SU(N)C+F × SU(Ñ)F × U(1) ,

where Ñ = Nf − N .

Quarks and gauge fields fill following representations of the global group:

(1, 1) (N2 − 1, 1) (N̄ , Ñ) (N, ¯̃N)



Region III. Small ξ and small ∆mAB (� Λ)

• First go to the Coulomb branch at ξ = 0 in the region II at weak

coupling

• Then use Seiberg-Witten curve to go to small ∆mAB

We get theory of non-Abelian dyons and dual gauge fields with

U(Ñ) × U(1)(N−Ñ)

gauge group and Nf non-Abelian dyons and (N − Ñ) Abelian dyons.

The non-Abelian gauge factor U(Ñ) is not broken by adjoint VEV’s in

the equal mass limit because this theory is not asymptotically free and

stays at weak coupling

Argyres Plesser Seiberg:

SU(Ñ) × U(1)(N−Ñ) was identified at the root of the baryonic branch in

SU(N) theory with massless quarks



Vacuum

〈U(Ñ) adjoints〉 = − 1√
2













mN+1 . . . 0

. . . . . . . . .

0 . . . mNf













Dyons

〈DlA〉 =
√

ξ













0 . . . 0 1 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . 0 0 . . . 1













, 〈 ¯̃D〉 = 0,

〈Dii〉 =
√

ξ, l = 1, ..., Ñ i = Ñ + 1, ..., N A = 1, ..., Nf ,

(1, ..., N)|I,II ⇒ (N + 1, ..., Nf , Ñ + 1, ..., N)|III



In the equal mass limit the global group is broken to

SU(N)F × SU(Ñ)C+F × U(1)

Now dyons and dual gauge fields fill following representations of the

global group:

III : (1, 1) (1, Ñ2 − 1) (N̄, Ñ) (N, ¯̃N)

Recall that quarks and gauge bosons of the original theory are in

I : (1, 1) (N2 − 1, 1) (N̄ , Ñ) (N, ¯̃N)

(N2 − 1) of SU(N) and (Ñ2 − 1) of SU(Ñ)

are different states



In the region III (N2 − 1) of SU(N) are stringy mesons formed by by

pairs of (anti)monopoles and dyons connected by two strings

In the region I (Ñ2 − 1) of SU(Ñ) are stringy mesons formed by by pairs

of (anti)monopoles and dyons connected by two strings

Conjecture:
These stringy mesons are Seiberg’s neutral M -fields.



6 Conclusions

Sharp crossover
For Nf = N

• Region I: Non-Abelian bulk spectrum and Non-Abelian strings

• Region III: Abelian bulk spectrum and Abelian ZN strings

+ (N2 − 1) stringy mesons

For Nf > N

• Region III: Gauge theory with dual gauge group U(Ñ) × U(1)(N−Ñ)

• Elementary adjoints of SU(N) of the region I become stringy mesons

in region III, while elementary adjoints of SU(Ñ) of the region III

become stringy mesons in region I.

• Bulk duality translates into world sheet duality



MAIN CONCLUSIONS:
• In both original and dual theories confined states are monopoles

• Non-Abelian confinement = Higgs screening + Decay on CMS +

String formation


