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Scientific programme

MONDAY 12 July:

9:30–10:00: registration

10:00–11:00: Rupert Frank Critical Lieb-Thirring bounds in gaps

coffee break

11:30–12:30:
Yulia Karpeshina Quasi-intersections of an isoenergetic surface and
complex angle variable

lunch

14:30–15:30:
Oleg Safronov Absolutely continuous spectrum of multi-dimensional
Schrödinger operators

15:40–16:40:
Roman Shterenberg Complete asymptotic expansion of the integrated den-
sity of states of multidimensional almost-periodic Schrödinger operators

coffee break

17:00–18:00:
Andrea Cianchi Eigenvalue problems for the Laplacian on noncompact
Riemannian manifolds

TUESDAY 13 July:

10:00–11:00:
Vladimir Buslaev Scattering for the system of three one-dimensional
Coulomb particles

coffee break

11:30–12:30:
Boris Plamenevsky On a method for computing waveguide scattering
matrices
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14:30–15:30: Brian Davies Resonances of quantum graphs

15:40–16:40:
Pavel Exner Loops and trees: spectral and resonance properties of quan-
tum graphs

coffee break

17:00–18:00: Alexey Pozharskii Averaging in scattering problems
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Valentin Strazdin Matrix Schrödinger operator on the half-line: the dif-
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time and venue TBC: BOAT TRIP
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Leonid Pastur On Links Between the Random Matrix and Random Op-
erator Theories
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Alexander Fedotov Behavior at infinity of solutions of almost periodic
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coffee break
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Francois Germinet About currents, magnetic perturbations, magnetic
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14:30–15:30:
Frederic Klopp Decorrelation estimates for the eigenlevels of random
operators in the localized regime
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coffee break

17:00–18:00: Boris Vainberg Negative spectrum of a perturbed Anderson Hamiltonian

18:15: CONFERENCE DINNER

FRIDAY 16 July:

10:00–11:00:
Michael Agranovich General and spectral boundary value problems for
strongly elliptic second-order systems in bounded Lipschitz domains

coffee break

11:30–12:30:
Michael Belishev Wave spectrum of symmetric semi-bounded operator
and its applications

lunch

14:30–15:30: Timo Weidl Trapped modes in elastic media for zero Poisson ratio

15:40–16:40:
Maria Esteban Critical threshold for electronic stability under the action
of an intense magnetic field

coffee break

17:00–18:00:
Shinichi Kotani KdV flow on the space of generalized reflectionless po-
tentials
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Abstracts

General and spectral boundary value problems for
strongly elliptic second-order systems in bounded

Lipschitz domains

Michael Agranovich

Moscow Institute of Electronics and Mathematics

In the last three decades, the general and spectral theory for strongly elliptic equations
and systems in Lipschitz domains was the subject of unfailing interest for many mathematicians
and was carried forward considerably. A Lipschitz boundary can contain edges, conical points
and other singularities. All main difficulties are closely connected with the non-smoothness
of the boundary. In the talk, a short survey of this theory will be presented. We consider a
strongly elliptic second-order system Lu = f written in the divergent form under minimized
smoothness assumptions concerning the coefficients. Examples: Beltrami–Laplace equation,
systems of isotropic and anisotropic elasticity and their generalizations.

Here is the plan of the talk.
1. The variational approach to the Dirichlet and Neumann problems in bounded Lipschitz

domains Ω ⊂ Rn, n ≥ 2, in the simplest (Hilbert) spaces Hs, |s| ≤ 1. Two-sided a priori
estimates.

2. Properties of the spectral Dirichlet and Neumann problems: spectral asymptotics, basis
property of eigenfunctions of formally selfadjoint problems, completeness of root functions
of more general problems, Abel–Lidskii summability of Fourier series with respect to these
functions.

3. Surface single layer potential u = Aψ and double layer potential u = Bψ on a Lipschitz
surface Γ, the integral representation of solutions and relations between the main operators on
Γ: the restriction Aψ of the single layer potential to Γ, the direct value Bϕ of the double layer
potential on Γ, the hyper-singular operator H, and the Neumann-to-Dirichlet operator N . For
simplicity, we consider the system on the standard torus T = Tn (with periodic coordinates)
divided by a Lipschitz surface Γ into two domains Ω±.

4. Spectral Poincaré–Steklov and transmission problems for the system Lu = 0 with
spectral parameter in conditions at the boundary. Reduction of these problems to the spectral
equations for the operators N , A, and H on Γ. Spectral properties of these operators in the
spaces Hs(Γ), |s| ≤ 1/2.

5. Regularity of solutions: their belonging to more general space Hs
p of Bessel potentials

and Besov spaces Bs
p (with deviation of s from ±1 and p from 2). Two approaches to regularity

problems: the more easy variational approach and the approach on the base of the deep inves-
tigation of potentials. The extrapolation of the invertibility of operators acting in interpolation
scales of spaces.

6. The same spectral problems and spectral equations in (Banach) spaces Hs
p and Bs

p.
Specific feature of the spectral theory in a Banach space. The independence of the spectrum of
(s, t). Estimates of approximation numbers. Optimal resolvent estimates and the representation
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of the resolvent as a ratio of entire analytic functions, operator-valued and numerical, with
estimating of their growth. Generalizations of theorems on the completeness and the Abel–
Lidskii summability.

7. Some generalizations, including the cases of an unbounded domain with compact bound-
ary, higher-order systems, and the boundary conditions on a non-closed boundary.

As a result, several classical achievements in the spectral theory of “smooth” elliptic prob-
lems admit a generalization to “non-smooth” problems considered in short scales of function
spaces. However, by far not all problems have been solved up to the desired end.

The references will be indicated in the talk.

Wave spectrum of symmetric semi-bounded operator
and its applications

Michail Belishev

Steklov Intstitute, St.Petersburg

Motivation The paper introduces the notion of a wave spectrum of a symmetric semi-
bounded operator in a Hilbert space. The impact comes from inverse problems of mathematical
physics; the following is one of the motivating questions.

Let Ω be a smooth compact Riemannian manifold with the boundary Γ, −∆ the (scalar)
Laplace operator, L0 = −∆|C∞

0 (Ω\Γ) the minimal Laplacian in H = L2(Ω). Assume that we are

given with a unitary copy L̃0 = UL0U
∗ in H̃ = UH (but U is unknown!). To what extent does

L̃0 determine the manifold Ω?
So, we have no points, boundaries, tensors, etc, whereas the only thing given is an operator

L̃0 in a Hilbert space H̃. Provided the operator is unitarily equivalent to L0, is it possible to
extract Ω from L̃0? Such a question is an “invariant” version of various setups of dynamical
and spectral inverse problems on manifolds [1].

Wave spectrum Substantially, the answer is affirmative: for a generic class of manifolds,
any unitary copy of the minimal Laplacian determines Ω up to isometry (Theorem 1). A wave

spectrum is a construction that realizes the determination L̃0 ⇒ Ω and, thus, solves inverse
problems. In more detail,

• With a closed densely defined symmetric semi-bounded operator L0 of nonzero defect in-
dexes in a separable Hilbert space H we associate a metric space ΩL0 (its wave spectrum).
The space consists of the so-called eikonal operators (eikonals), so that ΩL0 is a subset of
the bounded operators algebra B(H), whereas the metric on ΩL0 is ‖τ − τ ′‖B(H).

The eikonals are constructed from the projections on the reachable sets of an abstract
dynamical system with boundary control governed by the evolutionary equation utt+L

∗
0u =

0. More precisely, they appear in the framework of a von Neumann algebra NL0 associated
with the system, whereas ΩL0 ⊂ NL0 is a set of the so-called maximal eikonals. The
peculiarity is that this algebra is endowed with an additional operation that we call a
space extension.

Since the definition of ΩL0 is of invariant character, the spectra ΩL0 and ΩeL0
of the

unitarily equivalent operators L0 and L̃0 turn out to be isometric (as metric spaces). So,
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a wave spectrum is a (hopefully, new) unitary invariant of a symmetric semi-bounded
operator.

• A wide generic class of the so-called simple manifolds is introduced. Roughly speaking,
a simplicity means that the symmetry group of Ω is trivial. The central Theorem 1
establishes that for a simple Ω, the wave spectrum of its minimal Laplacian L0 is isometric
to Ω. Hence, any unitary copy L̃0 of L0 determines the simple Ω up to isometry by the

scheme L̃0 ⇒ ΩeL0

isom
= ΩL0

isom
= Ω. In applications, it is the procedure, which recovers

manifolds by the BC-method [1]: concrete inverse data determine a relevant L̃0, and it is
the fact, which enables one to realize the scheme.

• We discuss one more option: once the wave spectrum of the copy L̃0 is found, the BC-
procedure realizes elements of the space H̃ as functions on ΩeL0

. In the BC-method,
such an option is interpreted as visualization of waves [1]. Thereafter, one can construct
a functional model Lmod

0 of the original Laplacian L0, the model being an operator in
Hmod = L2, µ(ΩeL0

) related with L0 through a similarity (gauge transform). Hopefully, this
observation can be driven to a functional model of a class of symmetric semi-bounded
operators. Presumably, this model will be local, i.e., satisfying suppLmod

0 y ⊆ supp y.

Comments The concept of wave spectrum summarizes rich “experimental material” accu-
mulated in inverse problems in the framework of the BC-method, and elucidates operator
background of the latter. Owing to its invariant nature, ΩL0 promises to be useful for fur-
ther applications to unsolved inverse problems of elasticity theory, electrodynamics of crystals,
graphs, etc.

Actually, a wave spectrum is an attribute not of a single operator but a so-called algebra
with space extension [2]. In the scalar problems on manifolds, this algebra is commutative,
whereas its wave spectrum is identical to Gelfand’s spectrum of the norm-closed subalgebra
generated by eikonals. However, it is not clear whether this fact is of general character. The
algebras that appear in the above mentioned unsolved problems, are noncommutative and the
relation between their wave and Jacobson’s spectra is not understood yet.

By the recent trend in the BC-method, to recover unknown manifolds via boundary inverse
data is to find spectra of relevant algebras determined by the data [3]. We hope for further
promotion of this approach: see [2].

References

[1] M.I.Belishev. Recent progress in the boundary control method. Inverse Problems, 23
(2007), no 5, R1–R67.

[2] M.I.Belishev. An unitary invariant of semi-bounded operator and its application to inverse
problems. http://arxiv.org/abs/1004.1646.

[3] M.I.Belishev. Geometrization of Rings as a Method for Solving Inverse Problems. Sobolev
Spaces in Mathematics III. Applications in Mathematical Physics, Ed. V.Isakov., Springer,
2008, 5–24.
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Asymptotic behavior of the eigenfunctions of
three-particle Schrödinger operator. II. One-dimensional

charged particles.

Vladimir Buslaev

St.Petersburg State University

The talk is based on a joint work with S.B. Levin: Asymptotic behavior of the eigenfunc-
tions of three-particle Schrödinger operator II. One-dimensional charged particles. Algebra i
Analiz, vol. 22 (2010), no. 3, 60-79 (in Russian).

We consider the three particle Schrödinger operator with slowly decreasing pair potentials.
More precisely, we suppose that the pair potentials for large distances behave like the Coulomb
potentials. We develop an heuristic approach that allows to describe the asymptotic behavior
of the generalized eigen-functions of the continuous spectrum at infinity in the configuration
space. We hope to give the rigorous justification of these asymptotic formulas later.

We consider the eigen-functions that can be treated as perturbations of the plane waves,
and we call the corresponding eigen-functions the scattered plane waves. It is clear that after
the separation of the motion of the centre of mass for one-dimensional particles the dimension
of the configuration space is equal to 2. The centers of three two particle pair interactions
defines on the configuration plane three straight lines. We call them screens. We suppose
that the masses of the particles and the pair potentials are identical. It allows to simplify the
presentation. With given wave vector of the falling plane wave we define the scattered plane
wave by very rough assumptions on its asymptotic behavior. The corresponding scattering
amplitude is a rather singular distribution. Our goal is to find smooth functions that correctly
describe the asymptotic behavior and in a weak topology generate the mentioned distribution.
Moreover, we are able to describe not only the general structure of the singular contributions,
but their precise form.

The solution has natural singularities on screens, on the ray corresponding to the wave
vector of the falling plane wave and on five other rays that can be obtained from the mentioned
one by its reflections with respect to screens. The general structure of the asymptotic behavior
can be described in terms of the reflections of the falling plane wave by the system of the screens.
It is natural that near the screens the simple plane wave must be replaced by a solution that
includes the effect of the pair potential centered around the screen. It turns out that this
geometrical solution defines on the phase plane the smooth function everywhere except two
rays obtained from the reflection of the wave vector. It is very similar to the singularity that
we have in the wave field that is generated by the classical diffraction of the plane wave by
a plane semi-screen. And analogously to the classical problem we can overcome the difficulty
with the jump the scattering amplitude with the help of the Fresnel integral.

In fact, we described above the results that were obtained for the case of sufficiently fast
decay of the pair potentials. These results were presented in the talk of the same author at the
previous conference. The generalization to the case of slowly decreasing pair potentials demands
the development a lot of new technique. The simplest is the replacement of the classical plane
wave by the Coulomb plane wave that contains some more or less known logarithmic corrections
at infinity. The crucial generalization is the description of the approximate separation of the
variables near the screens. There is no analog of this procedure in the case of fast decaying pair
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potentials. Another essential generalization of the previous constructions is the replacement well
known Fresnel integrals some other special functions containing the Cauchy singular integrals.

Finally, we can obtain for the case of the slowly decaying pair potentials the results that
are more general, but in their flavor are similar to the results described earlier for the case of fast
decaying at infinity pair potentials. By the moment these results were used for the computer
description of the scattered plane waves. The approach turned out to be quite efficient.

Eigenvalue problems for the Laplacian on noncompact
Riemannian manifolds

Andrea Cianchi

University of Florence

This talk is based on a joint work with V.Maz’ya

We begin by dealing with a class of eigenvalue problems for the Laplacian on n-dimensional
Riemannian manifolds M whose weak formulation is:∫

M

〈∇u ,∇v〉 dHn(x) = γ

∫
M

u v dHn(x) (1)

for every test function v in the Sobolev space W 1,2(M). Here, u ∈ W 1,2(M) is an eigenfunction
associated with the eigenvalue γ ∈ R, ∇ is the gradient operator, Hn denotes the n-dimensional
Hausdorff measure on M , i.e. the volume measure on M induced by its Riemannian metric,
and 〈· , ·〉 stands for the associated scalar product.
Note that various special instances are included in this framework. For example, if M is a
complete Riemannian manifold, then (1) is equivalent to a weak form of the equation

∆u+ γu = 0 on M . (2)

In the case when M is an open subset of a Riemannian manifold, and in particular of the
Euclidean space Rn, equation (1) is a weak form of the eigenvalue problem for the Laplacian
with homogenous Neumann boundary condition{

∆u+ γu = 0 on M ,
∂u
∂n

= 0 on ∂M .
(3)

Our discussion focuses the case when M need not be compact. We exhibit minimal assumptions
on M ensuring Lq(M) bounds for all q < ∞, or L∞(M) bounds for eigenfunctions of the
Laplacian on M . Our estimates are new even for problem (3) when M is an on open subset of
Rn of finite volume.
The assumptions to be imposed onM are formulated in terms of either its isocapacitary function
νM , or its isoperimetric function λM . They are the largest functions of the measure of subsets
of M which can be estimated by the capacity, or by the perimeter of the relevant subsets.
Both the conditions in terms of νM , and those in terms of λM , for eigenfunction estimates in
Lq(M) or L∞(M) that will be presented are sharp in the class of manifolds M with prescribed
asymptotic behavior of νM and λM at 0.
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In the second part of the talk we discuss the problem of the discreteness of the spectrum of
the Laplacian ∆ on M , regarded as the semi-definite self-adjoint Laplace operator in the Hilbert
space L2(M) associated with the closed bilinear form defined for u and v in W 1,2(M) by the left-
hand side of (1). If the space C∞

0 (M) of smooth compactly supported functions on M is dense
in W 1,2(M), the operator ∆ agrees with the Friedrichs extension of the classical Laplacian,
regarded as an unbounded operator on L2(M) with domain C∞

0 (M). This is certainly the case
when M is complete. A different situation occurs when M is an open subset of Rn, or, more
generally, of a Riemannian manifold; in this case, ∆ corresponds to the so called Neumann
Laplacian on M .
A necessary and sufficient condition in terms of νM is established for the spectrum of ∆ to be
discrete. As a corollary, we derive a sufficient condition for the discreteness of the spectrum of
the Laplacian on M involving the isoperimetric function of M .

Each one of the two approaches (via νM or via λM) to these problems has its own advan-
tages. The isoperimetric function λM has a transparent geometric character, and it is usually
easier to investigate. The isocapacitary function can be less simple to compute; however its use
is in a sense more appropriate in the present framework since it not only implies the results in-
volving λM , but leads to finer conclusions in general. Typically, this is the case when manifolds
with complicated geometric configurations are taken into account.

Resonances of Quantum Graphs

Brian Davies

King’s College London

This work was carried out jointly with A. Pushnitski in [1]; it was further investigated
with P. Exner and J. Lipovský in [2].

Consider a compact quantum graph G0 consisting of finitely many edges of finite length
joined in some manner at certain vertices. Let G be obtained from G0 by attaching a finite
number of semi-infinite leads to G0, possibly with more than one lead attached to some vertices.
For later reference we say that a vertex v of G is balanced if the number of edges with finite
length attached to v equals the number of leads attached to v.

Let H0 = − d2

dx2 acting in L2(G0) subject to continuity and Kirchhoff boundary conditions
at each vertex, and let H be defined in the same way in L2(G). It is well-known that H0

has discrete spectrum, and an application of standard variational methods implies that the
eigenvalue asymptotics is given by Weyl’s law in one dimension, the ‘volume’ of G0 being defined
as the sum of the lengths of the edges. The same cannot hold for H, because its spectrum is
[0,∞). Unlike the normal case for Schrödinger operators H may possess many L2 eigenvalues
corresponding to eigenfunctions that have compact support. However some eigenvalues of H0

turn into resonances of H, and when defining the resonance counting function

N(r) = #{ resonances λ = k2 of H such that |k| < r}

one should regard eigenvalues of H as special kinds of resonance. One might hope that N(r)
obeys the same leading order asymptotics as r →∞ as in the case of G0. The analogous result
for one-dimensional Schrödinger operators is known to hold whenever the potential concerned
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has compact support, the volume in question being the length of the shortest interval containing
the support of the potential.

The following is the main theorem in [1].

TheoremThe resonances of H obey the Weyl asymptotic law if and only if the graph G does not
have any balanced vertex. If there is a balanced vertex then one still has a Weyl law, but the
effective volume is smaller than the volume of G0.

The main tool in the proof is a theorem of Langer [3] which describes the asymptotic behaviour
of the zeros of an ‘exponential polynomial’ of the form

F (k) =
n∑

r=1

αre
iσrk

where σ1 < σ2 < . . . < σn ∈ R. Langer’s theorem asserts that the zeros are all confined to
a strip {k : |Im(k)| < c} and that the counting function has Weyl asymptotics, the relevant
volume being σn − σ1, provided α1 and αn are non-zero.

The application of this theorem involves several problems. The first is to identify the zeros
k of F with the complex resonances of H. Then one must prove that the order of each zero of
F equals the algebraic multiplicity of the relevant resonance. Finally, after finding the σr, one
has to prove that one does indeed have α1 6= 0 6= αn. It turns out that this last step is not valid
if G contains a balanced vertex. The proof of this statement depends on an induction in which
one starts with G0 and adds the leads one vertex at a time until one reaches G. This leads to a
sequence of exponential polynomials Fr, whose relationship to each other has to be understood
by examining the structures of certain large matrices.

References

[1] E. B. Davies and A. Pushnitski, Non-Weyl resonance asymptotics for quantum graphs,
preprint 2010.

[2] E. B. Davies, P. Exner, J. Lipovský, Non-Weyl asymptotics for quantum graphs with
general coupling conditions, preprint 2010, J. Phys. A to appear.

[3] R. E. Langer, On the zeros of exponential sums and integrals, Bull. Amer. Math. Soc.
37 (1931) 213–239.
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Critical threshold for electronic stability
under the action of an intense magnetic field

Maria Esteban

University of Paris-Dauphine

This work has been done in collaboration with Jean Dolbeault (CNRS and
Universit Paris-Dauphine) and Michael Loss (Georgia Tech University)

My talk for the Conference in Spectral Theory will be about some results on the point
spectrum of the Dirac operator with external magnetic field.

Our aim is to see what happens to the first eigenvalue of the operator HA+V = −i α ·∇A+V in
the spectral gap (−1, 1), where the matrices αi are the Pauli-Dirac matrices, V is an external
electrostatic potential and A is a potential related to an external magnetic field B. If for
instance V is a not too strong potential of Coulombic type and A corresponds to a not too
large constant magnetic field, it is easy to prove that there is a sequence of eigenvalues of HA

in the spectral gap (−1, 1), sequence which has as unique accumulation point the point 1. The
first eigevalue in that sequence, that we denote by λV,A

1 depends on V and B (or A). If we let
V be fixed, and be equal for instance to the Coulombic potential −ν/|x|, ν ∈ (0, 1), the first
eigenvalue will depend only on A. Our aim is to show that if B is constant, λV,A

1 belongs to
(−1, 1) if B is not too strong, but tends to −1 when the intensity of B increases and tends to
a critical value. Our second aim is to evaluate the intensity of that critical value as a function
of ν.

Our main results are the following: let us consider the particular case V = −ν/|x|, ν ∈
(0, 1) and A = − b

2
(−x2, x1, 0), that is, B = (0, 0, b). And let us then denote λV,A

1 by λ(b) and
∇A by ∇b.

– For every ν ∈ (0, 1), there exists a number b(ν) > 0 such that λ(b) ∈ (−1, 1) for all
0 ≤ b < b(ν). Moreover, λ(b)to− 1 as b→ b(ν).

– For all ν ∈ (0, 1), b ≥ 0, λ(b) < 1 .

– limν→1 b(ν) > 0.

– limν→0 ν logB(ν) = π .

– b(ν) = 4/µ(ν)2, where

µ(ν) := inf

{
Eν [ϕ] ;

∫
R3

|ϕ|2 dx = 1

}
,

and the functional Eν is defined by

Eν [ϕ] :=

∫
R3

|x|
ν
|(σ · ∇1)ϕ|2 dx−

∫
R3

ν

|x|
|ϕ|2 dx ,

The basic ingredients that we use to prove the above results are: on one hand a variational
characterization of the first eigenvalue of operators with gaps that was proved by Dolbeault,
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Esteban and Séré in [1]. Then, a very nice scaling property which allows us to “isolate” b and
get an explicit expression for it (see above).

The above variational characterization is based on an implicit minimization argument.
This characterization was devised for general operators with gaps in the essential spectrum.
Applied to Dirac operators, it yields a very useful tool to have very good control on the variation
of λ(b) with respect to b. More generally, this tool is extremely easy to use in order to build
algorithms which yield all the eigenvalues in the gap in a robust and efficient way.

The results presented in this talk are contained in [2] and [3].

References

[1] [1] J. Dolbeault, M. J. Esteban et E. Séré. On the eigenvalues of operators with gaps.
Application to Dirac operators. J. Funct. Anal. 174 (2000), p. 208-226.

[2] [2] J. Dolbeault, M. J. Esteban, M. Loss. Relativistic hydrogenic atoms in strong magnetic
fields. Ann. H. Poincaré 8(4) (2007), p. 749-779.

[3] [3] J. Dolbeault, M.J. Esteban, M. Loss. Characterization of the critical magnetic field
in the Dirac-Coulomb equation. J. Phys. A 41 (2008), no. 18, p. 185303-185315.

Loops and trees: spectral and resonance
properties of quantum graphs

Pavel Exner

Doppler Institute for Math.Physics and Applied Mathematics, Prague

In this talk three new results about Schrödinger operators on metric graphs will be discussed
which have been obtained in collaboration with Jǐŕı Lipovský and Brian Davies. The first
one [4] is related to the well-known fact about invalidity of the uniform continuation principle
for quantum-graph Hamiltonian. One manifestation of it are embedded eigenvalues which can
appear in case when some graph edge lengths are rationally related. This is, of course, a non-
generic situation and such eigenvalues disappear once a geometric perturbation turns them into
resonances; we discuss this effect generally as well as on simple solvable examples.

The second problem is related to high-energy asymptotics of resonances on quantum
graphs. In a recent intriguing observation, Davies and Pushnitski [2] demonstrated that graphs
with Kirchhoff vertex coupling and balanced vertices can exhibit a behavior deviating from the
usual Weyl formula. Following [3] we analyze this problem for graphs with more general vertex
coupling and show that if the latter exhibits edge permutation symmetry, there are exactly two
situations in which the unusual behavior occurs, while without the symmetry requirement it
can happen in many cases. We present also an insight explaining the effect.

The third problem concerns spectra of radial trees which are sparse in the sense that there
is a subsequence of edges with lengths growing to infinity. Breuer and Frank [1] proved recently
that in case of Kirchhoff coupling the corresponding Hamiltonian has empty ac spectrum. We
have shown in [4] that the result remains valid for a large class of vertex couplings, but on the
other hand, there are nontrivial couplings for which transport on such a tree is possible.
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Behavior at infinity of solutions of
almost periodic equations

Alexander Fedotov

St.Petersburg State University

The talk is based on a joint work with Frederic Klopp

Discuss the behavior at infinity of the solutions of the one dimensional difference Schrödinger
equation

ψ(k + 1) + ψ(k − 1) + λv(ωk + θ)ψ(k) = Eψ(k), k ∈ Z, (4)

where v a 1-periodic function of R, and λ >> 1, 0 < ω < 1 and 0 ≤ θ < 1 are constant
parameters. We are interessed in the case where ω 6∈ Q, i.e., the Schrödinger equation is almost
periodic.
It is well known that the absolutely continuous spectrum and, thus, the singular spectrum of (4)
in l2(Z) can be characterized in terms of the of the Lyapunov exponent defined by the limit

γ(E, θ) = lim
k→∞

1

k
ln ‖M(θ + kω) . . .M(θ + ω)M(θ)‖, M(θ) =

(
E − λv(θ) −1

1 0

)
. (5)

If v is good enough (say, bounded and measurable), for a.e. θ, the limit exists and is indepen-
dent of θ. The independent of θ value is denoted by γ(E). By Isii-Kotani-Pastur theorem, if
on an interval I ⊂ R the γ(E) > 0, then, for a.e. θ, the spectrum situated on I is singular.
It is known (follows from theorems of Oseledets and of Ruelle) that if the limit γ(E, θ) exists
and is positive, then all the solutions of (4) are either eponentially increasing or decaying at
infinity. Such behavior of the solutions can lead only to the point spectrum with exponentially
decaying eigenfunctions. But, there are many examples of the equations with singular continu-
ous spectrum (first was construced by B.Simon by means of A.Gordon results). For a given θ,
the singular continuous spectrum can essentially be situated only at the energies E where the
limit defining γ(E, θ) does not exist.
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In this talk we discuss the pointwise existence of the limit γ(E, θ) and the behavior at infinity
of the solutions in the cases where the limit does not exists.
Our approach to the investigation of the solutions is based on the monodromization idea. The
monodromization method is a renormalization method proposed in 90-ies by V.Buslaev and
A.Fedotov to construct Bloch solutions of difference equations with periodic (as the potential
v does) coefficients; first, it was aimed to reproduce the result on the cantorien geometry of the
spectrum of the Almost Mathieu equation obtained by B.Helffer and J.Sjöstrand. It appeared
that the ideas of the approach allow also to control (recurrently) the solutions at larger and
larger distances.
The idea of the approach is suggested by the standard Bloch-Floquet theory for the differential
periodic equations. The coefficients of the differential equation being 1-periodic, the space of
its solutions is invariant with respect to the translation by 1. This translation defines a linear
map in the space of the solutions. The matrix M1 representing this map (for a fixed base in
the space of the solutions) is called the monodromy matrix. It is independent of the variable of
the eqiuation. The behavior of the solutions at infinity is determined by the behavior of (M1)

k

as k → ∞. Turn to the difference equation (4). Instead of considering this equation on the
lattice Z, we consider anlogous difference equation on the real line R:

ψ(x+ ω) + ψ(x− ω) + λv(x)ψ(x) = Eψ(x), x ∈ R. (6)

As the behavior at infinity of the solutions of (4), so the behavior of the solutions of (6) is
determined by the behavior of the product

Pk(θ) = M(kω + θ) . . .M(ω + θ)M(θ) as k →∞. (7)

Note that Pk(θ) is the matrix fundamental solution of the equation Pk+1 = M(kω+ θ)Pk with
the initial condition P0 = I. The function v being 1-periodic, the space of the solutions of (6) is
invariant with respect to the translation by 1. This again leads to the notion of the monodromy
matrix. But, now, the monodromy matrices appear to be non-constant. They are ω-periodic
in x (the variable in (6)). It appears that the behavior of the solutions of (4) at infinity can be
equally characterized in terms of the product

P
(1)
k (θ1) = M1(kω1 + θ1) . . .M(ω1 + θ1)M(θ1), (8)

where M1 is the one periodic matrix obtained from a monodromy matrix just by the linear
change of the variable x 7→ x1 = x/ω, and

ω1 =

{
1

ω

}
, θ1 =

{
θ

ω

}
, (9)

{x} denoting the fractional part of x ∈ R. More precisely, one has

Pk(θ) = Ψ({kω + θ})σP (1)
k1

(θ1)σΨ−1(θ), k1 = −[kω + θ], σ =

(
0 −1
1 0

)
, (10)

where Ψ(x) is a fundamental matrix solution of the equation Ψ(x+ω) = M(x)Ψ(x) on the real
line x ∈ R, and P (1) is constructed in terms of the monodromy matrix corresponding to Ψ.
We call the passage from the matri product P to P (1) the monodromization (or the renormal-
ization).
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The matrix product P (1) having the same structure as P (constructed of 1-periodic unimodu-
lar matrices), one can apply the renormalization to the product P (1) so on. This defines the
sequences {Ml}, {ωl}, {θl} and {kl}.
A very important feature of the relation (10) is that k1, the new number of the matrices M1 in
P (1), the new matrix product, is typically smaller than k, and that |kl| exponentially quickly
decreases to 1 as the number l increases. So, in course of the renormalizations, one quickly
diminishes the number of the matrices in the product to study. That is this property that
allows to study effectively the behavior of the input matrix product as k →∞ or, equivalently,
the behavior of the solutions of (4) at infinity.
Of course, to carry out the renormalizations effectively, one has to control effectively the “sand-
wich” terms Ψ in (10) and can be able to compute effectivelly the monodromy matrices. This
is to enable such control that we have assumed that the coupling constant λ in the input equa-
tion (4) is sufficiently large. The striking feature of the equation with a sufficiently large λ
is that all the equations arizing in course of the renormalizations contain effective large pa-
rameters, and that these parameters increase hyperexponentially quickly with the subsequent
renormalizations.
Though our approach is quite general, and we already have results for a wide class of analytic
potentials v, in this talk, we concentrate on the model equation with

v(x) = 2eiπω/2 sin πx, and E = 0. (11)

We describe the set of θs for which the pointwise limit defining Lyapunov exponent exists and
describe the behavior of the solutions at infinity for the complementary values of θ.
The advantage of the working with the model equation is that one can construct explicitely
(by contour integration of combinations of non-trivial special functions) solutions of the cor-
responding continuous equation (6) and compute explicitely the corresponding monodromy
matrices. Moreover, having the rather explicit description of the solutions of (6), we can get
their asymptotics (for λ >> 1 and 0 ≤ x ≤ 1) “almost for free”. The solutions of (6) have
the most simple asymptotic behavior (on the interval 0 ≤ x ≤ 1) if ω is not too small. More
precisely, one has to assume that ωλ >> 1. Trying to remain in such a case when studing each
equation arizing in the course of the renormalizations, we have to assume that for the given
λ > 1, the frequency ω we consider has to satisfy the following condition: we assume that there
is a non-decreasing function M : N → N such that M(L) < L and

ωM . . . ωLωL−1 → 0,
(
λ

1
ωω1...ωM−1 ωM

)1/2

ωM+1 . . . ωLωL+1 →∞,

when M = M(L), and L→∞.

This condition is satisfied for almost all ωs.
We describe the sufficient condition for the pointwise existence of the Lyapunov exponent in
terms of the dynamical system defined by (9) on (0, 1) × (0, 1) ⊂ R. We prove that the limit
defining the Lyapunov exponent exists and is equal to lnλ if, along the trajectory {ωl, θl},
ω0 = ω, θ0 = θ, the conditions

|θL+1 − 1| ≤ 1
(λM(L)ωM(L))

1/2ωM(L)+1...ωL
if L+ 1 is even,

|θL+1 − ωL+1| ≤ 1
(λM(L)ωM(L))

1/2ωM(L)+1...ωL
if L+ 1 is odd,

(12)
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are satisfied at most for finitely many L. The set of “bad” θs for which the Lyapunov eponent
does not exist appears to be a dence Gδ-set of zero Lebeague measure. It admits rather simple
constructive description. Roughly, the set θs for which ΘL+1 appears too close to the forbidden
values, see (12), consists of small neighborhoods of the points 0 < θ = nω +m < 1, m,n ∈ N,
such that 0 < m ≤ 1

ω1ω2...ωL
.

For the “bad” values of θ (the Lyapunov exponent does not exist), we describe the behavior
of Γk(θ) = 1

k
ln ‖Pk(θ)‖. We show that if θL+1 appears too close to the forbiden value, then

ln ‖Pk(θ)‖ instead of increasing (roughly linearly) becomes to decrease (roughly linearly). More
precisely, on the “interval” 0 ≤ k ≤ Const

ω0ω1...ωL−1
, there is a subinterval, where Γk(θ) that normally

has to tend to lnλ can fall by a number of order lnλ.
There are two possible scenarios of behavior of Γk(θ) for the bad θs. One of them is possible
when the sequence {ωl} contains a decreasing subsequence, and the other is the only one
possible in the case when {ωl} is bounded from below. In the talk, we describe these scenarios
and give the asymptotic description of Γk(θ).

Critical Lieb-Thirring bounds in gaps

Rupert Frank

Princeton University

Lieb-Thirring inequalities [4] bound moments of eigenvalues of Schrödinger operators in
terms of integrals of the potential. These inequalities play a crucial role in Mathematical
Physics (in particular, in the problem of stability of matter), but recently, they have also found
an application in purely spectral theoretic questions, namely, in the characterization of spectral
measures. A particular case of a Lieb-Thirring inequality is the following endpoint inequality
in dimension one [7], which states that

Tr

(
− d2

dx2
+ V

)1/2

−
≤ const

∫
R

V(x)− dx .

In this talk we will discuss generalizations of this inequality to Schrödinger operators
− d2

dx2 +W +V , where W is a background potential and V is a decaying perturbation. An initial

result concerns eigenvalues below the bottom λW of the spectrum of − d2

dx2 + W . Assuming
that there is a positive function ω which is bounded from above and away from zero and which
satisfies −ω′′ +Wω = λWω, we showed in [2] that

Tr

(
− d2

dx2
+ W + V − λW

)1/2

−
≤ const

∫
R

V(x)− dx

with a constant depending only on the infimum and the supremum of ω. We note that the
existence of an ω with the required properties is known, for instance, in the case of periodic
W ’s.

Our second main result concerns an internal gap (a, b) in the spectrum of − d2

dx2 +W . Under

suitable assumptions on the spectral representation near the band edges of − d2

dx2 +W , we prove
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that ∑
λj∈spec(− d2

dx2 +W+V)∩(a,b)

dist
(
λj, spec(− d2

dx2 + W)
)1/2

≤ const

∫
R
|V(x)| dx

with a constant depending only on spectral characteristics of − d2

dx2 +W . Again the assumptions
are verified for periodic potentials W .

Both results have analogues for discrete Schrödinger operators. In that case, the assump-
tions are satisfied, for instance, if the spectrum of the unperturbed operator has finitely many
gaps (which is weaker than requiring the background potential to be periodic) and we are able
to prove a generalized Nevai conjecture about an `1-condition implying a Szegő condition for
the spectral measure.

Our proofs make use of, and extend, operator theoretic techniques developed in the study
of eigenvalue asymptotics in gaps (see, e.g., [1,5,6] and references therein).
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About currents, magnetic perturbations, magnetic
barriers and magnetic guides in quantum Hall systems

Francois Germinet

University of Cergy-Pontoise

We report on two recent joint works with N. Dombrowski and G. Raikov [2,3].
Since a seminal paper of Halperin, the physics of the Quantum Hall effect can be studied

from two points of view: bulk and edge. They both give rise to quantized currents measured
through, respectively, the Hall conductance and the edge conductance. These two points of
view coincide since these two conductances are simultaneously quantized.

BULK:
In quantum Hall systems, namely 2DEG submitted to a transverse constant magnetic

field, localized states are responsible for the celebrated plateaux of the quantum Hall effect.
Where the Hall conductance is discontinuous, non trivial transport has been proved to take
place in [6] for electric disorder, using a characterization of the region of localization in terms
of the dynamics proved in [5]. We provide a similar picture but with magnetic disorder in
[3]. The random magnetic potential is shown to create both strongly localized states at the
edges of the spectrum and dynamical delocalization near the center of the band in the sense
that wave packets travel at least at a given minimum speed. We thus consider 2D-random
magnetic perturbations of the Landau Hamiltonian and prove a transition between dynamical
localization and dynamical delocalization inside an arbitrary number of bands.

The proof of localization exploits the Wegner estimate of Hislop and Klopp [9], revisited
by Ghribi, Hislop and Klopp [7], together with a simple weak disorder argument to start the
multiscale analysis, provided some information on the location of the spectrum that we address
in a separate argument; then dynamical localization follows from [4]. Delocalization is proved
along the lines of [6]; in particular the Hall conductance is quantized, constant in the region of
localization and jumps by one as a Landau level is crossed.

We further exhibit an explicit family of small periodic magnetic perturbations for which
the splitting gives rise to a full interval of spectrum. This is achieved by direct computation
using translation invariance of our potential in one direction. Such examples are then good
enough to be randomized and used as random magnetic fields.

ONE EDGE:
In [2], the wall is designed by an Iwatsuka magnetic field [10], a y-independent magnetic

field with a decaying profile in the x-asis. As a matter of fact the particle is subjected to, say,
a strong magnetic field on the left half plane, and to a weaker one on the right half plane,
creating currents along such an interface.

Perturbations are also of magnetic nature. As a preliminary but essential result, we prove
that magnetic perturbations carried by magnetic fields compactly supported in the x axis do not
affect the edge conductance. Next, we consider non compactly supported perturbations that
do not vanish at infinity, and provide a sum rule similar to that obtained in [1]. Namely, the
edge conductance of the perturbed system is the sum of the edge conductance of the magnetic
confining potential and of the edege conductance of the system without magnetic wall defined
by a reference Landau Hamiltonian pertubed by the magnetic potential. This enables us to
compute the edge conductance of the perturbed Hamiltonian when energies fall inside a gap of
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the Landau Hamiltonian of magnetic strength B− and perturbed by the magnetic potential. To
consider energies corresponding to localized states, one has to go one step further and regularize
the trace that defines the edge conductance.

TWO EDGES:
If we now consider a magnetic strip created by two large positive magnetic fields and a (not

too big) magnetic field inside, the net current flowing along these axes is zero, like in the electric
case. An interesting phenomenon appears when the two walls are generated by magnetic fields
of opposite signs. Existence of quantized current is proved, with quantization equal to two
times the value provided by the quantum Hall effect in the particular case of opposite value of
the magnetic strength [2]. Such currents are sometimes called“snake currents” in the physics
literature.
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Quasi-intersections of an Isoenergetic Surface and
Complex Angle Variable

Yulia Karpeshina 1

University of Alabama at Birmingham

Joint work with Young-Ran Lee2

We study the operator
H = −∆ + V (x) (13)

in two dimensions,V (x) being a limit-periodic potential:

V (x) =
∞∑

r=1

Vr(x), (14)

where {Vr}∞r=1 is a family of periodic potentials with doubling periods and decreasing L∞-norms,

namely, Vr has orthogonal periods 2r−1 ~β1, 2r−1 ~β2 and ‖Vr‖∞ < exp(−2ηr) for some η > 0.
We concentrate here on properties of the spectrum and eigenfunctions of (13), (14) in the

high energy region. We prove the following results for the case d = 2.

1. The spectrum of the operator (13), (14) contains a semiaxis. A proof of the analogous
result by different means is to appear in in the paper [1]. In [1], more general case
H = (−∆)l + V , 8l > d + 3, d 6= 1(mod4), is considered, however, under additional
restriction on the potential: all the lattices of periods Qr of periodic potentials Vr need
to contain a nonzero vector γ in common.

2. There are generalized eigenfunctions Ψ∞(~k, ~x), corresponding to the semiaxis, which are

close to plane waves: for every ~k in an extensive subset G∞ of R2, there is a solution
Ψ∞(~k, ~x) of the equation HΨ∞ = λ∞Ψ∞ which can be described by the formula:

Ψ∞(~k, ~x) = ei〈~k,~x〉
(
1 + u∞(~k, ~x)

)
, (15)

‖u∞‖ =|~k|→∞ O(|~k|−γ1), γ1 > 0, (16)

where u∞(~k, ~x) is a limit-periodic function:

u∞(~k, ~x) =
∞∑

r=1

ur(~k, ~x), (17)

ur(~k, ~x) being periodic with periods 2r−1 ~β1, 2r−1 ~β2. The eigenvalue λ∞(~k) corresponding

to Ψ∞(~k, ~x) is close to |~k|2:

λ∞(~k) =|~k|→∞ |~k|2 +O(|~k|−γ2), γ2 > 0. (18)

1Research partially supported by USNSF Grant DMS-0800949
2Research partially supported by NRF-Korea Grant 2009-001-5575
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The “non-resonant” set G∞ of the vectors ~k, for which (15) – (18) hold, is an extensive
Cantor type set: G∞ = ∩∞n=1Gn, where {Gn}∞n=1 is a decreasing sequence of sets with larger
and larger number of holes in each bounded region, holes added on each step being of
smaller and smaller size. The set G∞ satisfies the estimate:

|(G∞ ∩BR)|
|BR|

=R→∞ 1 +O(R−γ3), γ3 > 0, (19)

where BR is the disk of radius R centered at the origin, | · | is the Lebesgue measure in
R2.

3. The set D∞(λ), defined as a level (isoenergetic) set for λ∞(~k),

D∞(λ) =
{
~k ∈ G∞ : λ∞(~k) = λ

}
,

is proven to be a slightly distorted circle with infinite number of holes. It can be described
by the formula:

D∞(λ) = {~k : ~k = κ∞(λ, ~ν)~ν, ~ν ∈ B∞(λ)}, (20)

where B∞(λ) is a subset of the unit circle S1. The set B∞(λ) can be interpreted as the
set of possible directions of propagation for the almost plane waves (15). The set B∞(λ)
has a Cantor type structure and an asymptotically full measure on S1 as λ→∞:

L (Bn(λ)) =λ→∞ 2π +O
(
λ−γ3/2l

)
, (21)

here and below L(·) is the length of a curve. The value κ∞(λ, ~ν) − λ1/2l in (20) gives
the deviation of D∞(λ) from the perfect circle of the radius λ1/2l in the direction ~ν. It is
proven that the deviation is asymptotically small

κ∞(λ, ~ν) =λ→∞ λ1/2l +O
(
λ−γ4

)
, γ4 > 0. (22)

4. Absolute continuity of the branch of the spectrum (the semiaxis) corresponding to Ψ∞(~k, ~x)
is proven.

To prove the results listed above we develop a modification of the Kolmogorov-Arnold-
Moser (KAM) method. The method includes an iteration procedure. On each step of the
procedure we describe a resonant set, which is a neighborhood of intersections and quasi-
intersections of an isoenergetic surface in space of ~k. Description of resonant sets is the main
technical challenge of the proof. We introduce an angle variable ϕ: ~k = |~k|(cosϕ, sinϕ). All

functions of ~k we consider as analytical functions of ϕ. We describe resonant sets in terms of
ϕ. In the case of a polyharmonic operator H = (−∆)l +V (x), l > 5, the result is proven in [2].
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Decorrelation estimates for the eigenlevels of random
operators in the localized regime

Frederic Klopp

University of Paris Nord

We report on recent results obtained in [4]. On `2(Zd), consider the random Anderson
model

Hω = −∆ + Vω

where −∆ is the free discrete Laplace operator

(−∆u)n =
∑

|m−n|=1

um for u = (un)n∈Zd ∈ `2(Zd)

and Vω is the random potential

(Vωu)n = ωnun for u = (un)n∈Zd ∈ `2(Zd). (23)

We assume that the random variables (ωn)n∈Zd are independent identically distributed and that
their distribution admits a compactly supported bounded density, say g.
It is then well known (see e.g. [3]) that

• let Σ := [−2d, 2d]+supp g and S− and S+ be the infimum and supremum of Σ; for almost
every ω = (ωn)n∈Zd , the spectrum of Hω is equal to Σ;

• for some S− < s− ≤ s+ < S+, the intervals I− = [S−, s−) and I+ = (s+, S+] are
contained in the region of localization for Hω, in particular, I := I− ∪ I+ contains only
pure point spectrum associated to exponentially decaying eigenfunctions. If the disorder
is sufficiently large or if the dimension d = 1 then, one can pick I = Σ;

• there exists a bounded density of states, say λ 7→ ν(E), such that, for any continuous
function ϕ : R → R, one has∫

R
ϕ(E)ν(E)dE = E(〈δ0, ϕ(Hω)δ0〉). (24)

Here, and in the sequel, E(·) denotes the expectation with respect to the random param-
eters, and P(·) the probability measure they induce.
Let N be the integrated density of states of Hω i.e. N is the distribution function of the
measure ν(E)dE. The function ν is only defined E-almost everywhere. In the sequel,
when we speak of ν(E) for some E, we mean that the non decreasing function N is
differentiable at E and that ν(E) is its derivative at E.

For L ∈ N, let Λ = ΛL = [−L,L]d be a large box and #ΛL = (2L+ 1)d be its cardinality. Let
Hω(Λ) be the operator Hω restricted to Λ with periodic boundary conditions. The notation
|Λ| → +∞ is a shorthand for considering Λ = ΛL in the limit L → +∞. Let us denote the
eigenvalues of Hω(Λ) ordered increasingly and repeated according to multiplicity by E1(ω,Λ) ≤
E2(ω,Λ) ≤ · · · ≤ EN(ω,Λ).

25



Let E be an energy in I such that ν(E) > 0. The local level statistics near E is the point
process defined by

Ξ(ξ, E, ω,Λ) =
N∑

j=1

δξj(E,ω,Λ)(ξ) (25)

where
ξj(E, ω,Λ) = |Λ| ν(E) (Ej(ω,Λ)− E), 1 ≤ j ≤ N. (26)

One of the most striking results describing the localization regime for the Anderson model is

Theorem [6] Assume that E ∈ I be such that ν(E) > 0.
When |Λ| → +∞, the point process Ξ(·, E, ω,Λ) converges weakly to a Poisson process on
R with intensity the Lebesgue measure i.e. for (Uj)1≤j≤J , Uj ⊂ R bounded measurable and
Uj′ ∩ Uj = ∅ if j 6= j′ and (kj)1≤j≤J ∈ NJ , one has

P


ω;


#{j; ξj(E, ω,Λ) ∈ U1} = k1

...
...

#{j; ξj(E, ω,Λ) ∈ UJ} = kJ


 →

Λ→Zd

J∏
j=1

e−|Uj | |Uj|kj

kj!
.

A natural question that arises once this result is known:

• for E 6= E ′, are the limits of Ξ(ξ, E, ω,Λ) and Ξ(ξ, E ′, ω,Λ) stochastically independent?

This question has arisen and has been answered for random matrices (see e.g. [5]); note that,
in this case, the local statistics are not Poissonian.
For the Anderson model, this question has been open (see e.g. [7,8]) and to the best of our
knowledge, the paper [4] is the first to bring an answer. The conjecture is also open for the
continuous Anderson model and random CMV matrices where the local statistics have also
been proved to be Poissonian (see e.g. [1,2,8,9]).
The main result is

Theorem 1 [4] Assume that the dimension d = 1. Pick E ∈ I and E ′ ∈ I such that E 6= E ′,
ν(E) > 0 and ν(E ′) > 0.
When |Λ| → +∞, the point processes Ξ(E, ω,Λ) and Ξ(E ′, ω,Λ), defined in (25), converge
weakly respectively to two independent Poisson processes on R with intensity the Lebesgue mea-
sure. That is, for (Uj)1≤j≤J , Uj ⊂ R bounded measurable and Uj′ ∩ Uj = ∅ if j 6= j′ and
(kj)1≤j≤J ∈ NJ and (U ′

j)1≤j≤J ′, U
′
j ⊂ R bounded measurable and U ′

j′ ∩ U ′
j = ∅ if j 6= j′ and

(k′j)1≤j≤J ∈ NJ ′ one has

P


ω;


#{j; ξj(E, ω,Λ) ∈ U1} = k1

...
...

#{j; ξj(E, ω,Λ) ∈ UJ} = kJ

 and


#{j; ξj(E ′, ω,Λ) ∈ U ′

1} = k′1
...

...

#{j; ξj(E ′, ω,Λ) ∈ UJ ′} = kJ ′





→
Λ→Zd

J∏
j=1

e−|Uj | |Uj|kj

kj!
.

J ′∏
j=1

e−|Uj′ | |Uj′|kj′

kj′ !
.

When d ≥ 2, we also prove
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Theorem 2 Assume that d is arbitrary. Pick E ∈ I and E ′ ∈ I such that |E − E ′| > 2d,
ν(E) > 0 and ν(E ′) > 0.
When |Λ| → +∞, the point processes Ξ(E, ω,Λ) and Ξ(E ′, ω,Λ), defined in (25), converge
weakly respectively to two independent Poisson processes on R with intensity the Lebesgue mea-
sure.

In [2], the authors extensively study the distribution of the energy levels of random systems in
the localized phase. Their results apply also to the discrete Anderson model. As a consequence
of this work, Theorems 1 and 2 follow immediately from the decorrelation estimates that we
present now. They are the main technical results of the paper [4].

Lemma 1 [4] Assume d = 1 and pick β ∈ (1/2, 1). For α ∈ (0, 1) and {E,E ′} ⊂ I s.t. E 6= E ′,
for any c > 0, there exists C > 0 such that, for L ≥ 3 and cLα ≤ ` ≤ Lα/c, one has

P
({

σ(Hω(Λ`)) ∩ (E + L−d(−1, 1)) 6= ∅,
σ(Hω(Λ`)) ∩ (E ′ + L−d(−1, 1)) 6= ∅

})
≤ C(`/L)2de(log L)β

. (27)

This lemma shows that, up to sub-polynomial errors, the probability to obtain simultaneously
an eigenvalue near E and another one near E ′ is bounded by the product of the estimates
given for each of these events by Wegner’s estimate. In this sense, (27) is similar to Minami’s
estimate for two distinct energies.
Lemma 1 proves a lemma conjectured in [7,8] in dimension 1.

In arbitrary dimension, we prove (27), actually a somewhat stronger estimate, only when
the two energies E and E ′ are sufficiently far apart.

Lemma 2 [4] Assume d is arbitrary. Pick β ∈ (1/2, 1). For α ∈ (0, 1) and {E,E ′} ⊂ I s.t.
|E −E ′| > 2d, for any c > 0, there exists C > 0 such that, for L ≥ 3 and cLα ≤ ` ≤ Lα/c, one
has

P
({

σ(Hω(Λ`)) ∩ (E + L−d(−1, 1)) 6= ∅,
σ(Hω(Λ`)) ∩ (E ′ + L−d(−1, 1)) 6= ∅

})
≤ C(`/L)2d(logL)C . (28)

This e.g. proves the independence of the processes for energies in opposite edges of the almost
sure spectrum.
The estimate in Lemma 2 is somewhat stronger than (27); one can obtain an analogous estimate
in dimension 1 if one restricts oneself to energies E and E ′ such that E − E ′ does not belong
to some set of measure 0.
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KdV flow on the space of generalized reflectionless
potentials

Shinichi Kotani

Kwansei Gakuin University

For a real valued bounded measurable function V on R we consider a 1D-Schrödinger
operator L with potential V, namely

L = − d2

dx2
+ V,

which can be realized as a self-adjoint operator in L2 (R) .Then it is well known that for each
λ ∈ C\R there exist unique solutions f± of

Lf± = λf± , f± ∈ L2 (R±) and f± (0) = 1.

Define the Weyl functions m± by
m± (λ) = ±f ′± (0).

They are holomorphic functions with positive imaginary parts on the upper half plane C+,
which we call Herglotz functions. If the potential V is a sample path of a certain stationary
random process V ω (x) , we have a family of Schrödinger operators Lω with potentials V ω. We
assume the ergodicity of the stationary process {V ω (x)}x∈R . In this formulation, not only
random processes but also periodic or almost periodic potentials are included. Due to the
ergodicity of the process, every spectral property of the family of self-adjoint operators {Lω}
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holds with probability one. Therefore the absolutely continuous spectrum of Lω which we
denote by Σac is independent of a sample ω. If Σac is non-empty, then it is known that

mω
+ (ξ + i0) = −mω

− (ξ + i0) for a.e. ξ ∈ Σac. (29)

On the other hand, the property of (29) between two Weyl functions m± is known to be held
on the half axis [0,∞) if the potential V decays sufficiently fast at ±∞ and the reflectionless
coefficient vanishes on [0,∞), and such a potential is called reflectionless. It is also well known
that the KdV equation is completely solvable if the initial function is a reflectionless potential.

These facts naturally lead us to define a class of potentials

Ω =

{
V ; real valued bounded measurable and

m+ (ξ + i0) = −m− (ξ + i0) for a.e. ξ ∈ [0,∞)

}
,

an element of which is called as a generalized reflectionless potential. This class was intro-
duced by V.A.Marchenko and his collaborators and they proved several important properties
of generalized reflectionless potentials. Especially such potentials are known to be holomorphic
on a strip including the whole real line. The speaker has constructed a solution of the hierarchy
of KdV equations with initial function from Ω, which we call KdV flow. The purpose of the
talk is to give several properties of this flow and future research programme of the flow.

On non-unitary representations of the generalized
Weyl commutation relations

Konstantin Makarov

University of Missouri at Columbia

Joint work with E. Tsekanovskii

Let U and V be strongly continuous one-parameter (semi-)groups of unitary and contrac-
tive operators in a separable Hilbert space, respectively. Assume, in addition, that {gt}t∈R is a
one-parameter group of affine transformations of the real line preserving the orientation. That
is,

gt(x) = at(x− γ) + γ, t, x ∈ R,
for some a > 0 and γ ∈ R. Suppose that the generalized Weyl commutation relations

UtVs = eisgt(0)Vsg′t(0)
Ut, t ∈ R, s ≥ 0,

hold, with g′t(x) = ∂
∂x
gt(x).

In this talk we provide a complete classification (up to unitary equivalence) of indecom-
posable representations of the generalized Weyl commutation relations in the case where the
semi-group of contractions is close to a unitary (semi-)group.

Our result can be considered a (non-selfadjoint) variant of the Stone-von Neumann Unique-
ness Theorem that classifies the irreducible unitary representations (U, V ) of the Weyl Com-
mutation Relations

UtVs = eistVsUt, t, s ∈ R.
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On Links Between the Random Matrix

and
Random Operator Theories

Leonid Pastur
Institute for Low Temperature Physics, Kharkov

1 Introduction

We discuss certain common topics of and links between the two branches of spectral theory and
mathematical physics: random matrix theory (RMT) and random operator theory (RMT). The
both branches appeared in the 1950s and have been developing mostly independently. The RMT
owes a lot to E. Wigner, who proposed in 1952 to use the real symmetric and hermitian matrices
of large size with independent entries to describe the experimentally discovered phenomenon of
the energy level repulsion of heavy nuclei. It is worth to mention, however, that another class
of large random matrices, known as sample covariance matrices, was used in statistics since the
early 1930s.

The ROT dates back to the seminal paper by P.Anderson of 1958, in which it was proposed
to explain the absence of the particle and charge mobility in disordered solids by the pure point
nature of the spectrum of corresponding finite difference and differential operators, defined in
the whole space and having random coefficients.

A number of other problems and results have appeared since then in both branches but
till now the RMT is concentrated mostly on the asymptotic studies of eigenvalue distributions
of n × n hermitian, real symmetric, unitary, etc random matrices, for which the number νn

of non-zero (and having as a rule the same order of magnitude) entries grows faster than the
matrix size n as n→∞ (see e.g. [9])

On the other hand, the ROT deals mostly with the studies of spectral types, the pure
point type first of all, of finite difference and differential operators with ergodic (and weakly
dependent as a rule) coefficients, although the asymptotic properties of eigenvalues of operators,
defined by the same finite difference or differential expressions in large boxes are also of interest
[16].

In an archetype case of matrices with Gaussian entries (Gaussian Unitary Ensemble
(GUE)) we have νn = O(n2), n → ∞, but it could be just νn/n → ∞, n → ∞, as in the
case of band or sparse random matrices. To prevent in this situation the spectrum to escape
to infinity as n→∞, one has to assume that the entries of matrix vanish in this limit with the
rate, determined by νn. This can be compared with the mean field type models of statistical
mechanics.

The simplest example of “opposite case” is the diagonal random matrix, for which νn = n.
Another, much less simple example is a three-diagonal or Jacobi matrix, where only the principal
and the two adjacent diagonals are non-zero, so that νn = 3n−2. In these cases, unlike random
matrices with νn/n→∞, n→∞, the non-zero entries need not to be vanishing as n→∞, and
it is assumed as a rule that the entries do not depend on n. An important characteristic property
of these random matrices is that for them there exist “limiting objects”, selfadjoint operators
in l2(Z), defined by the double infinite version of the corresponding finite size matrix, i.e., by
a second order finite difference equation on the whole line. These and analogous self adjoint
operators in l2(Zd) and L2(Rd), d > 1, defined by finite difference and differential equations in
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Zd and Rd with random ergodic coefficients are studied in spectral theory of random operators
(ROT) and its theoretical physics counterpart, known as the theory of disordered systems [7,16].

The goal of the talk is to discuss certain problems and quantities, that are of common
interest in both branches. However, the corresponding results are different as a rule. Thus, it
is of interest to compare them and/or to find certain links. To this end we consider several
families of random ergodic operators, each family displaying certain properties pertinent for
random matrices as the parameter that indexes operators of the family tends to infinity. Part
of these results dates back to [6]. However we obtain them by a simpler and more transparent
method worked out recently in the RMT [14] and can also be applied to other families.

The organization of the talk is as follows. We recall the most known and studied random
matrices and their properties. Then we present certain families of random ergodic operators and
show that their integrated density of states (IDS) converge weakly to the limiting normalized
counting measure of eigenvalues (NCM) of related random matrices.

2 Most Widely Known Random Matrices

2.1 Description

2.1.1 Gaussian Unitary Ensemble

This is the hermitian random matrix, defined as

Mn = n−1/2Wn, Wn = {Wjk}n
j,k=1, Wjk = Wkj ∈ C (30)

where Wjk, 1 ≥ j ≥ k ≥ n are independent complex Gaussian and

E{Wjk} = E{W 2
jk} = 0, E{|Wjk|2} = w2.

Band Version

Mn,b = b−1/2
n ϕ(|j − k|/βn)Wn, bn = 2βn + 1, βn ∈ N, (31)

supp ϕ = [0, 1],

∫
ϕ2(t)dt = 1.

Deformed Version

Mn = M (0)
n + n−1/2Wn, (32)

where M
(0)
n is n× n hermitian either non-random or random and independent of Wn.

2.1.2 “Wishart” Matrices

Mn = n−1X∗
m,nXm,n, Xm,n = {Xαj}m,n

α,j , (33)

where {Xαj}m,n
α,j are i.i.d. complex Gaussian and

E{Xαj} = E{X2
αj} = 0, E{|Xαj|2} = a2 (34)
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Note that in statistics one use the term Wishart matrices for those with real Gaussian random
variables [11]. The case of complex Gaussian random variables is known in the RMT as the
Laguerre Ensemble.

Deformed Versions (both additive and multiplicative)

Mn = M (0)
n + n−1X∗

m,nTmXm,n (35)

where M
(0)
n and Tm are either non-random or random hermitian and independent of Xm,n and

one of another and so called “signal-noise” matrix

Mn = (Am,n +Xm,n)∗Tm(Am,n +Xm,n), (36)

where Am,n is either non-random or random but independent of Xm,n.

2.1.3 Law of Addition

Here we have n× n hermitian
Mn = An + U∗

nBnUn, (37)

where Un is uniformly (Haar) distributed over U(n) and An and Bn are either non-random
or random hermitian and independent of Un and one of another. One of motivation for this
problem is provided by the free probability studies, see e.g. [21].

2.1.4 Wigner Matrices

Replace Wjk, 1 ≤ j ≤ k ≤ n in the GUE and its band and deformed versions by arbitrary
complex random variables with the same first and second moment.

2.1.5 Sample Covariance Matrices

Replace {Xαj}m,n
α,j in “Wishart” and its deformed version by arbitrary complex random variables

with the same first and second moment.

2.2 Basic Results

Introduce the Normalized Counting Measure Nn of eigenvalues {λ(n)
l }n

l=1 of Mn:

Nn(∆) = ]{l = 1, ..., n : λ
(n)
l ∈ ∆}/n, ∆ ⊂ R (38)

and assume that the corresponding measures N
(0)
n for M

(0)
n , σm of Tm, NAn of An, and NAn of

Bn have weak limits (with probability 1 if random) as m, n → ∞, m/n → c ∈ [0,∞). Then
in all above cases Nn converges weakly with probability 1 to a non-random limit N . The limit
can be found via its Stieltjes transform

f(z) =

∫
N(dλ)

λ− z
,=z 6= 0

that solves functional equations below and via the inversion formula

N(∆) = lim
ε→0

1

π

∫
∆

=f(λ+ i0)dλ.
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2.2.1 Deformed GUE

(i) The Stieltjes transform of the limiting NCM solves the equation

f(z) = f (0)(z + w2f(z)), (39)

where f (0) is the Stieltjes transform of N (0). The equation is uniquely soluble in the class of
Nevanlinna functions, i.e., analytic for non-real z and such that

=f=z ≥ 0, f(z) = −1

z
+ o(1/z), z →∞. (40)

The corresponding limiting measure is known as the deformed semicircle law. The same limit
is for Wigner matrices (macroscopic universality) under the condition

lim
n→∞

n−2
∑

1≤j≤k≤n

P{|Wjk| > τ
√
n} = 0, ∀τ > 0,

reminiscent the Lindeberg condition of probability theory [13]. N is absolutely continuous and
has continuous density ρ.

In particular, if M
(0)
n = 0 (GUE, Wigner), then we have the semicircle law by Wigner

f(z) =
1

2w2

(√
z2 − 4w2 − z

)
, (41)

N(dλ) = ρ(λ)dλ, ρ(λ) = 1[−2w,2w](λ)
√

4w2 − λ2.

The same limit is for band matrices if bn/n→ 0, n→∞.
(ii) If λ0 belongs to the interior (bulk) of the support of N and

En(s) = P{[λ0, λ0 + s/ρ(λ0)] /∈ λ(n)
l , l = 1, ..., n} (42)

is the gap probability, then we have the Gaudin-Wigner-Dyson law for

E(s) = lim
n→∞

En(s) = det(1− S(s)), (43)

where

(S(s)f)(x) =

∫ s

0

sin π(x− y)

π(x− y)
f(y)dy. (44)

In particular, we have for the limiting probability density p(s) = E ′′(s) of spacing between
adjacent eigenvalues

p(s) =
π

36
s2(1 + o(1)), s→ 0, (45)

i.e., the level repulsion [2,4].
(iii). Eigenvectors of the GUE are uniformly (Haar) distributed over U(n), an analog of

complete delocalization.
Results (ii) and (iii) were recently extended to a wide class Wigner matrices (universality)

[3,20].
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2.2.2 Deformed Wishart Matrices

The Stieltjes transform is the unique Nevanlinna solution of

f(z) = f (0)

(
z − a2c

∫
τσ(dτ)

1 + a2τf(z)

)
, (46)

where c = limn→∞m/n. In particular, for M
(0)
n = 0, Tm = Id

NMP (dλ) = (1− c)+δ(λ)dλ+ ρMP (λ)dλ, (47)

where
ρMP (λ) = (2πa2λ)−1

√
(a+ − λ)(λ− a−)1[a+,a−], a± = a2(1±

√
c)2.

The same result for a wide class of sample covariance matrices [8].
The relations (43) – (45) are also valid in this case [1], manifesting an important univer-

sality property of the limiting spacing distribution of hermitian random matrices.

2.2.3 Law of Addition

Here also the limiting NCM can be found via its Stieltjes transform, solving uniquely a certain
functional equation, determined by the Stieltjes transforms fA and fB of limiting NCM of {An}
and {Bn}:

f(z) = fA(hB(z)) (48)

f(z) = fB(hA(z))

f−1(z) = z − hA(z)− hB(z),

uniquely soluble in the class of functions (f, hA, hB), analytic for non-real z and satisfying ( 40)
and

hA,B(z) = z +O(1), z →∞ (49)

[17,18].

3 “Corresponding” Random Operators

3.1 Description

(i). Define a symmetric random operator HRG
in l2(Zd), d ≥ 1 by its matrix {HRG

(x, y)}x,y∈Zd

as
HRG

(x, y) = h(x− y) +R−d/2ϕ((x− y)/RG)W (x, y), x, y ∈ Zd, (50)

where h : Zd → C,

h(−x) = h(x),
∑
x∈Zd

|h(x)| <∞, (51)

RG > 0, ϕ : Rd → R is piece-wise continuous,

max
t∈R

|ϕ(t)| ≤ ϕ0 <∞, ϕ(t) = 0, |t| > 1,

∫
Rd

ϕ2(t)dt = 1, (52)
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and
W (x, y) = W (y, x), x, y ∈ Zd, (53)

are independent (modulo the above symmetry condition) complex Gaussian random variables
(cf (30)):

E{W (x, y)} = E{W (x, y)2} = 0, E{|W (x, y)|2} = 1, x, y ∈ Zd. (54)

In the case d = 1 the random part of HRG
of (50) is an infinite matrix having nonzero

entries only inside the band of width (2RG + 1) around the principal diagonal, and can be
viewed as an analog of band matrix (31).

(ii) Define a symmetric random operator Hd = {Hd(x, y)}x,y∈Zd in l2(Zd) by

Hd(x, y) = hd(x− y) + (2d)−1/2W1(x, y), (55)

where for x = (x1, . . . , xd)

hd(x) = d−1/2

d∑
j=1

h1(xj)
∏
k 6=i

δ(xk), h(0) = 0, (56)

δ is the Kronecker symbol, h1 : Z → C satisfies (51) for d = 1 (e.g. the discrete Laplacian) and

W1(x, y) =

{
W (x, y), |x− y| = 1,
0, |x− y| 6= 1,

(57)

and W (x, y) are as in (54).
(iii) Define a symmetric operator HnW

= {HnW
(x, α; y, β)}x,y∈Zd,α,β=1,...nW

in l2(Zd)⊗CnW

as
HnW

(x, α; y, β) = h(x− y)δαβ + n
−1/2
W δ(x− y)Wαβ(x) (58)

where x, y ∈ Zd, α, β = 1, . . . , nW , h is the same as HRG
, and

Wαβ(x) = Wβα(x), x ∈ Zd, α, β = 1, ..., nW , (59)

are independent (modulo the symmetry condition) complex Gaussian random variables:

E{Wαβ(x)} = E{W 2
αβ(x)} = 0, E{|Wαβ(x)|2} = 1, x ∈ Zd, α, β = 1, ..., nW . (60)

HnW
is a special case of operators introduced by Wegner [22]. It can be regarded as the nW -

component analog of the discrete Schrodinger operator (the Anderson model (72)) or as the
Hamiltonian of a disordered system in the dimension d + nW , in which the random potential
in nW “transverse” dimensions is written in the “mean field” form.

(iv). The random part of operator HR of (50) is the infinite random matrix {R−d/2ϕ((x−
y)/R)W (x, y)}x,y∈Zd , resembling the GUE matrix {n−1/2Wjk}n

j,k=1. Recalling that one more
random matrix constructed from complex Gaussian random variables is the Laguerre Ensemble
(33) – (34), we can introduce the analog of HRG

with the Laguerre type random part:

H
(L)
RL

(x, y) = h(x− y) +R−d
L ϕ((x− y)/RL)

m∑
α=1

Xα(x)Xα(y), x, y ∈ Zd, (61)

35



where h is as in (50), {Xα(x)}1≤α≤m,x∈Zd are i.i.d. complex Gaussian random variables such
that

E{Xα(x)} = E{X2
α(x)} = 0, E{|Xα(x)|2} = 1

and ϕ is positive definite, vanishing sufficiently fast at infinity.
(v) The next ergodic operator has the random part due to unitary Haar distributed random

matrices, similarly to that of (37). Namely, consider the hermitian HnV
in l2(Zd)⊗CnV , defined

by the matrix (cf (58) – (60))

HnV
(x, α; y, β) = h(x− y)δαβ + δ(x− y)(U∗

nV
(x)BnV

UnV
(x))αβ, (62)

where h is as above, x, y ∈ Zd, α, β = 1, . . . , nV , {UnV
(x)}x∈Zd are i.i.d. nV × nV unitary

matrices whose common probability law is the normalized Haar measure on U(nV ), and B is
nV × nV hermitian matrix.

Random operators HRG
and Hd can be viewed as the analogs of classical lattice Hamilto-

nians of statistical mechanics in which RG is the interaction radius and d is the dimensionality
of the space. The limits RG → ∞ and d → ∞ in these Hamiltonians lead to the mean field
models which, being rather simple, provide nevertheless fairly reasonable qualitative description
of corresponding systems with large interaction radius and in high dimensions. The operators
HnW

and HnV
are analogous to Hamiltonians of classical statistics l mechanics models having

an internal structure (certain number of spin components or orbitals per site), and here the
limit of infinite number of spin components or orbitals is known as the spherical model.

Note also that the four operators (50) – (60) have the form of a non-random transla-
tion invariant part and a fluctuating random part explicitly containing the parameters RG,
d,RL, nW , nV that we are going to send to infinity. The random parts are such that the larger
these parameters are, the more “extended” and smaller the randomness is. Similar scaling of
the interaction is widely used in the mean field and the spherical approximations of statistical
mechanics.

3.2 Integrated Density of States

Denote Ω the infinite dimensional probability space formed by the collection {W (x.y)}x,y∈Zd

in the cases a = R, d, {Wαβ(x, y)}α,β=1,...,n, x,y∈Zd in the case a = nW , and {Xα(x)}x∈Zd,α∈N and
{U(x)}x∈Zd in cases of (61) and a = nV . Let {Ts}s∈Zd be the (shift) transformations of Ω,
defined as

W (x, y, Tsω) = W (x+ s, y + s, ω), ∀x, y ∈ Zd,

in the case of (53) – (54), as

Wαβ(x, y, Tsω) = Wαβ(x+ s, y + s, ω), ∀x, y ∈ Zd, α, β = 1, . . . nW ,

in the case of (59) – (60), as

Xα(x, Tsω) = Xa(x+ s), α = 1, ...m,

in the case of a = RL, and

U(x, Tsω) = U(x+ s, ω), ∀x ∈ Zd
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in the case of a = nV . It follows from the definitions of these collections of random variables
that each Ts preserves the probability measure in Ω and that {Ts}s∈Zd is the ergodic group of
transformations of Ω. This implies that the random operators Ha, a = RG, d, RL, nW , nV are
ergodic symmetric operators in the sense of [16], Sections 1.D and 2.A and if {Us}s∈Zd is the
group of unitary (shift) operators in l2(Zd), defined for any ψ ∈ l2(Zd) as

(Usψ)(x) = ψ(x+ s), ∀x ∈ Zd

in the case a = RG, d, RL and in l2(Zd)⊗ Ca as

(Usψ)(x, α) = ψ(x+ s, α), ∀x ∈ Zd, α = 1, ..., a

in the case a = nW , nV , then we have with probability 1

UsHa(ω)U∗
s = H(Tsω), ∀s ∈ Zd. (63)

We refer the reader for the book [16], Chapters I and II for general spectral properties of ergodic
operators. In particular, it follows from Corollary 4.3 of the book that all four symmetric
operators Ha are defined with probability 1 on the set of sequences with finite support and is
essentially self adjoint on the set.

Our intention is to study the simplest, although rather important from several point of
view, spectral characteristic of the above ergodic operators known as the Integrated Density
of States (IDS). It is defined as follows. For each of above operators consider its “finite box”
version, i.e., the restrictions HaΛ of Ha to the cube Λ ⊂ Zd centered at the origin. We obtain
|Λ| × |Λ| random matrices for a = RG, d, RL, |Λ|nW × |Λ|nW for a = nW and |Λ|nV × |Λ|nV

for a = nV . For each of these matrices we define in the usual way the Normalized Counting
Measure NaΛ of their eigenvalues as the eigenvalue counting measure divided by the size of the
corresponding matrix. It follows from the general results of spectral theory of ergodic operators
(see [16], Chapter IV) that for each of above operators NaΛ converges weakly with probability
1 to a non-random limit Na and for any ∆ ⊂ R

Na(∆) = E{Ea(0, 0; ∆)}, a = R, d,RL (64)

where {Ea(x, y; ∆)}x,y∈Zd is the matrix of the resolution of identity of Ha for a = R, d,RL, and

Na(∆) = E{a−1

a∑
α=1

Ea(α, 0;α, 0; ∆)}, a = nW , nV , (65)

where
{Ea(x, α; y, β; ∆)}x,y∈Zd,α,β=1,...a (66)

is the matrix of the resolution of identity of the operators Ha for a = nW , nV .
We show that as far as it concerns the IDS of Ha, a = RG, d, RL, nW , nV , their limits as

a → ∞ coincide with the limiting Normalized Counting Measure of certain random matrix
ensembles (the deformed semicircle law for a = RG, d, and nW , the law defined by (46) for
a = RL, and by (48) for a = nV . In addition, the limits are strongly related to certain
approximations for the Integrated Density of States of elementary excitations in certain models
of disordered condensed media (see [6,5,7]) for more detailed discussions and references).
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Denote N (0) the IDS of the non-random (unperturbed) parts of operators (50) – (61). For
these convolution operators that satisfies (63) for Ω = {0} formula (64) implies that

N (0)(dλ) = mes{k ∈ Td : ĥ(k) ∈ dλ}, (67)

where Td = [0, 1]d is d-dimensional torus and

ĥ(k) =
∑
x∈Zd

h(x)e2πi(k,x) (68)

is the symbol of this operator.
Note that for operator Hd of (55) the non-random part and its IDS depend also on d.

Therefore, unlike HR, HnW
and HnV

, in the case of Hd the limiting transition d → ∞ affects
also the unperturbed IDS of the convolution operator, defined by the first term on the r.h.s.
part of (55) and (56). More precisely, in this case N (0) is given by the limit of (56) and (67) as
d→∞ and is The Gaussian measure

N (0)(dλ) = (2πh2)
−1/2e−λ2/2h2dλ, (69)

where
h2 =

∑
x∈Z

h2
1(x). (70)

4 Results

We are going to prove that for a = RG, d, RL, nW the weak limit of Na as a→∞ exists and is
the deformed semicircle law, and that for a = nV the weak limit of NnV

as nV →∞ exists and
coincides with that of (48). We start from the cases a = RG, d, nW , RL.

Theorem 1 Let Ha, a = RG, d, nW , RL be the random operators defined by (50) – (60), N (0)

be defined by (67) for a = R, nW and by (69) for a = d, Na be the Integrated Density of States
of Ha given by (64) – (65). Then for a = RG, d, nW Na converges weakly as a → ∞, to the
probability measure Ndsc, Ndsc(R) = 1 (the deformed semicircle law), whose Stieltjes transform
fdsc is a unique solution of the functional equation (39) with w = 1, N (0) of (67) – (70) in the
class of functions, analytic for =z 6= 0 and satisfying (40), and for a = RL NRL

converges to
the measure, whose Stieltjes transform is uniquely determined by (46) and (40) in which the
role of σ plays

σ(∆) = mes{k ∈ supp ϕ̂ : ϕ̂(k) ∈ ∆},

where ϕ̂ is the Fourier transform of positive definite ϕ of compact support.

The proofs of the theorem is essentially based on an approach to the study the NCM in the
RMT. Two main ingredient of the approach are the Poincaré - Nash bound for the variance
of functions of Gaussian and classical group random variables and the differential formula for
them [14,18].

Remarks (1.) We considered above the hermitian matrices. The case of real symmetric
matrices can also be treated and leads to the same limiting results as a→∞, although requires
a more involved argument.
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(2.) The case a = RG for d = 1 can also be viewed as that of n × n band matrices
(31), in which we first pass to the limit n → ∞ of its infinite size and then to the limit
b = 2RG + 1 →∞ of the infinite band width. Thus, the subsequent limits n→∞ and b→∞
and the simultaneous limit n → ∞, b → ∞ lead to the same form of the limiting Normalized
Counting Measure of eigenvalues of the corresponding matrices.

We turn now to the case a = nV .

Theorem 2 Let HnV
be a self-adjoint random operator, defined in (62). Assume that the

Normalized Counting Measure NBnV
of BnV

satisfies the condition

sup
nV

∫
|λ|4NBnV

(dλ) <∞, (71)

and converges weakly to a probability measure NB as nV → ∞. Then the IDS (65) of HnV

converges weakly as nV →∞ to the measure, whose Stieltjes transform is a unique solution of
the system (48), in which fA is replaced by the Stieltjes transform f (0) of (67) and fB is the
Stieltjes transform of NB.

As was mentioned above, the operators Ha a = RG, d, RL, nW , nV are analogs of certain Hamil-
tonians of lattice models of statistical mechanics, where the limits of infinite interaction radius,
dimensionality or the number of spin components lead to the mean field or the spherical versions
of the models. On the other hand, the studies of elementary excitations and wave propagation
in disordered media are essentially based on the spectral properties of the discrete Schrodinger
operator with random potential (known also as the Anderson model), the sum of the lattice
Laplacian −∆ and the multiplication operator V , defined by the collection of i.i.d. random
variables {V (x)}x∈Zd , i.e. the discrete Schrodinger operator

−∆ + V. (72)

Spectral analysis of this operator and other finite difference and differential operators with ran-
dom coefficients are among the main objectives of the ROT and the branch of condensed matter
theory, known as the theory of disordered systems. In particular, the theory includes several
approximation schemes, analogous to the mean field approximations in statistical mechanics
(see e.g. [7], Chapter 5). One may ask then about the meaning of the results of this section in
the context of the ROT and the theory of disordered systems. It can be shown that the result,
mentioned in Theorem 1 for a = RL with ϕ̂ = a1A, a > 0, A ⊂ Rd, i.e., σ of (46), having
the atoms at zero and a, the latter of the mass mesA, corresponds to the so called modified
propagator approximation, and the result of Theorem 2 corresponds to the so called coherent
potential approximation. We refer the reader to the works [7], Chapter 5, and [6,12,19,22] for
related discussion and references.
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Functions of normal operators under perturbations

Vladimir Peller

Michigan State University at East Lansing

I am going to speak about functions f(N) of normal operators N and their behaviour
under small perturbations of N .

As in the case of self-adjoint operators the following formula holds:

f(N1)− f(N2) =

∫∫
C×C

f(ζ1)− f(ζ2)

ζ1 − ζ2
dEN1(ζ1)(N1 −N2) dEN2(ζ2),

whenever the divided difference
f(ζ1)− f(ζ2)

ζ1 − ζ2

is a Schur multiplier withe respect to the spectral measures of normal operstors N1 and N2.
However, if we want that the divided difference be a Schur multiplier with respect to all spectral
measures, then f must be a linear function.

This is why the case of normal operators is much more complicated than the case of
self-adjoint operators.

I am going to give another formula for f(N1)−f(N2) in terms of double operator integrals
which can be applied for large classes of functions f .

I am going to discuss the following results:
1. If f is a function of two real variables that belongs to the Besov class B1

∞1(R2), then f
is operator Lipscitz, i.e.,

‖f(N1)− f(N2)‖ ≤ const ‖N1 −N2‖

for arbitrary normal operators N1 and N2.
2. If f is a function of two real variables that belongs to the Hölder class Λα(R2), where

0 < α < 1. Then
‖f(N1)− f(N2)‖ ≤ const ‖N1 −N2‖α

for arbitrary normal operators N1 and N2.
3. Let ω be an arbitrary modulus of continuity. Put

ω∗(x) = x

∫ ∞

x

ω(t)

t2
dt.
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Suppose that f is a function on R2 such that

|f(ζ1)− f(ζ2)| ≤ constω(|ζ1 − ζ2|).

Then
‖f(N1)− f(N2)‖ ≤ constω∗(‖N1 −N2‖)

for arbitrary normal operators N1 and N2.
I am also going to discuss the case when N1 − N2 belongs to the Schatten–von Neumnn

class Sp.
The talk is based on joint work with A.B. Aleksandrov, D. Potapov, and F. Sukochev.

On a method for computing waveguide scattering
matrices 3

Boris Plamenevsky

St.Petersburg State University

Joint work with Oleg Sarafanov

Let G be a domain in R2 that coincides outside a large circle with the union of finitely
many non-overlapping semistrips (“cylindrical ends” ). A waveguide is modeled by the Dirichlet
problem for the Helmholtz equation in G with spectral parameter µ. As approximation to a
row of the scattering matrix S(µ), we choose the minimizer a(R, µ) of a quadratic functional
a 7→ JR(a, µ). To define such a functional, we solve a certain auxiliary boundary value problem
in the bounded domain GR obtained by cutting off the cylindrical ends at distance R. We prove
that, as R→∞, the minimizer a(R, ) tends to the corresponding row of S() with exponential
rate uniformly with respect to µ in any finite closed interval [µ1, µ2] of the continuous spectrum
not containing thresholds; in doing so, we do not exclude the presence of eigenvalues of the
waveguide in [µ1, µ2] (to the eigenvalues there correspond eigenfunctions exponentially decaying
at infinity). The applicability of the method does not restricted to the above simplest model.

Let us describe the method in more detail. We consider the boundary value problem

−∆u(x)− µu(x) = 0), x ∈ G; u(x) = 0, x ∈ ∂G. (73)

It is known that for µ ∈ [µ1, µ2] there exist solutions Yj, j = 1, . . . ,M , of problem (73) such
that

Yj(x, µ) = u+
j (x, µ) +

M∑
k=1

Sjk(µ)u−k (x, µ) +O(e−γ|x|) (74)

as |x| → ∞, where u+
j (·, µ) (u−j (·, µ)) is an incoming (outgoing) wave, γ being sufficiently small

positive number. The matrix S(µ) = ‖Sjk(µ)‖M
j,k=1 is uniquely determined for all µ ∈ [µ1, µ2];

it is independent of the possible arbitrariness in defining Yj(·, µ) for the µ which are eigenvalues
of (73). The matrix S(µ) is unitary for all µ and is called the scattering matrix.

3Supported by grants Scientific Schools-816.2008.1 and RFBR-09-01-00191-a
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To construct the aforementioned quadratic functional we consider the problem

(−∆− µ)XR
l = 0, x ∈ GR;

XR
l = 0, x ∈ ∂GR \ ΓR;

(∂ν + iζ)XR
l = (∂ν + iζ)(u+

l +
∑M

j=1
aju

−
j ), x ∈ ΓR, (75)

where ΓR is a truncation boundary, ζ ∈ R\{0}, ν is the outward directed normal, and a1, . . . , aM

are complex numbers. As an approximation to the row (Sl1, . . . , SlM) of the matrix S = S(µ),
we will take the minimizer a0(R, µ) = (a0

1(R, µ), . . . , a0
M(R, µ)) of the functional

JR
l (a1, . . . , aM , µ) = ‖XR

l − u+
l −

M∑
j=1

aju
−
j ;L2(Γ

R)‖2, (76)

where XR
l satisfies (75).

Theorem For all R > R0 and µ ∈ [µ1, µ2] there exists a unique minimizer a(R, µ) =
(a1(R, µ), . . . , aM(R, µ)) of the functional a 7→ JR

l (a, µ) in (76). The estimates

|aj(R, µ)− Slj(µ)| 6 c(Λ)e−ΛR, j = 1, . . . ,M,

hold with constant c(Λ) independent of R and µ and with any Λ < γ, while γ is the number
in(74). The method for computing scattering matrices was suggested in Grikurov V., Heikkola
E., Neittaanmäki, Plamenevskii B., On computation of scattering matrices and on surface waves
for diffraction gratings, Numer. Math., 94(2003), no.2, 269-288. The outline of the proof given
there is valid under the restriction that the interval [µ1, µ2] contains no eigenvalues of problem
(73). The justification of the method without such a restriction has been given for first time in
the present work.

Averaging in scattering problems

Alexey Pozharsky

St.Petersburg State University

The presentation is based on the join work with V. Buslaev

We consider the scattering that is described by the Schrödinger operator

Hε = −∆x + q
(
x,
x

ε

)
, x ∈ Rd,

where ∆x is the Laplacian with respect to the variable x and ε is a small positive parameter. As
for the function q = q(x, y), x, y ∈ Rd it is supposed that the following assumption is satisfied.

Assumption 1.

i) q is a real valued function of the class C∞(R2d);

ii) q(x, y) = 0 for |x| > R, y ∈ Rd, where R is some positive number;
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iii) q(x, y) is periodic with respect to y (with some periodicity cell Ω).

Let Hs
γ , s = 0, 1, 2, . . ., γ ∈ R be a Sobolev space of functions Rd → C with the following

norm

‖ψ‖2
Hs

γ
=
∑
|k|6s

∫
Rd

∣∣∣∣∂|k|ψ(x)

∂xk

∣∣∣∣2 (1 + |x|2
)−γ

dx.

Now we formulate one of our main results.
Theorem 1. Let the potential q satisfy the assumption 1, E > 0 and γ > 1. Then the

estimate
‖(Hε − E − i0)−1 − (Ĥ − E − i0)−1‖H0

−γ→H1
γ

6 Cε.

holds for ε > 0. Here Ĥ is the averaged operator

Ĥ = −∆x + q̂(x), q̂(x) =
1

|Ω|

∫
Ω

q(x, y) dy

and the constant C does not depend on ε (but can depend on E and γ).
Theorem 1 almost immediately leads to a consequence that can be considered as the main

result of the work. Let Fε(x̂, κ), k ∈ Rd, |κ| = E be the scattering amplitude of the plain wave
ei<x,κ>, that is defined by the equation

(Hε − E)ψ(x) = 0

and the asymptotic expansion at infinity

ψ(x) = ei<x,κ> + Fε(x̂, κ)
ei
√

E |x|

|x| d−1
2

+ o

(
1

|x| d−1
2

)
, |x| → ∞.

We describe the asymptotic behavior of the amplitude Fε(x̂, κ) as ε→ +0. Here we formulate
the consequence describing the leading order of the asymptotic expansion.

Theorem 2 Let the potential q satisfy assumption 1 and E > 0. Then the following
estimate holds

sup
x̂,κ

∣∣∣Fε(x̂, κ)− F̂0(x̂, κ)
∣∣∣ 6 Cε,

where F̂0(x̂, κ) is the scattering amplitude for the averaged operator Ĥ and the constant C does
not depend on ε.

Absolutely continuous spectrum of multi-dimensional
Schrödinger operators

Oleg Safronov

University of North Carolina at Charlotte

We consider two Schrodinger operators

H+ = −∆ + V, and H− = −∆− V.
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For the sake of simplicity we assume that V is bounded. Let λ±j be the negative eigenvalues of
H±, whose negative spectrum is assumed to be discrete. It turns out that the condition∑

j

|λ+
j |1/2 +

∑
j

|λ−j |1/2 <∞

implies that the absolutely continuous spectrum of both operators H± is essentially supported
by [0,∞). We will give three examples which show that this result can not be obtained within
the limits of the scattering theory. In partucular, we will establish that the absolutely continu-
ous spectrum of −∆+V covers the positive half-line for “almost every” potential V of the class
Ld+1 with d > 2. Our arguments based on the following result related to the representaion of
the potentilal. If ∑

j

|λ+
j |1/2 +

∑
j

|λ−j |1/2 <∞

and V is bounded, then
V (x) = divA(x) +W (x)

where A and W satisfy the property∫
(|A|2 + |W |)|x|1−ddx <∞.

Complete asymptotic expansion of the integrated
density of states of multidimensional almost-periodic

Schrödinger operator

Roman Shterenberg

University of Alabama at Birmingham

Joint work with Leonid Parnovski (University College London)

We consider the Schrödinger operator

H = −∆ + b (77)

acting in Rd. The potential b = b(x) is assumed to be real, smooth, and either periodic, or
almost-periodic; in the almost-periodic case we assume that all the derivatives of b are almost-
periodic as well. We are interested in the asymptotic behavior of the (integrated) density of
states N(λ) as the spectral parameter λ tends to infinity. The density of states of H can be
defined by the formula

N(λ) = N(λ;H) := lim
L→∞

N(λ;H
(L)
D )

(2L)d
.

Here, H
(L)
D is the restriction of H to the cube [−L,L]d with the Dirichlet boundary conditions,

and N(λ;A) is the counting function of the discrete spectrum of A. If we denote by N0(λ) the
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density of states of the unperturbed operator H0 = −∆, one can easily see that for positive λ
one has

N0(λ) = Cdλ
d/2,

where

Cd =
wd

(2π)d
and wd =

πd/2

Γ(1 + d/2)

is a volume of the unit ball in Rd. There is a long-standing conjecture that, at least in the case
of periodic b, the density of states of H enjoys the following asymptotic behavior as λ→∞:

N(λ) ∼ λd/2
(
Cd +

∞∑
j=1

ejλ
−j
)
, (78)

meaning that for each K ∈ N one has

N(λ) = λd/2
(
Cd +

K∑
j=1

ejλ
−j
)

+RK(λ)

with RK(λ) = o(λ
d
2
−K). In those formulas, ej are real numbers which depend on the potential

b. They can be calculated relatively easily using the heat kernel invariants; they are equal to a
certain integrals of the potential b and its derivatives.

Until recently, formula (78) was proved only in the case d = 1. In the recent paper [1], we
(jointly with L. Parnovski) proved this formula in the case d = 2 and periodic potential. Even
in the periodic case and d ≥ 3, only partial results are known.

In the paper [2] (joint with L. Parnovski) we prove (78) for a generic multidimensional
almost-periodic operator. Let us describe the result. Since our potential b is almost-periodic,
it has the Fourier series

b(x) ∼
∑
θ∈Θ

aθe
iθx,

where Θ is a (countable) set of frequencies. Without loss of generality we assume that Θ
spans Rd and contains 0; we also put Θk := Θ + Θ + · · · + Θ (algebraic sum taken k times)
and Θ∞ := ∪kΘk = Z(Θ), where for a set S ⊂ Rd by Z(S) we denote the set of all finite
linear combinations of elements in Θ with integer coefficients. The set Θ∞ is countable and
non-discrete (unless the potential b is periodic). The first condition we impose on the potential
is:

Condition A. Suppose that θ1, . . . ,θd ∈ Θ∞. Then Z(θ1, . . . ,θd) is discrete.
It is easy to see that this condition is generic. Condition A is obviously satisfied for

periodic potentials, but it becomes meaningful for quasi-periodic potentials (we call a function
quasi-periodic, if it is a linear combination of finitely many exponentials).

The rest of the conditions we have to impose describe how well we can approximate the
potential b by means of a quasi-periodic function. These conditions are quite complicated and
need additional preparations. Not coming into details we just mention that all these conditions
are automatically satisfied for smooth periodic and quasi-periodic potentials and are generic in
the class of almost-periodic potentials b.

Now we can formulate our main theorem.

Theorem Let H be an operator (77) with a potential b such that
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i) b is smooth periodic or
ii) b is quasi-periodic satisfying Condition A or
iii) b is almost-periodic satisfying some generic conditions (including Condition A).
Then integrated density of states N(λ) enjoys asymptotic behavior (78).
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Localization Properties of the Random Displacement
Model

Gunter Stolz

University of Alabama at Birmingham

Joint work with J. Baker, F. Klopp, M. Loss and S. Nakamura

We consider the random displacement model, a random Schrödinger operator given by Hω =
−∆ + Vω(x) in L2(Rd), where

Vω(x) =
∑
i∈Zd

q(x− i− ωi).

The single site potential q is real-valued, bounded, supported in [−r, r]d for some r ∈ (0, 1/2)
and reflection symmetric in each variable. The displacements ω = (ωi)i∈Zd are i.i.d. random
vectors in Rd with distribution µ supported in the cube [−dmax, dmax]

d, where dmax = 1
2
− r,

giving non-overlapping sites in Vω.
Several years ago, Baker, Loss and Stolz have identified a spectrally minimizing periodic

configuration ω∗, i.e. a configuration with the property that inf σ(Hω∗) = inf Σ =: E0, where Σ
is the almost sure spectrum of Hω. This configuration is characterized as

ω∗i = ((−1)i1dmax, . . . , (−1)iddmax), for all i = (i1, . . . , id) ∈ Zd,

meaning that clusters of 2d neighboring single-site potentials are located in adjacent corners of
their supporting unit cell.

One may find examples of single-site potentials q such that inf σ(Hω) = inf Σ for all
configurations ω, thus providing situations where inf Σ is not a fluctuation boundary of the
spectrum. In all other cases, for example if q is nontrivial and sign-definite, and under the
additional assumption r < 1/4, it was shown that ω∗ is the unique minimizing periodic config-
uration if d ≥ 2. In dimension d = 1 there are many other minimizing periodic configurations,
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which are characterized by the requirement that equally many ωi take values dmax and −dmax,
respectively, and none of them lies in (−dmax, dmax).

This difference between the one and multi-dimensional cases also leads to different low
energy asymptotics of the integrated density of states N(E) of Hω. An extreme case is given
by the one-dimensional Bernoulli displacement model, where the support of µ is {±dmax} with
P(ωi = dmax) = P(ωi = −dmax) = 1/2. In this case it can be shown that

N(E) ≥ C

ln2(E − E0)

for some C > 0 and E near E0. In particular, the IDS is not Hölder-continuous at E0.
On the other hand, it was recently shown by Klopp and Nakamura that the uniqueness

result for the minimizer ω∗ in d ≥ 2 implies a weak form of Lifshits tails for the IDS. More
precisely, if suppµ is finite and all 2d corners (±dmax, . . . ,±dmax) are contained in suppµ, then

lim sup
E↓E0

log | logN(E)|
log(E − E0)

≤ −1

2
.

Work in preparation, jointly with Klopp, Loss and Nakamura, will lead to further results
under the assumption that the single-site potential as well as the distribution µ are sufficiently
regular. It will be shown that the above Lifshitz tail bound extends to this setting (i.e. without
the assumption of finiteness of suppµ). These authors will also establish a Wegner estimate of
the form

E(trχI(Hω,L)) ≤ Cα|I|αLd.

Here Hω,L is the Neumann-restriction of Hω to a cube of sidelength L, α any number in (0, 1)
and I any subinterval of [E0, E0 + δ] for a sufficiently small δ > 0.

Based on these ingredients, it follows by multiscale analysis that Hω is spectrally and
dynamically localized for energies near E0. This is the first proof of localization for the multi-
dimensional random displacement model, which does not require to work in a semi-classical
regime, as considered previously by Klopp, or the introduction of a generic periodic background
term into the potential and smallness of the displacement parameters as in work by Ghribi and
Klopp.

Negative spectrum of a perturbed Anderson
Hamiltonian

Boris Vainberg

University of North Carolina at Charlotte

Joint work with Stanislav Molchanov

The Anderson Hamiltonian H0 = −∆ + V (x, ω) is considered, where V is a random po-
tential of Bernoulli type. The operator H0 is perturbed by a non-random, continuous potential
−w(x) ≤ 0, decaying at infinity. It will be shown that the borderline between finitely, and
infinitely many negative eigenvalues of the perturbed operator, is achieved with a decay of the
potential −w(x) at infinity as O(ln−2/d |x|).
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The random potential we consider has the following structure: consider the partition of
Rd into unit cubes

Qn = {x : ||x− n||∞ ≤ 1

2
}, n = (n1, ...nd) ∈ Zd,

and put

V (x, ω) =
∑
n∈Zd

εnIQn(x). (79)

Here εn are i.i.d. Bernoulli r.v., namely

P{εn = 1} = p > 0, P{εn = 0} = q = 1− p > 0 (80)

on the probability space (Ω, F, P ).
We call a domain D ∈ Rd a clearing if V = 0 when x ∈ D. Since P -a.s. realizations of

the potential V contain cubic clearings of arbitrary size l� 1, we have Sp(H0) = [0,∞).
Consider a perturbation of H0 by a non-random continuous potential:

H = −∆ + hV (x, ω)− w(x), w(x) ≥ 0, w → 0 as |x| → ∞. (81)

The operator H is bounded from below, and its negative spectrum {λi} is discrete. Put
N0(w, ω) = #{λi ≤ 0}. The following theorem presents the main result of the paper.

Theorem 1 There are two constants c1 < c2 which depend only on d and independent of h
and p, such that

a) the condition

w(x) ≤ c1

ln
2
d (2 + |x|) ln 1/q

, |x| → ∞,

implies N0(w, ω) <∞ P -a.s.,
b) the condition

w(x) ≥ c2

ln
2
d (2 + |x|) ln 1/q

, |x| → ∞,

implies N0(w, ω) = ∞ P -a.s..

Remarks 1. Similar result is valid for the lattice Anderson model with the Bernoulli potential.
2. Together with J. Holt we proved more general results in 1-D case.
The proof is based on percolation theory and Dirichlet-Neumann bracketing. The per-

colation theory allows us to describe sets in Rd where V = 1. Let us present one of the key
statements which follows from the percolation theory. We will tell that a set of cubes {Qn} is√
d-connected if any two cubes in the set can be connected by a sequence of cubes where the

neighbors have at least one common point (a vertex or an edge of the dimension k ≤ d − 1,
i.e., the distance between their centers does not exceed

√
d). Assume that V = 0 on the cube

Q0 which contains the origin. Let C be the maximal
√
d-connected set of cubes where V = 0

which contains Q0, and let |C| be the number of cubes in the set C.

Lemma 1 (exponential tails). If q < 1
3d−2

then there exists a constant c0 = c0(d, q) such that

P{|C| ≥ s} ≤ c0e
−γs, γ = ln

1

q(3d − 2)
> 0. (82)

This and similar statements allow us to reduce the problem to a study of the eigenvalues
of the Schrödinger operator in bounded domains with a potential supported near the boundary.
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Trapped modes in elastic media for zero Poisson ratio

Timo Weidl

University of Stuttgart

Joint work with Clemens Förster

We consider the operator

A = −∆⊗ I − divergence on L2(G,Cd)

associated with the quadratic form

a[u, v] = 2

∫
Gd

〈ε(u), ε(v)〉Cd×d dx, u, v ∈ H1(Gd; Cd) ,

where

ε(u) =
1

2

(
(∇u) + (∇u)T

)
.

This corresponds to the elastic Hamiltonian on G ⊂ Rd with stress-free (Neumann type) bound-
ary conditions at ∂G in the case of a Young’s modulus E = 2 and a Poisson ratio ν = 0.

Put J = (−π/2, π/2). In [5] it has been shown, that in case of the semi-strip G = R+× J
the operator A has at least one embedded eigenvalue on top of the continuous spectrum. This
illustrates the well-known physical effect of the elastic edge resonance, a localized oscillation
near the free face of G.

In this talk we discuss the appearance of trapped modes on strip-like or plate-like domains
G ⊂ Rd in the dimensions d = 2 and d = 3.

In particular, let Ω ⊂ R2 be a non-empty bounded Lipschitz domain and put G = (R2 \
Ω)×J . Then A has infinitely many embedded eigenvalues νk accumulation at a certain positive
spectral threshold Λ at the exponential rate

ln(Λ− νk) = −2k ln k + o(k ln k) as k →∞ .

Similary, a suitable local perturbation of Young’s modulus on G = R2× J yields an infinite set
of trapped modes accumulating at the same energy level Λ.

We give a review of the related results in [2,1] and state several open problems related to
observations by Zernov et al [6] and Pagneux [4].
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Abstracts of the young scientists talks

The dynamical inverse problem for the Maxwell system

Maxim Demchenko

St.Petersburg Dept. of Steklov Institute

We deal with the dynamical inverse problem for the Maxwell system in a bounded domain
Ω ⊂ R3 with smooth boundary. The system is of the form

et = ε−1curlh, ht = −µ−1curl e in Ω× (0, T )

e|t=0 = 0, h|t=0 = 0 in Ω

eθ = f in ∂Ω× [0, T ]

where ( · )θ is a tangent component of a vector at the boundary, e = ef (x, t) and h = hf (x, t)
are the electric and magnetic components of the solution. With the system one associates the
response operator RT : f 7→ −ν ∧ hf |∂Ω×(0,T ), where ν is an outward normal to ∂Ω.

The time-optimal setup of the inverse problem is: given {R2T , c |∂Ω,
∂c
∂ν
|∂Ω} to recover the

electromagnetic wave velocity c = (εµ)−1/2 in the subdomain ΩT := {x ∈ Ω | distc (x, ∂Ω) < T}
(distc is a distance in the optical metric).

In [1], by the use of the boundary control method, the uniqueness of determination of
c |ΩT was established for small enough T . Here we show that the uniqueness holds for arbitrary
T > 0.
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Positive polynomials and mapping of pseudospectra

Ilya Kachkovskiy

St.Petersburg State University

Joint work with Nikolay Filonov

Let H be a Hilbert space and let A ∈ B(H) be a bounded operator such that ‖A‖ = 1
and ‖[A,A∗]‖ = δ. Equivalently, instead of B(H) an arbitrary C∗-algebra can be considered.
We study the following “polynomial calculus”: for a polynomial p of the form

p(z, z) =
∑

0≤k+l6d

pklz
kzl, (83)
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let
p(A,A∗) =

∑
0≤k+l6d

pklA
k(A∗)l. (84)

This calculus is additive and involutive (with respect to p), and it is also clear that it is “almost
multiplicative” up to terms of order δ.

We obtain the following two results.

Theorem 1 Let p be a polynomial (83). Then there exist such δ0 and C(p), that

‖p(A,A∗)‖ 6 pmax + C(p)δ, δ < δ0 (85)

for all A ∈ B(H), satisfying ‖A‖ 6 1, ‖[A,A∗]‖ = δ. Here pmax = max
|z|61

|p(z, z)|.

If A is normal, then this estimate obviously follows from the spectral theorem. In the case
of a holomorphic polynomial p(z), the inequality holds with C(p) = 0, and is known as von
Neumann inequality.

Theorem 2 Let Rj > 0, j = 1, . . . ,m. Consider

S = {z ∈ C : |z| 6 1, |z − λj| > Rj, j = 1, . . . ,m}.

Let p be a polynomial (84) and µ /∈ S. Let, finally,

χµ = dist(µ, p(S)).

Then for any ε > 0 there exist δ0 > 0 and C(ε, µ, p), such that

‖(p(A,A∗)− µ)−1‖ 6 χ−1
µ + ε+ C(ε, µ, p)δ, δ < δ0

for all A ∈ B(H), satisfying

‖A‖ = 1, ‖[A,A∗]‖ = δ, ‖(A− λj)
−1‖ 6 R−1

j .

Recall that ε-pseudospectrum of an operator A is the set

σε(A) = {λ ∈ C : ‖(A− λI)−1‖ > 1/ε}.

Let Rj = ε for all j. If the conditions of Theorem 2 are fulfilled then σε(A) ⊂ S. So, in this case
σχ′(p(A,A

∗)) ⊂ Bχ(p(S)), where Bχ is the χ-neighbourhood, and (χ′)−1 = χ−1 + ε+C(ε, p)δ.
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On spectral perturbations of bounded Jacobi operators

Anna Kononova

Baltiiskii Technical State University

Let S be the class of all bounded semi-infinite Jacobi operators such that: (a) for every
A ∈ S the essential spectrum σess(A) = E, where E ⊂ R is a finite gap set; (b) the weight
function of A satisfies the Szegö condition on E; (c) the pure point part of the spectrum of A
consists of a (not more than) countable number of mass-points {z∗k}N

k=1, z
∗
k ∈ R\E, N ∈ N∪∞,

satisfying a Blaschke-type condition.
Let A ∈ S be a perturbation of A0 ∈ S produced by a change of its spectral measure.

We are interested in the following question: what are the conditions on the spectral measures
for the operator A− A0 to be compact? The answer is not obvious even in the case of adding
one mass-point. To investigate this question we use the well-known connection between the
Jacobi operators and orthogonal polynomials. The asymptotical behavior of the orthogonal
polynomials corresponding to the operators from the class S can be discribed using two main
approaches: the first one is due to Widom, and the second one is due to Sodin, Peherstorfer and
Yuditskii. Using these approaches we get a necessary and sufficient condition of the compactness
of the operator A− A0.

To state our main result we need some notaion. Let Ω := C̄ \ E. For an operator A ∈ S
with a weight function ρ(ζ) we introduce the complex function Rρ(z) which is locally analytic in
Ω, has nontangential limit values on ∂Ω, and such that |Rρ(ζ)|ζ∈∂Ω = ρ(ζ). By ων(z), ν = 1, ..., p
(where p is the number of intervals in E) we denote the harmonic measure, i.e. the function
harmonic in Ω and satisfying the boundary condition ωk(ζ)|ζ∈Ej

= δ(j, k). Let ∆Ek
f denote the

increment of the function f along a curve encircling the interval Ek. To each operator A ∈ S
we associate the following vector-valued characteristic J (A) = (J1(A),J2(A), ...,Jp(A))

Jν(A) =
1

4π
∆Eν argRρ(z) +

N∑
j=1

ων(z
∗
j ), ν = 1, ..., p.

Theorem For the operators A,A0 from the class S the operator A−A0 is compact if and
only if

Jν(A)− Jν(A0) ∈ Z, ν = 1, 2, . . . , p.

The work was supported by Scientific Schools grant 8033.2010.1 and by RFBR grant
10-01-00682-a.
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Lyapunov exponent and integrated density of states for
the slowly oscillating perturbations of the periodic

Schrödinger operators

Acia Metelkina

Fern Universitat im Hagen

In this talk I present the formulas for the Lyapunov exponent and the integrated density
of states for the slowly oscillating perturbations of the periodic Schrödinger operators in di-
mension 1. Operators under consideration are Hθ = − d2

dx2 + V (x) +W (xα) on D(Hθ) = {f ∈
H2(R+) | f(0) cos θ+f ′(0) sin θ} associated to θ ∈ [0, π). The assumptions on V , W and α are:

• V : R → R, V ∈ L2,loc(R), V (x+ 1) = V (x).

• W : R → R smooth, W (x+ 2π) = W (x).

• α ∈ (0, 1)

The main spectral results for this type of operators go back to G. Stolz , who proved that the
spectrum of this operators has the intervals of purely absolutely continuous spectrum and those
of purely singular. This singular spectrum is dense pure point for almost every θ.
In my work I continue the study of Hθ. I prove the existence of the Lyapunov exponent and
the integrated density of states for this problem. I show the formula relating the integrated
density of states and the Lyaponov exponent to those of the periodic problem.
To define the integrated density of states lets first define the counting function of the eigenvalues
Ek of the restrictions Hθ(l) of Hθ to the finite intervals [0, l] (l ∈ N) with Dirichlet boundary
condition in l:

N(E, θ, l) = #{Ek(Hθ(l)) | Ek(Hθ(l)) < E}
Lets call the integrated density of states the following limit when it exists:

k(E) = lim
l→+∞

N(E, θ, l)

l

Remark: When exists the integrated density of states does not depend on θ.
Consider the fundamental solution T (x,E) of the corresponding Schrödinger equation (HθΨ)(x,E) =
EΨ(x,E), T : R× C → SL2(C) satisfying:

T (0, E) = I
d

dx
T (x,E) =

(
0 1

V (x) +W (xα)− E 0

)
T (x,E)

Lets call the Lyapounov exponent the following limits when it exists:

γ(E) = lim
x→+∞

ln ‖T (x,E)‖
x

Theorem For all E ∈ R the integrated density of states exists and is given by the formula:

k(E) =
1

2π

∫ 2π

0

k0(E −W (x))dx
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where k0(E) = 1
π
<kp(E + i0) with kp denoting the main branch of the Bloch quasi-momentum.

For almost all E ∈ R the Lyapunov exponent exists and is given by the formula:

γ(E) =
1

2π

∫ 2π

0

γ0(E −W (x))dx

where γ0(E) = =kp(E + i0).

I use two different methods in the study of this problem. One is the Dirichlet to Neumann
bracketing method useful to derive the integrated density of states formula. Then the Lyapunov
exponent formula is obtained by proving the Thouless formula. This method works for all
α ∈ (0, 1) and follows the ideas of B. Simon and Y. Zhu .
The other method is based on quasi-periodic (periodic) approximations of Hθ. This method
allows to study the asymptotic of the fundamental solution (so the Lyapunov exponent) for
α > 1

2
. The information about the approximating equation is obtained by the methods of

A. Fedotov and F. Klopp (complex WKB method for the adiabatic perturbations of periodic
Schrödinger operators).

Spectral inequalities for a class of non-elliptic operators

Fabian Portmann

KTH, Stockholm

Joint work with A.Laptev

We prove spectral inequalities for the moments of the eigenvalues of the operator D2
xD

2
y −

V (x, y), V ≥ 0, with Dirichlet boundary conditions in L2(R2
++).

Zeros of the spectral density of the discrete Schrödinger
operator with Wigner-von Neumann potential

Sergei Simonov

St.Petersburg State University

Joint work with J. Janas and S. Naboko

We consider discrete Schrödinger operator

J :=


b1 1 0 · · ·
1 b2 1 · · ·
0 1 b3 · · ·
...

...
...

. . .


with

bn :=
c sin(2ωn+ δ)

n
+ qn,
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where {qn}∞n=1 ∈ l1. This operator has absolutely continuous spectrum on the interval [−2; 2].
At two points inside this interval (critical, or resonance points),

±2 cosω,

the operator J can have eigenvalues. The talk is devoted to the behavior of the spectral
density (the derivative of the spectral measure) of the operator J near the resonance points
and is based on works [1], [2], [4]. In the general situation there exist two one-side limits

lim
λ→νcr±0

ρ′(λ)

|λ− νcr|
|c|

2| sin ω|

,

(where ρ′ is the spectral density of J and νcr is one two points ±2 cosω). This result is a part
of a wider study of operators with Wigner-von Neumann potentials including one-dimentional
Schrödinger operators with periodic background potential [3], [4].
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Matrix Schrödinger operator on the half-line: the
differential equation with respect to the spectral
parameter and an analog of Freud’s equations

Valentin Strazdin

St.Petersburg State University

In many physical problems it is necessary to calculate semiclassical asymptotics for solu-
tions of the Schrödinger equation

−~2 d
2

dx2
ψ(x) + v(x)ψ(x) = k2ψ(x) (86)

with respect to a small parameter ~. Using the WKB method one can see an asymptotical
behavior of solutions as functions of variable x.
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Buslaev was the first who proposed to write down the differential equation with respect
to k for solution ϕ(x, k) of the scalar Schrödinger equation on the half-line x > 0 satisfying the
Dirichlet boundary condition ϕ(0, k) = 0. Using this equation one can investigate an asymptot-
ical behavior of ϕ(x, k) as function of variable k. We can also write down a nonlinear relation
connecting the Schrödinger operator and the kernel of its spectral measure. An analogue of
this relation in the theory of orthogonal polynomials is known as discrete string equation
or Freud’s equations.

Here we generalize this result for the matrix Schrödinger equation on the half-line:

−Ψ′′(x, k) + V (x)Ψ(x, k) = k2Ψ(x, k) , x > 0 , (87)

where V (x) = {vαβ(x)}N
α,β=1 is a Hermitian matrix such that

∞∫
0

|V (x)| (1 + x2) · dx < ∞ , |V | ≡ max
α

N∑
β=1

|vαβ| . (88)

Let us denote by Lj the matrix Schrödinger operators on the half-line with Dirichlet (j = 1)
and Neumann (j = 2) boundary conditions. We assume that eigenvalues and virtual level in
zero for the operators Lj are absent. Then the kernel Wj(x, y) of the operator W (Lj) can be
written as:

Wj(x, y) =

∞∫
0

Φj(x, l)W (µ) · σj(l)Φ
∗
j(y, l)dµ , µ = l2 .

where Φj(x, l)σj(l)Φ
∗
j(y, l)dµ is the kernel of the spectral measure for the operator Lj, Φj(x, k)

are solutions of equation (87) satisfying initial conditions:

Φ1(0, k) = 0, Φ′
1(0, k) = 1 , Φ2(0, k) = 1, Φ′

2(0, k) = 0 .

We obtain the following differential equation for the matrix-function ~Φj(x, λ) =

(
Φj(x, k)
Φ′

j(x, k)

)
:

∂

∂λ
~Φj(x, λ) = Uj(x, λ)~Φj(x, λ) , (89)

where

Uj(x, λ) =

(
−(Mj)y(x, y, λ)|y=x Mj(x, x, λ)

Wj(x, x)− (Mj)xy(x, y, λ)|y=x (Mj)x(x, y, λ)|y=x

)
,

Mj(x, y, λ) is the kernel of the operator Mj = Wj(Lj)·(Lj−λ−i0)−1 , Wj(µ) = − ∂

∂µ

(
lnσj(l)

)
.

We can write down the Schrödinger equation (87) in the similar form:

∂

∂x
~Φj(x, λ) =

(
0 1

V (x)− λ · 1 0

)
· ~Φj(x, λ) . (90)

The compatibility condition of two differential equations (89) and (90) leads to the follow-
ing relation (an analogue of Freud’s equations):

−2
d

dx
Wj(x, x) = 1 .
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