
Non-Weyl Asymptotics of Resonances on Graphs

E. Brian Davies

King’s College London

St Petersburg, 13 July 2010

E.B. Davies (KCL) Resonances on Graphs St Petersburg, 13 July 2010 1 / 20



Journal of Spectral Theory

published by the European Mathematical Society

Find it using Google!

E.B. Davies (KCL) Resonances on Graphs St Petersburg, 13 July 2010 2 / 20



Complex Eigenvalues

Although a self-adjoint operator can only have real eigenvalues, the
associated differential equation can also have complex eigenvalues called
resonances.

It all depends on the class of permitted solutions of the differential
equation, which may be

−(∆f )(x) = k2f (x)

on some non-compact hyperbolic manifold or the Schrödinger equation in
one dimension

− d2f

dx2
+ V (x)f (x) = k2f (x).
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Analysis on a Graph
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At each vertex v one imposes the Kirchhoff boundary conditions,
continuity plus ∑

r

f ′r (v) = 0.

where one calculates the outgoing derivatives in the directions of the
various edges/leads.

Since

〈Hf , f 〉 =

∫
G
|f ′(x)|2 dx

The spectrum of H is [0,∞).

There may be eigenvalues embedded in the continuous spectrum. They
are associated with very special closed loops.
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Embedded eigenvalues
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Definition of a Resonance

We are looking for a solution of

− d2f

dx2
= k2f (x).

with Im (k) ≤ 0, that satisfies the Kirchhoff boundary condition and an
outgoing wave condition.

Namely for each lead [0,∞) we require that

f (x) = f (0)eikx

so f is purely exponentially increasing at infinity in every lead.
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Another Definition of a Resonance

Resonances revealed by exterior complex scaling
on all of the external leads through an angle θ.
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The Weyl Law

If there are no leads then the graph G has finite volume |G | and discrete
spectrum. If the eigenvalues are λ = k2 where k ≥ 0 then

N(r) = #{k : k ≤ r}

is given by Weyl’s law

N(r) =
|G |r
π

+ o(r).

This type of result is true in much a more general context.

Can one prove a Weyl law for resonances?
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Exponential Polynomials

In order to prove our main result, we need to consider the zeros of
exponential polynomials, i.e. functions of the form

F (z) =
n∑

r=1

areiσr z (1)

where ar ∈ C and σ1 < σ2 < . . . < σn ∈ R.

For r > 0 we denote by N(r ; F ) the number of zeros of F (counting
multiplicity) in the disc {z ∈ C : |z | < r}.

E.B. Davies (KCL) Resonances on Graphs St Petersburg, 13 July 2010 10 / 20



Exponential Polynomials

Theorem (Langer)

Let F be a function of the form (1), where ar ∈ C, a1 6= 0, an 6= 0 and
σ1 < σ2 < . . . < σn ∈ R. Then there exists a constant b <∞ such that
all the zeros of F lie within a strip of the form {z : |Im (z)| ≤ b}. The
counting function N(r ; F ) satisfies

N(r ; F ) =
σn − σ1

π
r + O(1)

as r → +∞.

E.B. Davies (KCL) Resonances on Graphs St Petersburg, 13 July 2010 11 / 20



Zeros of an exponential polynomial
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Getting Down to Business

Let us suppose that there are n edges, m leads, v vertices and ri
edges/leads connected to the ith vertex. Then

2n + m =
V∑

i=1

ri

The number of variables we need to control is 2n + m. Each edge ei is
associated with the function αieikx + βie−ikx . Each lead `i is associated
with the function γieikx .

The number of constraints is
∑V

i=1 ri . Each vertex has ri − 1 continuity
conditions and 1 condition on the sum of the first derivatives.
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More Business

If an edge ei is labelled (0, ci ) then at the ends of the edge the function is
equal to αi + βi or αieikci + βie−ikci .

A similar calculation can be done for the derivatives at the ends of the
edges and for the leads.

The 2n + m constraints involve linear combinations of these quantities.

This leads to the problem of finding non-zero solutions of Af = 0 where f
is a column vector with entries that involve αi , βi , γi .
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More Business

So in the end we have to evaluate a (2n + m)× (2n + m) determinant
whose entries involve e±ikci .

This leads to a function of the form

F (k) =
n∑

r=1

areiσrk

where each σi is a sum of some of the expressions ±cj .

The largest possible σi is |G | =
∑

i ci and the smallest possible is −|G |.

So we appear to be finished,

but we are not!
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The Final Result

Theorem

The Weyl law for resonances holds if and only if every external vertex is
unbalanced,i.e. the number of leads is not equal to the number of edges at
that vertex.
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A simple example
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The resonance curves

det(A) = Feven(k , c)Fodd(k , c)

where

Feven(k , c) = i cos(kcπ) + i cos(kπ) + 2 sin(kπ),

Fodd(k , c) = i cos(kcπ)− i cos(kπ)− 2 sin(kπ).

We will call the zeros of Feven(·, c) (resp. of Fodd(·, c))
the even (resp. odd) resonances.
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An odd resonances curve
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An even resonances curve
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