Wave spectrum of symmetric semi-bounded operator and its applications

M.I.Belishev (PDMI)

1 Motivation

We introduce the notion of a *wave spectrum* of a symmetric semi-bounded operator in a Hilbert space. The impact comes from inverse problems of mathematical physics; the following is one of the motivating questions.

Let Ω be a smooth compact Riemannian manifold with the boundary $\partial\Omega$, $-\Delta$ the (scalar) Laplace operator, $L_0 = -\Delta|_{C_0^{\infty}(\Omega \setminus \partial\Omega)}$ the minimal Laplacian in $\mathcal{H} = L_2(\Omega)$. Assume that we are given with a unitary copy $\widetilde{L}_0 = UL_0U^*$ in $\widetilde{\mathcal{H}} = U\mathcal{H}$ (but U is unknown!). To what extent does \widetilde{L}_0 determine the manifold Ω ? Provided the operator is unitarily equivalent to L_0 , is it possible to extract Ω from \widetilde{L}_0 ? Such a question is an "invariant" version of various setups of dynamical and spectral inverse problems on manifolds [1].

Example Let $u = u_{\lambda}^{f}(x)$ solve

$$(\Delta + \lambda) u = 0 \quad \text{in } \Omega, \quad \lambda \in \mathbb{C} \setminus \sigma(L_{\text{Dir}})$$
$$u = f \quad \text{on } \partial\Omega.$$

The Titchmarsh-Weyl Transfer Operator Function is $M(\lambda) : L_2(\partial \Omega) \rightarrow L_2(\partial \Omega)$, Dom $M(\lambda) = H^1(\partial \Omega)$,

$$M(\lambda)f := \frac{\partial u_{\lambda}^{f}}{\partial \nu}$$
 on $\partial \Omega$ (λ to be admissible).

Inverse Problem: given $M(\cdot)$ to recover Ω .

Lemma 1 (V.A.Ryzhov, 2007) The TW-function M determines L_0 up to a unitary equivalence.

Hence, one can hope for the determination $M \Rightarrow \tilde{L}_0 \Rightarrow \Omega$.

2 Wave spectrum

2.1 Space extension

Let \mathcal{H} be a separable Hilbert space, $\mathfrak{L}(\mathcal{H})$ the lattice of its (closed) subspaces (i.e., $\mathcal{A}, \mathcal{B} \in \mathfrak{L}(\mathcal{H})$ implies $\mathcal{H} \ominus \mathcal{A}, \mathcal{A} \cap \mathcal{B}, \mathcal{A} \vee \mathcal{B} \in \mathfrak{L}(\mathcal{H})$).

Definition 1 An one-parameter family $E = \{E^t\}_{t\geq 0}$ of the maps $E^t : \mathfrak{L}(\mathcal{H}) \to \mathfrak{L}(\mathcal{H})$ is said to be a space extension if

- 1. $E^0 = id$
- 2. $E^t\{0\} = \{0\}, \quad t \ge 0$
- 3. $t \leq t'$ and $\mathcal{A} \subseteq \mathcal{A}'$ imply $E^t \mathcal{A} \subseteq E^{t'} \mathcal{A}'$.

Definition 2 For an extension E and a family $a \subset \mathfrak{L}(\mathcal{H})$, by $\mathfrak{L}[E, a] \subset \mathfrak{L}(\mathcal{H})$ we denote the minimal sublattice s.t.

- $a \subset \mathfrak{L}[E, a]$
- $E^t \mathfrak{L}[E, a] \subset \mathfrak{L}[E, a] \quad t \ge 0.$

2.2 Nests

Recall that a *nest* is a family of subspaces $n \subset \mathfrak{L}(\mathcal{H})$ completely ordered w.r.t. the embedding " \subseteq ", i.e. for any $\mathcal{A}, \mathcal{A}' \in n$ one has $\mathcal{A} \subseteq \mathcal{A}'$ or $\mathcal{A} \supseteq \mathcal{A}'$. The nests $n = {\mathcal{A}^t}_{t\geq 0}$: $\mathcal{A}^t \leq \mathcal{A}^{t'}$ for t < t' are said to be parametrized. Parametrized nests are partially ordered: for $m = {\mathcal{A}^t_m}_{t\geq 0}$ and $n = {\mathcal{B}^t_n}_{t\geq 0}$ we put

$$\{m \preccurlyeq n\} \Longleftrightarrow \{\mathcal{A}^t \le \mathcal{B}^t \quad \forall t\}$$

With each $\mathcal{A} \in \mathfrak{L}[E, a]$ one associates a parametrized nest $n_{\mathcal{A}} := \{E^t \mathcal{A}\}_{t \geq 0}$. Let

$$\mathfrak{N}[E,a] := \{ n_{\mathcal{A}} \mid \mathcal{A} \in \mathfrak{L}[E,a] \}$$

be the set of the nests of this kind.

A nest $m = {\mathcal{M}^t}_{t\geq 0} \subset \mathfrak{L}(\mathcal{H})$ is said to be *minimal* for the sublattice $\mathfrak{L}[E, a]$ if $m \preccurlyeq n$ holds for any $n \in \mathfrak{N}[E, a]$ comparable with m.

Definition 3 The set $\Omega_{E,a}$ of minimal (for $\mathfrak{L}[E,a]$) nests is said to be a wave spectrum. The elements of $\Omega_{E,a}$ are called the points.

So, in fact each point $x \in \Omega_{E,a}$ is a parametrized nest $x = \{\mathcal{X}^t\}_{t \ge 0}$.

Lemma 2 Put $P_{\mathcal{A}}^t := P_{E^t \mathcal{A}}$. If there is a constant C > 0 s.t.

$$\left\| \int_0^\infty t \, \mathrm{d} P^t_{\mathcal{A}} \right\| \le C \qquad \forall \mathcal{A} \in \mathfrak{L} \left[E, a \right]$$

holds, then one has $\Omega_{E,a} \neq \emptyset$.

However, $\Omega_{E,a}$ can consist of a single point. The examples of $\Omega_{E,a} = \emptyset$ are not known.

2.3 Space $\Omega_{E,a}$

Let us provide the wave spectrum with relevant topology. For two of its points $x = \{\mathcal{X}^t\}_{t\geq 0}$ and $y = \{\mathcal{Y}^t\}_{t\geq 0}$ define a quasi-distance

 $\tau(x, y) := \inf\{t \ge 0 \mid \mathcal{X}^t \text{ is not orthogonal to } \mathcal{Y}^t\}$

which is a symmetric function $\tau : \Omega_{E,a} \times \Omega_{E,a} \to [0, +\infty]$. Define the quasiballs $B_r[y] := \{x \in \Omega_{E,a} \mid \tau(x, y) < r\}, r > 0$ and consider the family $\{B_r[y] \mid y \in \Omega_{E,a}, r > 0\}$ as a prebase of a topology. In what follows $\Omega_{E,a}$ is endowed with the topology generated by this prebase.

Conclusion With each pair E, a one associates a topological space (wave spectrum) $\Omega_{E,a}$ by $\{E, a\} \Rightarrow \mathfrak{L}[E, a] \Rightarrow \mathfrak{N}[E, a] \Rightarrow \Omega_{E,a}$.

3 Space Ω_{L_0}

3.1 Extension E_L

Let

$$L = L^* = \int_0^\infty \lambda \, \mathrm{d}Q_\lambda; \qquad (Ly, y) \ge \varkappa \|y\|^2, \ y \in \mathrm{Dom}\, L \subset \mathcal{H},$$

where dQ_{λ} is the spectral measure of L and \varkappa is a positive constant. The operator L governs the evolution of a dynamical system

$$v_{tt} + Lv = h, \qquad t > 0$$
 (3.1)

$$v|_{t=0} = v_t|_{t=0} = 0, (3.2)$$

where $h \in L_2^{\text{loc}}((0,\infty);\mathcal{H})$ is a \mathcal{H} -valued function of time (*control*). Its finite energy class solution (*wave*) $v = v^h(t)$ is

$$v^{h}(t) = \int_{0}^{t} L^{-\frac{1}{2}} \sin\left[(t-s)L^{\frac{1}{2}}\right] h(s) ds =$$
$$= \int_{0}^{t} ds \int_{0}^{\infty} \frac{\sin\sqrt{\lambda}(t-s)}{\sqrt{\lambda}} dQ_{\lambda} h(s), \qquad t \ge 0.$$

Fix a subspace $\mathcal{A} \subset \mathcal{H}$; the set

$$\mathcal{V}_{\mathcal{A}}^{t} := \left\{ v^{h}(t) \mid h \in L_{2}^{\text{loc}}\left((0,\infty);\mathcal{A}\right) \right\}, \qquad t > 0$$

is called *reachable* (at the moment t, from the subspace \mathcal{A}).

Define a family $E_L = \{E^t\}_{t \ge 0}$ of the maps $E^t : \mathfrak{L}(\mathcal{H}) \to \mathfrak{L}(\mathcal{H})$ by

$$E^0 \mathcal{A} := \mathcal{A}, \quad E^t \mathcal{A} := \operatorname{clos} \mathcal{V}^t_{\mathcal{A}}, \quad t > 0.$$

Lemma 3 E_L is a space extension.

Let L_0 be a closed densely defined symmetric positive definite operator with *nonzero* defect indexes $n_{\pm} = n \leq \infty$. As is easy to see, such an operator is necessarily unbounded. Let L be the extension of L_0 by Friedrichs, so that

$$L_0 \subset L \subset L_0^*$$

holds. Also, note that

$$1 \leq \dim \operatorname{Ker} L_0^* = n \leq \infty.$$

The operator L_0 determines the space extension E_L .

3.2 Family a_{L_0}

Take a smooth $\operatorname{Ker} L_0^*\text{-valued}$ function $h\in C_0^\infty\left((0,\infty);\operatorname{Ker} L_0^*\right)$ and put

$$u^{h}(t) := h(t) - v^{h''}(t) =$$

$$h(t) - \int_{0}^{t} L^{-\frac{1}{2}} \sin\left[(t-s)L^{\frac{1}{2}}\right] h''(s) \, \mathrm{d}s \,, \qquad t \ge 0 \,.$$

A set

$$\mathcal{U}^t := \left\{ u^h(t) \mid h \in C_0^\infty\left((0,\infty); \operatorname{Ker} L_0^*\right) \right\}$$

is called *reachable from boundary* (at the moment t). These sets increase as t grows.

A family

$$a_{L_0} := \left\{ \operatorname{clos} \mathcal{U}^t \right\}_{t \ge 0}$$

is said to be the *boundary nest*; by construction it is determined by the operator L_0 .

3.3 Space Ω_{L_0}

Each L_0 determines the pair E_L, a_{L_0} , so that

$$\Omega_{E_L,a_{L_0}} =: \Omega_{L_0}$$

is a well-defined topological space that we call the *wave spectrum* of the operator L_0 .

The subset

$$\partial\Omega_{L_0} := \{ x \in \Omega_{L_0} \mid x \preccurlyeq a_{L_0} \}$$

(so that $\mathcal{X}^t \subset \mathcal{U}^t \ \forall t$ holds) is the *boundary* of the wave spectrum.

Definition 4 Class S of simple manifolds.

Theorem 1 Let $\Omega \in S$, L_0 the minimal Laplacian in Ω , Ω_{L_0} its wave spectrum. There is a bijection $\beta : \Omega_{L_0} \to \Omega$ s.t.

- $\tau(x, y) = \text{dist}_{\Omega}(\beta(x), \beta(y))$, so that the quasi-distance τ is a metric on Ω_{L_0} and β is an isometry of metric spaces
- $\beta(\partial \Omega_{L_0}) = \partial \Omega.$

So, Ω_{L_0} turns out to be an *isometric copy* of the manifold Ω .

Solving IPs $M \Rightarrow \widetilde{\mathcal{H}}, \widetilde{L}_0 \Rightarrow \Omega_{\widetilde{L}_0} \stackrel{\text{isom}}{=} \Omega$ von Neumann algebras $\{P_{E^t\mathcal{A}} \mid \mathcal{A} \in \mathfrak{L}[E, a]\} \Rightarrow \mathfrak{N}_{L_0}$. For $\Omega \in \mathcal{S}$, the Gelfand spectrum of \mathfrak{N}_{L_0} is identical to Ω_{L_0} .

Functional model $\mathcal{H} = \bigoplus \int_{\Omega_{L_0}} \mathcal{H}_x \, \mathrm{d}\mu_x$; \mathcal{H}_x is a fiber of germs. Open questions: $\langle a_x, b_x \rangle_x =$? and what is μ ? **Graphs:** ???

Model of SBV $\{\mathcal{H}, \mathcal{G}; L_0, \Gamma_1, \Gamma_2\}$ with $L_0 : \mathcal{H} \to \mathcal{H}, \Gamma_{1,2} : \mathcal{H} \to \mathcal{G}$ s.t. $(L_0^*u, v)_{\mathcal{H}} - (u, L_0^*v)_{\mathcal{H}} = (\Gamma_1 u, \Gamma_2 v)_{\mathcal{G}} - (\Gamma_2 u, \Gamma_1 v)_{\mathcal{G}}.$

References

- M.I.Belishev. Recent progress in the boundary control method. *Inverse Problems*, 23 (2007), no 5, R1–R67.
- [2] M.I.Belishev. Geometrization of Rings as a Method for Solving Inverse Problems. Sobolev Spaces in Mathematics III. Applications in Mathematical Physics, Ed. V.Isakov., Springer, 2008, 5–24.
- [3] M.I.Belishev. An unitary invariant of semi-bounded operator and its application to inverse problems. http://arxiv.org/abs/1004.1646.