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OUR MODEL : an electron (driven by a Dirac operator) in a nuclear-like electrostatic field
+ an external constant magnetic field.

Real atoms and molecules can also be considered, but not today!
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Ho = —-ia-V+23, ay, a2, az, B € Myxa(T) (c=m=h=1)
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The two main properties of H are:
2
Hy = A1, o(Hp) = (—o0,—1] U1, +00)

Hg acts on functions ¢ : IR? — @4

QUESTION : Spectrumof Hg +V ?

w is an eigenvalue of Hg 4+ V' with associated eigenfunction ¢ iff (¢, z) := e~ *“ip(x)
is a solution of

i + Hoy + VY =0 in R xR
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Let us first consider the case of Coulomb potentials V,, := T V> 0.

H, := Hy — ﬁ can be defined as a self-adjoint operatorif 0 <v <1

(actually also (recent result) if v = 1).

Its spectrum is given by:

J(HV):(_OO)_l] U {>‘,1/7>‘57} U [1700)
0<A =v1—-102<-- <Ao< 1.

and the fact that A\ (Ho + V) belongsto (—1,1) is akind of “stability condition” for the
electron.
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When a external magnetic field B is present, one considers a magnetic potential A g s.
t. curlAgp = B.

One has thento replace V with Vg = V —iAp

Hp = —ia-Vp + 0

If we consider Hg + V, if this operator is self-adjoint, if its essential spectrum is the set
(_007 _1] U [17+OO)

plus a discrete number of eigenvalues in the spectral gap (—1,1),

Does A\ (B, V) ever leave the spectral gap (—1,1) ? and if yes, for which values of B ?
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- A
In the first case, A\{ = min (Az, )
z#0  ||z|[?
Az, Az,
In the second case, A1 = min max (Hmﬂ;v) , A\1 = max min (HxH;B) ,
L T
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on H. Let H, H_ be two orthogonal subspaces of ‘H satisfying: H = H®H_. Define
Fy := PLF.

i a-:= sup 5
v_er_\{o} |lz—IZ

(z, Ax)

Let cp = inf sup 5 k> 1
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If (i) ¢1 > a— ,then ¢ is the k-th eigenvalue of A in the interval (a—,b), where
b — inf (O-ess(A) M (CL_, +OO))
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Suppose that the magnetic field B is constant and that V' satisfies

lim V(z) = 0, _LSVSO,
|z —+o0 ||
Then, forall k£ > 1,
H |%
Ae(B,V) = inf sup sup (v, (Hp +V)¢)
Y subspace of CEURS.C2) peV\{0} o (?) (4, %)
dimY =k X

X€CS° (IR3,C2)
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The first eigenvalue of Hg + V' in the spectral hole (—1,1) is given by

— (v, (Hp +V)v) (¥
M=t S v= ()

and
Byl oo @ Hs+V)Y)
Y= (0, %)

X
x€C§° (R3,C2)

is the unique real number X\ such that

o VBl 2 / 2
1+ V do = .
/133(1—V—|—>\+(+ )M)x A, lelde
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A1 (B, V) = inf )\B (‘P)
eeCEe (R3,C2)
p7#0

o - Vel|? -
/133 (1 —V +AB(p) +(V+1- AB(¢))|¢|2)dx =0

v/ 2
/ (0 - V)| — dx +(1—>‘1(B,Vu))/ o2 dz > / ngolzd:c
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A (B,V) = inf AB ()
PECEH (IR3,C2)
p#0

o - Vel|? B
/133 (1 —V +AB(p) +(V+1- AB(SO))IsOIQ)dx =0

AV 2
[ Ve o) [P [ Dl
R3 1—|—>\1(B,V1/)+ Tz] R3 IR3 |33|

QUESTIONS : When do we have A\ (B,V) € (—1,1) ?

If the eigenvalue X\, (B, V) leaves the interval (—1,1), when ?




For a potential V' =1V, := —ﬁ, v e (0,1), 0 < Bl< B2<B(v):
B=0 C—  ———
-1 1
B=B1 0000

B=B2

B=B(v) o —© —0 000




For a potential V' =1V, := —ﬁ, v e (0,1), 0 < Bl< B2<B(v):
B=0 C—  ———
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B=B(V) — ==
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DEFINITION: B(v) :=inf {B >0 : libn}iélf A (B,v) = —1} : (1)
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eFor B=0, \(0,V,) =vV1—v2 €(—1,1)

eForall B>0, \i(B,V,) <1

e Forall v € (0,1) there exists a critical field strength B(v) such that

e lim,_,; B(v)>0, lirrb viegB(v) =7

e For v small, the asymptotics of B(~) can be calculated by an approximation in the first
relativistic “Landau level".




, 2
[ Ve x> [ Ljea
Rr3 1+ X\ (B, V) + Tz] R3 R3 ||




, 2
[ VA aoam) [ el > [ L
Rr3 1+ X\ (B,V,) + Tz] IR3 R3 ||

and we are looking for B,, — B(v) suchthat \{(By,v) — —1.

If everything were compact, we would be able to pass to the limit and obtain

xT oV v 2
/ 2| |( B(v))¢¥! _/ L|¢|2dx+2/ lo|? dz > 0
R3 IR IR

v 3 |z




-V 2
/ o Ve)el g 11— 2B, v) / |2 da > / 2 o2 dz
Rr3 1+ X1 (B, V) + Tz] IR3 R3 |Z]

and we are looking for B,, — B(v) suchthat \{(By,v) — —1.

If everything were compact, we would be able to pass to the limit and obtain

xT oV v 2
/ 2| |( B(v))¢¥! _/ L|¢|2dx+2/ lo|? dz > 0
R3 IR IR

v 3 |z

Now define the functional

|| v

eouldli= [ i Vp)ePde— [ Ljode
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A very nice property is that the scaling ¢ 5 := B3/* ¢ (B1/2 z) preserves the L2 norm
and Ep (o] =VBE&i [P .
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So, if we define w(v) = info—;f¢€C80(R3) m = U1,v ,
we have pup, = VB u(v).
THM : B(v)u(v) +2=0 which is equivalent to Bv) = 2.

Now we would like to estimate B(v) . This can be done analytically or/and numerically.
As we said before, analytically we have some estimates for v~ closeto 0 and to 1.
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where the coefficients depend only on z3, i.e.,

d(x) = ng(il?g) do(x1,22) Z:=2x3.
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Now, we shall restrict the functional £5 ,, to the first Landau level. In this framework, that
we shall call the Landau level ansatz, we also define a critical field by

B =infd{ B >0 : liminf A2 (b,v) = —1
r(v) m{ > 1brr}1§ T (b,v) },

where

(b, v) = inf Ao, b, v] .
pEA(B,v), I ¢p=0
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COROLLARY. p(v) <ptv) <0 = B(v)<B%).
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THEOREM. For v € (0, 1), B~ (v +v3/2) < B(v) < BE(v)

THEOREM. lim v log B(v) = =.

vr—0

NUMERICAL OBSERVATION. For v near 1, B(v) is below B*(v) by 30%.
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