M.S. AGRANOVICH.
SPECTRAL PROBLEMS
IN LIPSCHITZ DOMAINS

1. Introduction. We consider a bounded
domain €2 in R", n > 2, with Lipschitz bound-
ary I': locally, in appropriate coordinates, it is
a graph of a function x,, = ¢(z’) satisfying the
Lipschitz condition |¢(z") — p(y')| < Clx’ — 4|
The tangent plane exists at almost every point
of I'.

FExamples: polyhedrons (not all), cones, cylin-
ders, and their images under Lipschitz diffeo-
morphisms.

In €2, we consider a second-order system Lu =
f in the divergent form. Lu :=

— 2. 0ja; 1 (x)Ou(z)+)_ bj(7)05u(z)+c(x)u(z).

Here a;, bj, ¢; are m X m matrices, u and
f are columns of hight m. All functions are
complex-valued. The smoothness of coefficients
is minimized. In particular, a;j € C1(Q).
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The main assumption is the strong ellipticity:

the principal symbol ag(x,£) = > a;r(x)&&k
has a positively definite real part:

slao(z, &) + af(z,§)] > Col¢l’I, £ eR™

In the main cases, a;r = a;, ; and are real,
= ag(x, &) is real symmetric.

Examples.
1. The Laplace or Beltrami-Laplace equa-
tion Au + ... = f with m > 1. Nonsmooth

problems in acoustics and electrodynamics.

2. The Lamé system in isotropic elasticity

—pAu — (A4 p) graddivu + ... = f.
It is strongly elliptic if 4 > 0, A 4+ 2 > 0.

3. Systems of elasticity for non-homogeneous
anisotropic bodies: with real a; x(z) = (a;.(2)),
apy = agy = all = ayj.

In 2 and 3, m =n =2 or 3.

4. Multidimensional analogs.



2. Spaces H°®. For all s € R,

HE(R™) = F-L(1 + [¢[2)5/2F Ly(R™).

Sobolev—Slobodetskii sp. W3 (R"™) if s > 0.

H?(§2): restrictions to €2 of elements of H*(R"™)
with norm inf. There exists an extension oper-

ator £ bounded for all s (Rychkov, 1999).

H#(): the subspace in H*(R") of elements
supported in . Can be identified with the
completion of C§°(2) in H*(Q2) if s > 0 and
s+1/2 ¢ N.

H#(Q) and H~*(Q) are mutually adjoint with
respect to the extension of the form (Eu, v)gn.

H?(T") is defined by a partition of unity and
norms in H¥(R"™1), |s| < 1. The spaces H*(T)
and H*([") are mutually adjoint with respect
to the extension of the inner product in Lo(T).

The trace operator u — u™ = yTu acts from
H*T1/2(Q) to H*(T") and is bounded for0 < s <
1. It has a bounded right inverse.

In (2 and on I', we have compact dense em-
beddings H* C H! for s > t. H*(Q) and H*(Q)
can be identified for —1/2 < s < 1/2, and we
can pass from one scale to another.



3. Dirichlet and Neumann problems.

The Neumann problem: Lu = finQ, TTu =
h. Here T u is the conormal derivative. If u(x)
1S smooth, then

T*u(z) = 7+ X vy(2)a; 0 (2)dpu(x)
on I', where v is the unit exterior normal.

In our situation, we need the variational def-
initions. Introduce the form  ®q(u,v) =

fQ [Z a; kOku-0;0+ > bi0;u-v+ cu-ﬂ dzx.

Here u,v € H'(Q2). The following first Green
formula can be proved for u with additional

smoothness: if u € H*(Q2), s > 3/2, or if Lu €
LQ(Q)I

(Lu,v)q = ®q(u,v) — (TTu,v1)r.

If u e H'(Q), then Lu is defined by u only as
a distribution in €2, and to define it as an ele-
ment of H () we have to choose and add an
element of H~!(R™) supported on I. Because
of this we simply write the formula with given
f e HY(Q) and define T*u by it. In general,
it is only a distribution from H~1/2(T).
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The same formula is the variational, or weak,
definition of the Neumann problem. Init, u,v €
HYQ), f=Lue HYQ), h=T% ue HV2(T).
Here h can be replaced by 0 by changing f.

The Dirichlet problem: Lu = finQ, ut = g.
If ¢ = 0, the variational definition is

(Lu,v)q = ®q(u,v)

with u,v € HY(Q), f € H1(Q). The case of
g#0,g¢c HY2(T) is easily reduced to the case
g = 0.
Classical results for the Dirichlet problem:
Strong ellipticity = the Garding inequality

Do, 1) > Crlull%, ) — Callull3, 0.

It is true with Cy = 0 if Rec(x) is sufficiently
large. We always assume this.

= The unique solvability.

For the Neumann problem, the Garding in-
equality

Qo (u,u) > CSHUH%P(Q) - C4||U||2L2(Q)

follows from the strong ellipticity for a scalar
equation with a; , = ax ;. Sufficient conditions



for systems are known. The following condition
can be applied to all systems of elasticity:

> aiiCiCh > Cs 301G + CFP
Again, the Garding inequality is then true
with Cy = 0 if Rec(x) is sufficiently large. We
assume that we have such inequality.
= The unique solvability.
All a priory estimates are two-sided, as in

smooth problems. E.g., for the Neumann prob-
lem

lullirs o) < CollFll sy + Il <
Crl|ull 1 ()
Thus, the variational setting of our problems is

natural and convenient.

4. Spectral Dirichlet and Neumann
problems. Now we consider two problems

Lu=XinQ, um"=0 or TTu=0o0nT.

In the Dirichlet problem, u € H'(2). In the
Neumann problem, u € H'(9).
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Note that the operator formally adjoint to L
1S

Lv = — 3" 0aj_(2)0;v(z)— 3 bt (2)0jv(z)+
c*(x) — 3 0;b% (x)|v(x).

The corresponding first Green formula, also pos-
tulated, is

(ua ZU)Q — (I)Q(ua U) o (’U,, CZA;—i_’U)I‘

with the same form ®q. Here u,v € H(Q).
From two first Green formulas the second Green
formula follows:

(Lua U)Q_(ua ZU)Q — (’U,+, T—'_U)F_(T—I_u? U+).

Case 1. L is formally selfadjoint: L = L.
Sufficient conditions:

a;y =akj, bj=0, ¢ =c
The second Green formula shows that then
(L’LL, U)Q — (U,, LU)Q

both under Dirichlet and Neumann homoge-
neous boundary conditions, hence we can con-



sider the corresponding selfadjoint operators L
and Ly .

Usually, Lo (€2) is considered as basic Hilbert
space, and the operators are considered as act-
ing in it. They have discrete spectra. If the
boundary and coefficients are sufficiently smooth,
the domains lye in H%(Q2). However, in our sit-
uation we do not know the domains exactly.

More convenient is to consider, say, Lp as
a bounded invertible operator from H(£2) to

H~1Y(Q) and take H 1(Q) as the basic Hilbert
space with the inner product

<U7U>H—1(Q) = (Lﬁluav)g-

The corresponding norm is equivalent to the
original one. The operator Lp remains to be
selfadjoint and has the same eigenfunctions and
etgenvalues.

In H~1(Q) it has an orthonormal basis of

eigenfunctions. They belong to H(Q) and form
there a basis orthogonal with respect to the in-
ner product (Lpu,v)q. The result is extended
to the intermediate spaces.



The spectral asymptotics was investigated us-
ing the variational method by Birman-Solomyak

and by Métivier (1974) who proved for the count-
ing function N(A) the formula

N()\) _ /L)\n/Q + O(}\(n—l/Q)/Q)
with the usual coefficient: in the scalar case,
1
= amnm» Jo fao(w,§)<1 ds.

Case 2. Ounly the principal part Lo of L s
formally selfadjoint. Then Lp is a weak per-
turbation of a selfadjoint operator in H~1(Q).
The spectrum is discrete and lies in the angle

Og ={\: |arg \| < 0}

with any small 0, except finite number of eigen-
values, and they preserve the same asymptotics.
The root functions are complete in the same
spaces. The Fourier series with respect to these
functions admit the Abel-Lidskii summability of
order 3 > n/2 — 1/2. Moreover, if b; = 0, then
for n = 2 the root functions form a Riesz basis
with brackets and § > n/2 — 1 for other n.
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Case 3. No selfadjointness. The spectrum
is discrete, we obtain s;(L5') < Cj2/™ (using
our choice of the basic Hilbert space), and the
root functions preserve the same smoothness.
Assume that the eigenvalues of the principal
symbol lie in ©y. Then 6§ < 7/2 and we have
the optimal estimate of the resolvent

I(Lp = AN~ < C(1+]A)~

outside Oy, with any small € for sufficiently
large |A|. = The same results on completeness
and Abel-Lidskii summability of order 5 > n/2
if 6 < m/n.

For the operator Ly, the results are exactly
the same with natural change of spaces.

5. Problems with spectral parameter
in conditions on I'. The most important is
the Poincaré—Steklov problem

Lu=0in Q, TTu= " on I.

If the Dirichlet problem is uniquely solvable, we
introduce the Dirichlet-to-Neumann operator

D:ut = u— Ttu,
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a bounded operator H'/2(I") — H~'/2(T"). The
spectral problem for eigenfunctions is equiva-
lent to the equation

Dy = \p, where ¢ = u™.

If the Neumann problem is uniquely solvable,
introduce the Neumann-to-Dirichlet operator

N: Tty —u—ut.

If both problems are uniquely solvable, then D
and N are invertible, and D~! = N.

To go further, we need two domains QT with
common Lipschitz boundary I'.

To avoid technical considerations at infinity,
we assume that Q = Q7 lies on a standard torus

T = T" and that T = QT UT'UQ~. Let the
normal v be directed to Q~. Now H*(QF) are
subspaces in H*(T).

Assume that the system is given and strongly
elliptic on T and that Rec is sufficiently large.
= L: HYT) — HY(T) is invertible.

The inverse is an integral operator:

L= f(z) = [p E(@,y) f(y) dy.
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This is the Newtonian potential, and & is a fun-
damental solution.

For Lu = f on T, we have no “Lipschitz dif-
ficulties”, and an investigation of £ by the tools
of UDO shows that L : H'T5(Q) — H-1%5(Q)
is a bounded invertible operator for |s| < 1 (D.

Mitrea, M. Mitrea, M. Taylor, 2001).
Now we have two Poincaré—Steklov problems

Lu=0in QF, +T%u = \u™,
and set Dyut = +£T*u, N T*u = +u*.
Introduce the notation for jumps on I

u]=u" —ut, [Tul|=T u-—T"u.

We will consider two spectral transmaission prob-
lems:

I Lu=0in QF, [u] =0, [Tu] = —Mu®.
II. Lu=01in QF | [Tu] =0, TTu = —\[ul.

They were proposed by Moscow physicist Kat-
senelenbaum and his collaborators for the
Helmholtz equation about 40 years ago. Phys-
ical sense: a half-transparent screen.
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6. Surface potentials and integral for-
mulas. Having the fundamental solution &, we
can introduce the classical single layer potential

= [ &( )dS, (zeT)

and double layer potential

Bo(x) = [L[TFE (x,y)]"p(y)dS, (v ¢T).

However, in the case of a Lipschitz boundary,
even the boundedness of these operators is a
non-trivial question. The direct investigation
is possible but very difficult. At this moment,
we explain another approach.

It is based on the results for the Dirichlet
and Neumann problems and proposed by Necas
(1967), Costabel (1984) and McLean (2000).

The trace operator v is bounded from H!*$(T)
to H'/2+5(T"), |s| < 1/2. = The adjoint opera-
tor v* is bounded from H~1/275(T") to H—1=*(T).
Following Costabel and McLean , we set

A — L_l’}/*.

= A is a bounded operator from H—1/2+5(T") to
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H'Y3(T) for |s| < 1/2, in particular, for s = 0.
Obviously, two definitions of A coincide.

Similar approach to B is more complicated.
Following McLean, we set

B=L"1T*

where T is the “smooth” conormal derivative
(for the formally adjoint operator) on functions
from H*(T) with 3/2 < s < 2. From this, we
cannot obtain a good boundedness result for B
immediately and need the following key result
(in essential due to Costabel and McLean) .

Representation Theorem. Letu € H'(QF)

and Lu = f* belongs to H-Y(QF), so that
f=fT+ f belongs to H Y(T). Then

w=L"Lf + Blu] — A[Tu].

Proof. Formula for (Lu,v)r (v € H?*(T),
3/2 < s < 2) follows from 4 Green formulas

in QF for L and L. = Formula for Lu = for w.
Assuming the Dirichlet problem to be uniquely
solvable and comparing the left and right sides,
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we see that B is a bounded operator from H'/?(T")
to H'(QF).
Identification with the classical definition of

I is possible but requires a special work (McLean;
D.Mitea—M.Mitrea—Taylor).

We also see from the definitions that © = A1
and u = B are solutions of the system Lu = 0
in OF.

Now we assume that the Dirichlet and Neu-
mann problems in QT are uniquely solvable and
list important corollaries.

6.1. The jump relations
AY] =0, [TAY] = —¢, [By] = o, [TByp] = 0.

Introduce important operators on I

A=v*A, B=3[y"B+7*B]
B=LT-A+TtA, H=-T*B

Here B is the direct value of the double layer
potential, and H is called the hypersingular op-
erator. These operators are bounded: A from
H~/2(T) to HY2(T), Bin HY/2(I"), Bin H~Y/2(D),
and H from HY2(T') to H~1/2(I).
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6.2. Duality relations (with respect to the
extension of the inner product in Ly(I'))

A*=A, H*=H, B=(B)".

6.3. Equations on I'. From the Repre-
sentation Theorem we can obtain similar state-
ments for solutions in Q1 and Q~ separately.
= Passing to the boundary, we obtain for so-
lutions of the homogeneous systems in QF

(A1+B)ut = ATTu, Hu't = (A[-B)Ttu;
(AI-B)u~ = —AT u, —Hu = (LI+B)T u.

6.4. Theorem on invertibility.

1. The Dirichlet problem is uniquely solvable
& A H Y2 = HY2(T) is invertible.

2. Let the Dirichlet problem be uniquely solv-
able. Then the Neumann problem is uniquely
solvable & H : H'/2(T') — H~Y2(T) is invert-
wble.

3. Let the Dirichlet and Neumann problems
be uniquely solvable. Then %I + B and %I +B
are invertible in H'/?(T') and H~'/?(T") respec-
tively.
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6.5. Relations between transmission
problems and operators on I'.

Proposition 1. The first and second spec-
tral transmission problems on eigenfunctions are
equivalent to the equations at I’

ANy = Xp, Heo = Ay
respectively. Here 1 = [Tu], ¢ = [u].

Proposition 2.

AY'=D,+D_, H'=N, +N_,

Ny=@Rr+B)'A=ACLI+B),

H'=(r-B>)"1A=ACGLI-B*).

This is useftul when we search spectral asymp-
totics. In two last rows we use the relation

BA = AB. Tt is among corollaries of the re-
lation P? = P for the Calderén projector P.

7. Spectral properties of the operators
A, Ni, and H~!. In the smooth case, they
are strongly elliptic Y DO of order —1.

These operators have similar spectral prop-
erties. For definiteness, consider A.
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We have the Garding type inequality:

Re(AY, ) > Crll2 1o ry:

Case 1. L is formally selfadjoint. We con-
sider H~1/2(T") as the basic Hilbert space and
use there the inner product

(b1, ¥2) 1720y = (A1, P2)r.

There, the operator A is a compact selfadjoint
operator, it has an orthonormal basis of eigen-
functions. They belong to H'/?(T") and form
there an orthogonal basis with respect to the
inner product (A1, 15)r. The result is ex-
tended to intermediate spaces.

A satisfactory result for spectral asymptotics
follows from the paper by Agr.-Amosov (1996).
A Lipschitz surface is called there almost smooth
if it is O outside a closed subset of measure
zero. For such surfaces, the asymptotics is the
same as in the smooth case (but without an
estimate of the remainder):

Nyi-1(A) = pA" 1 +o(A" 1),
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1t 1s calculated as usually. In the scalar case,

:u’ — W ffa(a:’,ﬁ’)<1 da’;/d£/7

where « is the principal symbol of A~1.

The restriction “almost smooth” was removed
for A by Rozenblum and Tashchiyan (2006).

Case 2. Only Loy is formally selfadjoint.
Then A is a small perturbation of a selfadjoint
operator. The eigenvalues lie in ©y with any
small 6 except finite number of them, and their
asymptotics is the same. The root functions
are complete in H*/2(T") and in intermediate
spaces, and a result on Abel-Lidskii summabil-
ity of Fourier series in root functions is true.

Case 3. No selfadjointess. We have s;(A) <
C17~ /(=D The eigenvalues lye in some Oy
except finite number of them. Outside of Og .
with any small € we have the optimal estimate

(A7 = AD)7H| < Co(1+[AD T

If 0 < 7/2(n—1), we have the completeness and
Abel-Lidskii summability of order 5 > n—1 in
H*'/2(T") and in the intermediate spaces.
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For N, the spectral asymptotics in non-smooth
domains was investigated by many authors, in
particular by Sandgren (1955) and Suslina (1998).

For N1 and H, the most general result on
the spectral asymptotics in apparently in the
case of almost smooth boundary. Return to
A: it is important that its kernel of A is the
restriction to I' of the kernel of a YDO in R".
For Ny and H~! it is not so, but each of these
operators admit two representations 77 A and
ATy, where T7 and T, are bounded operators.

8. The spaces H; and Bj. They are gen-
eralizations of H® for p # 2. Below

1 1 _
seR, 1<p<oo, E_I_F_l

The space H, of Bessel potentials in R™ is
defined by

Hs(R™) = F~Y(1 4 [¢]*)~*/?FL,(R").

It is the Sobolev space W7 (R") if s > 0 is an
integer. The Besov space B;(R™) is defined

similarly starting from the Slobodetskii space
W7 (R"), 0 <o <1:
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By(R") = F~1(1+ [¢[2) e~/ 2FWg (R")
These two scales are very close one to another.

The spaces H;(€2) and ﬁ;(ﬂ) can be iden-
tified for —1/p” < s < 1/p. The spaces H({2)

and H > (§2) are mutually adjoint with respect
to the extension of the form (Eu,v)gn.

The trace operator is bounded from H ;+1/ P(Q)
and B;H/p(ﬂ) to B;(I') for 0 < s < 1, and

there is a common right inverse operator (Jon-

sson ans Wallin, 1984).

9. Generalization of the variational set-
ting of the Dirichlet and Neumann prob-
lems. Recall the formula defining the Dirichlet
problem with v = 0:

(Lua U)Q — (I)Q(U, U).
We generalize this problem as follows:

we HYPH TP Q) Lue H-Y2Hs—1/v (),
v E fl;,/Q_SH/p ().

If ut 0, then ut € B/ *™(I).
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Similarly generalize the Neumann problem:

we HY PP Q) Lue H-Y/2+s-1/v (),
v E H;,/Q_SH/I? ().

If T*u # 0, then T+u € B, /> (I).
All relations of duality are important.
Everywhere, H can be replaced by B.

Let us introduce the square () of admissible
pairs of indices:

Q=1{(s,t): |s|]<1/2, 0<t=1/p<1}.

Here |s| < 1/2 because of the restrictions in the
trace theorem, and 0 <t < 1 since 1 < p < o0.
For the same (s, t) we can consider the problems
in QF C T. However, in general, the problems
are solvable not for all (s,t) € Q.

10. Regularity theorems and general-
izations of theorems on the unique solv-
ability. The regularity statement is as follows.
Let u be be a solution, say, of Lpu = f. If f is
“better”, then u is “better”.
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Such results can give more general statements
on the unique solvability than before.

There are 3 approaches to the regularity.

1. Savaré proposed a new method of inves-
tigation of the regularity for variational prob-
lems, linear and non-linear, using the interpo-
lation theory (1998). For the scalar equation

diva(x)gradu+ ... = f

with real symmetric a(x) his result imply that
if the Dirichlet and/or Neumann problem is
uniquely solvable at the centrum of (), then this
is true at all (s,t) € Q with t = 1/2.

I have checked that the same is true for sys-
tems with formally selfadjoint Ly if, addition-
ally,

> al(@)CECk > 0

which apparently is not a heavy restriction.

2. Shnetberg proved a strong theorem on the
extrapolation of the invertibility of an opera-
tor acting in interpolation scales of spaces (or
on the stability of the invertibility) (1974). =
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If we have the unique solvability at (s,1/2), |s| <
1/2, than we have it in a strip

Qs ={(s,1) = [s],1/2, [t = 1/2] <0}

where 0 > 0 can be estimated from below.

Moreover, if we cannot apply the Savaré the-
orem, we have the unique solvability in some
neighborhood O of the centrum of @) (a remark
by Mazya, M. Mitrea and Shaposhnikova, 2009,
for the Dirichlet problem).

All a priory estimates remain two-sided.

3. Long ago it was known that there are
some algebraic Rellich identities for systems with
formally selfadjoint Ly. They permit to esti-
mate Neumann data in terms of Dirichlet data
and to show the following. If the Dirichlet prob-
lem is uniquely solvable at the centrum of @,
then it is uniquely solvable at (s,1/2) for |s| <
1/2. E.g. see Necas, 1967.

Here it is possible to replace “Dirichlet” by
“Neumann” and vice versa in the case of a scalar
equation with real a; () = ag, ;j(z). Similar re-
sult is also true for the Lamé system (Dahlberg,
Kenig, Verchota, 1988).
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11. Alternative approach to problems
in Lipschitz domains. Up to now, I almost
did not touch the extended (non-spectral) the-
ory of boundary value problems in Lipschitz
domains constructed by many strong mathe-
maticians during the last 30-35 years. First
problems were stated and solved by Dahlberg,
Calderén, Jerison, Kenig, Verchota.

From the very beginning, these investigations
were oriented to solve the Dirichlet problem
with ut € Ly(T") or H'(T'), the Neumann prob-
lem with T%u € Lo(T") and, further, with p near
2 instead of 2. These points lye at the bound-
ary of (), and the usual trace theorems do not
work there. A “non-tangential convergence”
was used. A system of equal truncated cones
K (x) was fixed having no common points with
(), with vertices at x € I', and the convergence
was understood as u(y) — ut(z) pointwise,
K(x) >y — =, a.e. on I', controlled by maxi-
mal functions u*(x). In the Dirichlet problem
with u™ = g € Ly(D), u*(z) = maxg(q) [u(y)|,
and [[u* ||, ) < Cllgllr,(r)-
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The main technical tool: surface potentials,
they were carefully investigated. The direct
value B of B on a Lipschitz I' is in general a
singular integral operator even for A. A prob-
lem to prove the boundedness of a singular in-
tegral operator on a Lipschitz surface arose.

It was solved by Calderén (1977), Coifman—
McIntosh—Meyer (1982), M. Mitrea—Taylor (1998).

Especially deep results were obtained for the
Laplace and Beltrami-Laplace equation using
specific tools from the harmonic analysis and
interpolation theory, with work on parts of the
boundary of (). The most general results were
obtained by M. Mitrea—Taylor (2000), they cover
a part of () between two lines connecting the
points 1) (—1/2,1/2 + ¢) and (1/2 — ¢,1), 2)
(—1/2+¢,0) and (1/2,1/2 —¢).

The use of Rellich identities is essential in
these papers. = The results cover the Dirich-
let problem for all strongly elliptic systems with
formally adjoint principal part, but the Neu-
mann problem was considered only in the scalar
case and the case of the Lamé system.
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12. Extension of spectral results to Ba-
nach spaces H; and BJ. Assume the unique
solvability of the Dirichlet and Neumann prob-
lems for (s,t) € Qs or O. What remains true
for Lp, Ly, A, H™1, N4 for these (s,t)?

Almost all.

Note that our spectral problems are much
easier then abstract spectral problems in Ba-
nach spaces. Using embedding theorems and
the spectral equation, we conclude that the spec-
trum and the eigen- or root functions do not
depend on (s,t). For t = 1/2, they form an
ON basis for all s (if L is formally selfadjoint).
The completeness result is also generalized us-
ing embedding theorems and the equation. There
is also an abstract version of the completeness
theorem (Burgoyne, 1995; Agr).

The most difficult for a generalization is the
Abel-Lidskii summability. Here we need to un-
derstand the abstract theory. I improved some-
thing made by A. Markus in 1966 who followed
Grothendieck. The monographs by Konig (1986),
Pietsch (1987) contain, in my opinion, too much
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information. The first question: which analog
of s-numbers to use? The answer: approxi-
mation numbers. The necessary estimates for
them are contained in Edmunds— Triebel (1996).
We need uniform optimal resolvent estimates
and obtain them using the interpolation the-
ory. We then represent the resolvent as a ra-
tio of entire analytic functions, operator-valued
and numerical, with estimating of their grows.
Now for a given function f we define, say,

ft) =55 [ (D= M)t tdAf

271

with integration along the boundary ~g of ©y.
Using deep theorems on entire functions, we
prove the possibility to find arcs dividing Oy
into a sequence of bounded domains such that
the integral f(t) is equal to the sum of integrals
f;(t) along boundaries v; of these domains, and

f=1limg402 f;(t).

This is the Abel-Lidskii summability in Banach
spaces.

http://agranovich.nm.ru



