
Asymptotic behavior of the eigenfunctions of
three-particle Schrödinger operator. II.
One-dimensional charged particles.

Buslaev V.S., Levin S.B.

St. Petersburg State University

1



Introduction

Setting of the problem. Scattered plane wave

First of all, we have to describe the configuration space of the
system. Originally, the configuration space is the euclidian space
R3, but after the separation of the motion of the center of mass
it is reduced to two-dimensional subspace

Γ = {z ∈ R3 : z1 + z2 + z3 = 0}
with the naturally induced euclidian structure l,m on it.
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The Schrödinger operator H has the form

H = −∆ + V (z), z ∈ Γ, (1)

where ∆ is the Laplacian on the space Γ. We consider the
Schrödinger equation Hψ = Eψ.

V is supposed to have the following structure

V = v(x1) + v(x2) + v(x3), (2)

where

x1 =
1√
2

(z3 − z2) , x2 =
1√
2

(z1 − z3) , x3 =
1√
2

(z1 − z3) . (3)
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The variables xj becomes equal to 0 along some axis lj, j =

1,2,3, on Γ.

It is supposed that the pair potential v(x) is a continuous
positive-valued function that tends to 0 at infinity. We will dis-
tinguish, roughly speaking, two essentially different cases : fast
decay pair potential,

xv(x) → 0

, and the Coulomb type potential,

xv(x) → α 6= 0

.
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Let us denote the general vector of Γ by x, and the vector of the
dual space (momentum space), naturally identified with Γ, by q.

Let r = |x|, ω = x
r and ωj =

xj
r , j = 1,2,3. Consider two approx-

imate as r → ∞ solutions R(x, E) of the Schrödinger equation.
These solutions are: for fast decaying potentials

R = R0 =
1

r1/2
e[i
√

Er]. (4)

For the Coulomb type potentials

R = Rc =
1

r1/2
exp [i

√
Er + iγ ln r], γ = − α

2
√

E

(
1

ω1
+

1

ω2
+

1

ω3

)
.

(5)
In the last formula we suppose that x * lj, j = 1,2,3.
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Now we are able to describe the boundary conditions at infinity.
Let

n(ω, θ) =

√
2π

i
√

E
δ(ω, θ), θ =

q√
E

, (6)

where δ(ω, θ) is the delta-function on the unit circle with the
standard angle measure.

Fix a vector (wave vector) q that lies inside one of the sectors be-
tween lj, j = 1,2,3. Now the asymptotic behavior of the solution
can be fixed by the condition

ψ ∼ ψ(x,q) = n(ω,q)R∗ + f(ω,q)R + o(r−1/2). (7)

as r →∞.
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The asymptotic formula has to be considered in the weak with
respect to ω sense, and both functions n and f must be treated
as singular distributions. The first term of the asymptotic repre-
sentation coincides with the first term of the weak asymptotic
description of the plane wave ei<q,x>, so it is natural to call the
solution ψ(x,q) the scattered plane wave.

The solutions that are defined by the above asymptotic behavior
can be treated as the generalized eigenfunctions of the contin-
uous spectrum of the operator H. We have to remark that the
corresponding theorem is not proved yet rigorously.
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Asymptotic behavior of the scattered plane wave.

The definition of the scattered plane wave itself gives some in-
formation on the asymptotic behavior of the solution at infinity.
We hope that this information is sufficient for the definition, but
it is not sufficient for many other goals. We need more precise
description of the asymptotic behavior, say, in the uniform norm,
with respect to ω to prove rigorously the existence of the solu-
tion, to use it for physical applications, to find approaches for
the numerical computations of the solution, and for some other
goals. We will construct here on the heuristic level the continu-
ous function ψas that gives the asymptotic behavior of ψ in the
uniform norm.
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The case of fast decreasing potential was considered in
[1: V.S.Buslaev and S.B.Levin, Asymptotic behavior of the
eigenfunctions of many-particle Schrödinger operator. I. One-
dimensional particles, - Amer.Math.Soc.Transl. (2) v.225, pp.55-
71, (2008); V.S.Buslaev, S.B.Levin, P.Neittaannmäki, T.Ojala,
New approach to numerical computation of the eigenfunctions
of the continuous spectrum of three-particle Schrödinger oper-
ator. I. One-dimensional particles, short-range pair potentials, -
J.Phys.A: Math.Theor. 43, (2010), 285205, (pp.17)].

We represented the corresponding results a year ago at this con-
ference.
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Here we find the similar asymptotic formulas for Coulomb type
potentials.

In fact, it is the first case when the asymptotic behavior (in the
uniform norm) was found for a system of three particles interact-
ing via the Coulomb pair potentials. As for the fast decreasing
potentials for three dimensional particles such asymptotic be-
havior was obtain in famous Faddeev’s work [3: L. D. Faddeev,
Mathematical Aspects of the Three-Body Problem in the Quan-
tum Scattering Theory, Academy of Sciences of the USSR, Trudy
Matematicheskogo Instituta, v.69, (1963)].
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Constructing the function ψas we use two criteria:
1) The ψas satisfies the weak asymptotic behavior that was de-
scribed earlier and that in our approach defines ψ, and
2) the discrepancy

Q[ψas] = −∆ψas + V ψas − Eψas (8)

decreases at infinity faster than r−1. It is worth to notice that
with the present initial result we can improve the asymptotic
formulas such that the discrepancy would decrease as arbitrary
power of r.
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Some additional geometrical remarks

Introduce on Γ three orthonormalized bases (kj, lj), j = 1,2,3,

that have the same orientation . Let lj ∈ lj and the angles be-
tween any two unit vectors lj are equal to 2/3π. There are two
such choices of the vectors lj, we can take any of them. The
coordinates of the vector x with respect to these three bases
will be denoted by (xj, yj). These are the classical Jacobi co-
ordinates. The coordinates of the vector q will be denoted by
(kj, pj). We also will consider six rays l±j generated by the vec-
tors ±lj, j = 1,2,3.
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Consider on the configuration plane the group of transformations
S generated by the reflections τj with respect to the straight-lines
lj. It consists of six elements I, τ1, τ2, τ3, τ2τ3, τ2τ1, their general
notation is σ.

The Schrödinger equation is invariant with respect to the group.
Consider six sectors λσ that is situated between pairs of the
neighboring rays l±j , here σ denotes the element of S, that trans-

fers the sector λI situated between l+1 and l−3 , into the considered
sector. The sector λI will be denoted also simply λ.

We will assume q ∈ λ. Applying to it different elements of S, we
obtain six other vectors qσ = σq, qσ ∈ λσ.
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Constructing of ψas

The plan that we use to construct ψas consists of several steps:

A). First of all, we construct some generalization of the plane
wave. It is easy to see that in the case of Coulomb type potentials
there is no a direct analog of the elementary globally defined
plane wave. We can construct the analog of the plane wave
(that we call the Coulomb plane wave) only inside of any sector
λσ.
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Let us denote this analog by ψc(x,q) and define it in the sector
λσ by the formula

ψσ(x,q) = exp [i < q,x > +i∆σ(x,q)], (9)

∆σ(x,q) = −α

(
sgn(x1)

2k1
ln |x1|+

sgn(x2)

2k2
ln |x2|+

sgn(x3)

2k3
ln |x3|

)
.

(10)

We suppose that the vector q is situated outside of a certain
small neighborhoods of the subspaces lj, and x tends to ∞ also
remaining outside of these neighborhoods.
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On the second step

B) We simplify the equation near the rays lj . The simplified
equations

−∆ψ + Vj(x)ψ = Eψ, Vj(x) = v(xj) + 2v(

√
3

2
yj) (11)

have new potentials Vj such that on some vicinities of lj the dif-
ference V − Vj tends to zero at infinity faster that the Coulomb
potential. At this vicinity the simplified equation allows the sep-
aration of variables.
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On the step

C) We specify the solutions of the approximate equation that
up to constant factors transfer at some growing distance from lj
to the Coulomb plane waves . Let us again denote such solution
by

χj(x,q). (12)

Further, we combine such solutions and their continuations via
the Coulomb plane waves and define the extended solution
χj(x,q) on the whole angle sectors Kj between the appropriate
vectors qσ,qσ′ surrounding lj.
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After that we can combine such solutions by constructing of
their finite linear combination into the ray approximation ψR.
This approximation has quickly vanishing at infinity discrepancy.
It is also smooth everywhere except two rays q1 = τ2τ3q and
q3 = τ2τ1q where the ray field has simple jumps.



On the last step

D) We modify the ray solution in neighborhoods of these two
rays q1 and q3. In fact, we replace the discontinuous functions
near these rays by a function smoothly connecting two different
ray approximations on both sides, say, of q1. This function is not
elementary. This completes the constructing of ψas.
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Asymptotic structure of the wave field near the
rays lj. Separation of variables

Consider a neighborhood of the ray l+1 . Let for brevity x1 =
x, y1 = y. Near the ray

x2 = −
√

3

2
y − 1

2
x < 0, x3 =

√
3

2
y − 1

2
x > 0. (13)

It is clear that near the l+1 |x| ¿ y, and the potential V (x) can
be simplified and replaced by the following expression

V (x) = v(x1) + v(x2) + v(x3) ∼ v(x) + 2v(

√
3

2
y). (14)

Then we obtain the approximate equation

−∆χ0 +

[
v(x) +

4α√
3|y|

]
χ0 = Eχ0. (15)
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It allows the separation of variables, and, as a result, has the
solution of the form

χ0(x,q) = ξ(x, k)f(y, p), (16)

where ξ(x, k) and f(y, p) are, in their turns, the solutions of the
ordinary differential equations

−ξ′′ + vξ = k2ξ, −f ′′ + 4α√
3|y|f = p2f. (17)

Here, of course, k2 + p2 = E.
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The solution of the scattering problem on the
axis

Consider the solution ξ(x, k) of the scattering problem for 1-
dimensional Schrödinger equation −ξ′′ + v(x)ξ = k2ξ, x, k ∈ R.

To describe it more precisely introduce the function

ξc(x, k) = exp
[
ikx− iα

2k
sgn(x) ln |x|

]
. (18)

With this notation the solution ξ(x, k) can be characterized by
the following asymptotic behavior as |x| → ∞:

ξ(x, k) ∼ s(k)ξc(x, k), kx → +∞, (19)

χ(x, k) ∼ ξc(x, k) + r(k)ξ∗c(x, k), kx → −∞. (20)
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The solution χ1

Come back to the approximate equation .

As for ξ, we suppose that this is a solution of one-dimensional
scattering problem. As for the solution f , we replace it by the
leading term of the asymptotic behavior as y → +∞.

Therefore, on this stage we propose for χ0(x,q) the following
approximation:

χ0(x,q) = ξ(x, k) exp

[
ipy − i

2α√
3p

ln y

]
. (21)

However, as x → ∞, it does not transfer to a Coulomb plane
wave.
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The following approximation is more satisfactory :

χ1 =

(
ξ(x, k) +

B

y
ξk(x, k)

)
exp [ipy + iγ0 ln y]. (22)

The numbers B, γ0 have to be computed . In fact, they are equal
to

B =
α

2
√

3

(
1

k2
+

1

k3

)
, γ0 = α

1

2m1
, (23)

1

2m1
=

1

2k2
− 1

2k3
. (24)
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The comparison with the Coulomb plane waves

Let us explain how we come to this expression. We consider the
approximate solution that is a superposition of the form

χ(x, y) =
∫

R
R(p

′
)ξ(x,

√
E − p

′2
)f(y, p

′
)dp

′
. (25)

We denote by Vν the domain surrounding the ray l1 and bounded
by two branches of the curve

|x| = yν. (26)

It is obvious that Vµ ∈ Vν, ν > µ. We call the neighborhood of the
ray the immediate neighborhood if 0 < ν < 1. On the immediate
neighborhood the discrepancy of χ tends to 0 faster than the
Coulomb potential.
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Now let us seek its asymptotic behavior as x, y → ∞, |x| << y.

With a special choice of the density R the superposition can be
transformed to the Coulomb plane wave ψσ(x,q). The compari-
son of the superposition with the behavior of the Coulomb plane
wave as |x| → ∞, |x| ¿ y, defines the density of the superposition.
Up to a constant factor

R = R0

(
p
′ − p− i0

)−1+iα( 2√
3p
−1/2( 1

k2
+ 1

k3
))

. (27)
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Let us introduce the symmetrical with respect to the ray some
its angle neighborhood V . Let us consider on V a complement
of Vµ,1/2 < µ < ν. It consists of two components V+, V−, on V+

x > 0, on V− x < 0. On this complement consider two Coulomb
plane waves ψI , ψτ1. Their discrepancies vanish at infinity faster
than the Coulomb potential.
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Let us combine two Coulomb plane waves in other almost solu-
tions

ψ+(x,q) = s(k1)ψI(x,q), (28)

ψ−(x,q) = ψτ1(x,q) + r(k1)ψτ1(x, τ1q). (29)

Here s(k), r(k) are the transition and reflection coefficients for
the one-dimensional equation.

Finally consider also two mutually symmetric with respect to the
ray subdomains

D±
µ,ν = V± ∩ Vν. (30)
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On D±
µ,ν the almost solutions χ and ψ+, ψ−, simultaneously have

at infinity fast decaying discrepancies. Compare the solutions
themselves on these sets. Let k1 > 0. It is not hard to show that
up to a common constant factor for x > 0

χ1 ∼ s(k1)e
i<q,x>e

[ iα
2k1

ln|x|+iγ0lny]
. (31)

As a result, on D+
µ,ν

χ1 = ψ+ + O(
1

x
). (32)

Analogously, on D−
µ,ν

χ1 = ψ− + O((
1

x
).) (33)
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Resume: Almost solution on the angle neighbor-
hood of l1

Consider the covering of the angle neighborhood of the ray:

V = Vν ∩ V+ ∩ V−. (34)

Consider the partition of the unit subordinated to this covering:

1 = ζ0 + ζ+ + ζ−. (35)
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Now we extend the almost solution χ1 defined on the immediate
neighborhood of the ray to the bigger angle neighborhood V of
the ray:

χ = ζ0χ1 + ζ+ψ+ + ζ−ψ−. (36)

It is not hard to show now that on V

Q[χ] = O(
yµ

y2
+

1

y2µ
). (37)

If we put µ, ν close to 2/3, and µ < ν, then the discrepancy will
have the order

Q[χ] = O(y−δ), δ < 4/3. (38)

Thus, the discrepancy decreases at infinity faster than the
Coulomb potential. The goal of the constructions is achieved.
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Formulas for ψR

How to construct ψR?

In this section we will describe the ray approximation ψR to this
function that will not have the satisfactory properties only on
two from six rays . We will make the correction of the field on
these two specific rays in the next section.

Let us recall that every sector λσ, σ ∈ S, contains exactly one
vector of the form qσ.

Above, on the domain V , we constructed the almost solution χ.
Let us extend this solution on the set V̂ that complements the
domain V by the domain that is symmetric to V with respect to
the straight line spanned by the vector k1.
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Let us realize this extension with the help of the formula

χ(x, y, k1, l1) = χ(x,−y, k1,−l1). (39)

Let us keep the same notation χ for the field on the extended
domain V̂ .

Following the ideas of the work [1], introduce the functions

χj(x,q) = χ(xj, yj, kj, lj). (40)

Between qσ there lie six new sectors K±
j .
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Inside each of them there is precisely one ray of the form l±j , its
index is also used to denote the sector of type K. Let us describe
the field ψR, that is the ray approximation to the asymptotic field
ψas.

Sector K+
1 : ψR = χ+

1 ,

χ+
1 (x,q) = χ1(x,q)s2s3.

We used here the notation: sj = s(kj), rj = r(kj).

Sector K−
3 : ψR = χ−3 ,

χ−3 (x,q) = χ3(x,q)s2s1.
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Sector K+
2 : ψR = χ+

2 ,

χ+
2 (x,q) = χ2(x,q)s1 + χ2(x, τ3q)s2r3.

sector K−
2 : ψR = χ−2 ,

χ−2 (x,q) = χ2(x,q)s3 + χ2(x, τ1q)s2r1.

We won’t analyze here the origin of every term, it can be easily
recovered from the sequences of reflections and transitions that
explicitly accompanying each term. Details can be found in [1].
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Sector K−
1 : ψR = χ−1 ,

χ−1 (x,q) = χ1(x,q)+χ1(x, τ2q)r2s1+χ1(x, τ3τ1q)r2r1+χ1(x, τ3q)r3.

sector K+
3 : ψR = χ+

3 ,

χ+
3 (x,q) = χ3(x,q)+χ3(x, τ2q)r2s3+χ3(x, τ1τ3q)r2r3+χ3(x, τ1q)r1.
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The full field χR is defined by the formula

ψR = θ+
1 χ+

1 + θ−3 χ−3 + θ+
2 χ+

2 + θ−2 χ−2 + θ−1 χ−1 + θ+
3 χ+

3 .

We used here the notation θ
(±)
j for the characteristic function of

the corresponding sector K±
j ,

θ+
1 + θ−3 + θ+

2 + θ−2 + θ−1 + θ+
3 = 1.

The last formula for ψR does not define the value of the field on
the boundaries of the sectors. In the next subsection we will see
that on all boundaries except two rays q1, q3, the ray field will be
smooth.
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The properties of smoothness of the field ψR

Notice that in the neighborhoods of all boundaries the field on
both sides of the boundaries in the case of quickly decreas-
ing potentials is reduced to finite linear combinations of the
plane waves. The coefficients of these linear combinations are
defined by the transition and the reflection coefficients of one-
dimensional problem. These linear combinations taken on dif-
ferent sides of the boundary coincide on four boundaries from
six. On two rest boundaries there are jumps of the coefficients
before the plane waves with the wave vector oriented along the
boundary of joining.
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The discontinuous part of the ray field in the neighborhood of
the boundary q1, as it was shown in [1], is given by the expression

j1 = (R1θ+
2 + R2θ−1 )ei<q1,x>. (41)

Here

R1 = r1s2r3, R2 = r3r2s1 + s3r2r1. (42)

The analogous formula is also true in the neighborhood of the
boundary q3.

In the case of the Coulomb potentials the plane waves have to
be replaced by the Coulomb plane waves that we will denote,
correspondingly, by ψ1(x,q1), ψ1 = ψτ2τ3, и ψ3(x,q3), ψ3 = ψτ2τ1.
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Smoothing of the discontinuous solutions. The
Cauchy integrals

So in a neighborhood of the ray q1 we deal with the discontinuous
almost solution

J1 = (R1θ+
2 + R2θ−1 )ψ1(x,q1). (43)

Let us discuss the procedure that allows to smooth out the dis-
continuous almost solution J1. First of all, let us introduce in
the considered sector the polar coordinates r, η, and assume that
η ∈ [0, π/3], η = 0 ∼ l+2 . Let the support of a function f(η) be-
longs to the interval [0, π/3].
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Let us apply to such function the projection operators P± onto
the subspaces of functions that are analytical in the upper and
lower semi-planes of the complex plane :

(P±f)(η) =
±1

2πi

∫

R

dη′

η′ − (η ± i0)
f(η′). (44)

Our goal is to replace the discontinuous almost solutions by su-
perpositions of the Coulomb plane waves that are almost solu-
tions with the satisfactory discrepancy. We need also the follow-
ing property of the superposition: when the point x recedes from
the ray of the jump q1 these superpositions interlock with the
Coulomb plane waves that are the corresponding components of
the ray approximation.
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Consider the function

φ
(±)
1 =

±1

2πi

∫

R

dη′

η′ − (η0 ± i0)
f(η′)ψ1(x, η′). (45)

As f we have to choose the function that is equal to 1 on the
interval [α, β],0 < α < β < π/3 and to 0 outside of the interval
[0, π/3]. Further, ψ1(x, η′) = ψ1(x,q), and for q there are used the
polar coordinates (

√
E, η′). These integrals are almost solutions

of the Schrödinger equation with the discrepancies that satisfy
to the same estimates as the Coulomb plane waves themselves.
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Let us study the asymptotic behavior of these integrals as r →∞
in the angle η ∈ (α, β). The idea of the computation of the
asymptotic behavior is sufficiently simple. Let compute the inte-
grals more explicitly:

φ
(±)
1 =

±1

2πi

∫

R

f(η′)dη′

η′ − (η0 ± i0)
e[ir

√
E cos(η′−η)+i∆(x,η′)], (46)

here q is the vector with the polar coordinates
√

E, η′. Let us
make more precise the structure of the function ∆(x, η′):

∆(x, η′) = ln rγ1(q(η′)) + γ2(ω,q(η′)). (47)
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It is clear that the integrand have the stationary point η and
the pole η0. The asymptotic behavior of the integral depends
on the mutual location of these points. If r1/2|η − η0| → ∞,

the contributions of the stationary point and the pole can be
separated and generate a diverging Coulomb wave (with a certain
amplitude) and the plane Coulomb wave.

More specifically, for η0 ≶ η

φ
(±)
1 ∼ ψ1(x,q1) +

±e−i3/4π
√

2π|q|
1

η − η0
eiγ2(ω,q(η))Rc. (48)
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For opposite relation of the inequalities of the solution the poles
do not contribute to the asymptotic behavior, and the integrals
behave asymptotically as the diverging circle Coulomb waves,
that in these constructions play the role of the error : for η0 ≶ η

φ
(∓)
1 ∼ ∓e−i3/4π

√
2π|q|

1

η − η0
eiγ2(ω,q(η))Rc. (49)

These formulas show that for x, that are close to q1, one can
replace θ+

1 ψ1 by the almost solution φ+
1 , and θ−1 ψ1 by the almost

solution φ−1 . In the next subsection we will describe the formulas
that can realize this idea.
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Smooth almost solution in the sectors λ1, λ3

Consider on the axis ω four points ω
(1)
1 , ω

(1)
2 , ω

(1)
3 , ω

(1)
4 , subordi-

nated to the conditions:

0 < δ < ω
(1)
1 < ω

(1)
2 < ω0 < ω

(1)
3 < ω

(1)
4 < β < π/3. (50)

Consider the covering of (0, π/3) by the subintervals

(0, ω
(1)
2 ), (ω(1)

1 , ω
(1)
4 ), (ω(1)

3 , π/3)

. Consider further the partition of the unit

1 = ζ
(1)
1 + ζ

(1)
2 + ζ

(1)
3 . (51)

subordinated to this covering. We assume that the cut-off func-
tions depend on the polar angle.
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Now replace the discontinuous part of the field J1 in the consid-
ered sector λ1 by the almost solution J̃1:

J̃1 = ζ
(1)
1 J1 + ζ

(1)
3 J1 + ζ

(1)
2 (R1φ

(+)
1 + R2φ

(−)
1 ). (52)

It is not hard to show that

Q[J̃1] = O(|x|−2). (53)

We can easily repeat for the sector λ3 the above constructions.
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We now completed the constructing of the function ψas: every-
where except sectors λ1, λ3

ψas = ψR. (54)

On these sectors, in their turn,

ψas = ψR + (J̃i − Ji). (55)

On any directions the following uniform estimate

Q[ψas] = O(|x|−δ), δ < 4/3, (56)

is valid.
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Let us formulate the theorem that, in fact, was proved in this
paper :
Теорема 1.The constructed function ψas possesses the follow-
ing properties: 1) its discrepancy decreases at infinity faster than
the Coulomb potential, and has the order O(|x|−δ), δ < 4/3,
2) the difference

ψas(x,q)− ψτ2(x,q)ζ(ω), (57)

where ζ(ω) is a smooth cut off function concentrated in a neigh-
borhood of the "back"wave vector −q, asymptotically behaves
as a "diverging Coulomb wave

∼ Rch(ω,q). (58)
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