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1 Motivation

We introduce the notion of a wave spectrum of a symmetric semi-bounded
operator in a Hilbert space. The impact comes from inverse problems of
mathematical physics; the following is one of the motivating questions.

Let Ω be a smooth compact Riemannian manifold with the boundary ∂Ω,
−∆ the (scalar) Laplace operator, L0 = −∆|C∞0 (Ω\∂Ω) the minimal Laplacian

in H = L2(Ω). Assume that we are given with a unitary copy L̃0 = UL0U
∗

in H̃ = UH (but U is unknown!). To what extent does L̃0 determine the
manifold Ω? Provided the operator is unitarily equivalent to L0, is it possible
to extract Ω from L̃0? Such a question is an ”invariant” version of various
setups of dynamical and spectral inverse problems on manifolds [1].

Example Let u = uf
λ(x) solve

(∆ + λ) u = 0 in Ω, λ ∈ C\σ(LDir)

u = f on ∂Ω .

The Titchmarsh-Weyl Transfer Operator Function is M(λ) : L2(∂Ω) →
L2(∂Ω), Dom M(λ) = H1(∂Ω),

M(λ)f :=
∂uf

λ

∂ν
on ∂Ω (λ to be admissible).

Inverse Problem: given M( · ) to recover Ω.

Lemma 1 (V.A.Ryzhov, 2007) The TW-function M determines L0 up to a
unitary equivalence.

Hence, one can hope for the determination M ⇒ L̃0 ⇒ Ω.
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2 Wave spectrum

2.1 Space extension

Let H be a separable Hilbert space, L(H) the lattice of its (closed) subspaces
(i.e., A,B ∈ L(H) implies HªA,A ∩ B,A ∨ B ∈ L(H)).

Definition 1 An one-parameter family E = {Et}t≥0 of the maps Et : L(H) →
L(H) is said to be a space extension if

1. E0 = id

2. Et{0} = {0}, t ≥ 0

3. t ≤ t′ and A ⊆ A′ imply EtA ⊆ Et′A′.

Definition 2 For an extension E and a family a ⊂ L(H), by L [E, a] ⊂
L(H) we denote the minimal sublattice s.t.

• a ⊂ L [E, a]

• EtL [E, a] ⊂ L [E, a] t ≥ 0.

2.2 Nests

Recall that a nest is a family of subspaces n ⊂ L(H) completely ordered
w.r.t. the embedding ”⊆”, i.e. for any A,A′ ∈ n one has A ⊆ A′ or A ⊇ A′.
The nests n = {At}t≥0 : At ≤ At′ for t < t′ are said to be parametrized.
Parametrized nests are partially ordered: for m = {At

m}t≥0 and n = {Bt
n}t≥0

we put
{m 4 n} ⇐⇒ {At ≤ Bt ∀t} .

With eachA ∈ L [E, a] one associates a parametrized nest nA := {EtA}t≥0.
Let

N [E, a] := {nA | A ∈ L [E, a]}
be the set of the nests of this kind.

A nest m = {Mt}t≥0 ⊂ L(H) is said to be minimal for the sublattice
L [E, a] if m 4 n holds for any n ∈ N [E, a] comparable with m.

Definition 3 The set ΩE,a of minimal (for L [E, a]) nests is said to be a
wave spectrum. The elements of ΩE,a are called the points.



3

So, in fact each point x ∈ ΩE,a is a parametrized nest x = {X t}t≥0.

Lemma 2 Put P t
A := PEtA. If there is a constant C > 0 s.t.

∥∥∥∥
∫ ∞

0

t dP t
A

∥∥∥∥ ≤ C ∀A ∈ L [E, a]

holds, then one has ΩE,a 6= ∅.
However, ΩE,a can consist of a single point. The examples of ΩE,a = ∅ are
not known.

2.3 Space ΩE,a

Let us provide the wave spectrum with relevant topology. For two of its
points x = {X t}t≥0 and y = {Y t}t≥0 define a quasi-distance

τ(x, y) := inf{t ≥ 0 | X t is not orthogonal toY t}
which is a symmetric function τ : ΩE,a × ΩE,a → [0, +∞]. Define the quasi-
balls Br[y] := {x ∈ ΩE,a | τ(x, y) < r}, r > 0 and consider the family
{Br[y] | y ∈ ΩE,a, r > 0} as a prebase of a topology. In what follows ΩE,a is
endowed with the topology generated by this prebase.

Conclusion With each pair E, a one associates a topological space (wave
spectrum) ΩE,a by {E , a} ⇒ L [E, a] ⇒ N [E, a] ⇒ ΩE,a.

3 Space ΩL0

3.1 Extension EL

Let

L = L∗ =

∫ ∞

0

λ dQλ ; (Ly, y) ≥ κ ‖y‖2, y ∈ Dom L ⊂ H ,

where dQλ is the spectral measure of L and κ is a positive constant. The
operator L governs the evolution of a dynamical system

vtt + Lv = h , t > 0 (3.1)

v|t=0 = vt|t=0 = 0 , (3.2)
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where h ∈ Lloc
2 ((0,∞);H) is a H-valued function of time (control). Its finite

energy class solution (wave) v = vh(t) is

vh(t) =

∫ t

0

L−
1
2 sin

[
(t− s)L

1
2

]
h(s) ds =

=

∫ t

0

ds

∫ ∞

0

sin
√

λ(t− s)√
λ

dQλ h(s) , t ≥ 0 .

Fix a subspace A ⊂ H; the set

V t
A := {vh(t) | h ∈ Lloc

2 ((0,∞);A)} , t > 0

is called reachable (at the moment t, from the subspace A).

Define a family EL = {Et}t≥0 of the maps Et : L(H) → L(H) by

E0A := A, EtA := closV t
A , t > 0 .

Lemma 3 EL is a space extension.

Let L0 be a closed densely defined symmetric positive definite operator
with nonzero defect indexes n± = n ≤ ∞. As is easy to see, such an operator
is necessarily unbounded. Let L be the extension of L0 by Friedrichs, so that

L0 ⊂ L ⊂ L∗0

holds. Also, note that

1 ≤ dim Ker L∗0 = n ≤ ∞.

The operator L0 determines the space extension EL.

3.2 Family aL0

Take a smooth Ker L∗0-valued function h ∈ C∞
0 ((0,∞); Ker L∗0) and put

uh(t) := h(t)− vh′′(t) =

h(t)−
∫ t

0

L−
1
2 sin

[
(t− s)L

1
2

]
h′′(s) ds , t ≥ 0 .
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A set

U t :=
{
uh(t) | h ∈ C∞

0 ((0,∞); Ker L∗0)
}

is called reachable from boundary (at the moment t). These sets increase as
t grows.

A family
aL0 :=

{
closU t

}
t≥0

is said to be the boundary nest; by construction it is determined by the
operator L0.

3.3 Space ΩL0

Each L0 determines the pair EL, aL0 , so that

ΩEL,aL0
=: ΩL0

is a well-defined topological space that we call the wave spectrum of the
operator L0.

The subset
∂ΩL0 := {x ∈ ΩL0 | x 4 aL0}

(so that X t ⊂ U t ∀t holds) is the boundary of the wave spectrum.

Definition 4 Class S of simple manifolds.

Theorem 1 Let Ω ∈ S, L0 the minimal Laplacian in Ω, ΩL0 its wave spec-
trum. There is a bijection β : ΩL0 → Ω s.t.

• τ(x, y) = distΩ (β(x), β(y)), so that the quasi-distance τ is a metric
on ΩL0 and β is an isometry of metric spaces

• β(∂ΩL0) = ∂Ω.

So, ΩL0 turns out to be an isometric copy of the manifold Ω.

Solving IPs M ⇒ H̃, L̃0 ⇒ ΩL̃0

isom
= Ω

von Neumann algebras {PEtA | A ∈ L [E, a]} ⇒ NL0 . For Ω ∈ S, the
Gelfand spectrum of NL0 is identical to ΩL0 .

Functional model H = ⊕ ∫
ΩL0

Hx dµx; Hx is a fiber of germs. Open ques-

tions: 〈ax, bx〉x =? and what is µ? Graphs: ???

Model of SBV {H,G; L0, Γ1, Γ2} with L0 : H → H, Γ1,2 : H → G s.t.
(L∗0u, v)H − (u, L∗0v)H = (Γ1u, Γ2v)G − (Γ2u, Γ1v)G .
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