Decorrelation estimates for the eigenlevels of random operators in the localized regime

F. Klopp

Université Paris 13 and Institut Universitaire de France

Conference on Spectral Theory Euler Institute, St Petersburg July 15th 2010

イロト イポト イヨト イヨ

Outline

The setting and the results

- The Anderson model in the localized regime
- Local renormalized level distribution
- The independence
- The decorrelation lemmas

Ideas of the proof

- Basic idea
- Reduction to localization boxes
- Analysis on a localization box
- The fundamental estimate
- Completing the proof of the decorrelation lemma
- The proof of the fundamental estimate: case 1
- The proof of the fundamental estimate: case 2

• • • • • • • • • • • • •

On $\ell^2(\mathbb{Z}^d)$, we consider the Anderson model $H_{\omega} = -\Delta + V_{\omega}$ where $V_{\omega} = \sum_{\gamma \in \mathbb{Z}^d} \omega_{\gamma} \pi_{\gamma}$ and

- $-\Delta$ is the standard discrete Laplacian,
- π_{γ} is the orthogonal projector on δ_{γ} ,
- the random variables (ω_γ)_{γ∈Z^d} are non trivial, i.i.d. bounded and admit a bounded density.

Well known : there exists a set, say $I \subset \mathbb{R}$, such that, in I, the spectrum of H_{ω} is localized.

Pick $E \in I$ and $L \in \mathbb{N}$. Let $\Lambda = \Lambda_L = [-L, L]^d \cap \mathbb{Z}^d \subset \mathbb{Z}^d$ and $H_{\omega}(\Lambda) = H_{\omega|\Lambda}$ (per. BC).

Denote its eigenvalues by $E_1(\omega, \Lambda) \leq E_2(\omega, \Lambda) \leq \cdots \leq E_N(\omega, \Lambda)$.

Integrated density of states: $N(E) = \lim_{N \to \infty} \frac{1}{N} \max\{j; E_j(\omega, \Lambda) \le N\}.$

Density of states v(E) = N'(E).

イロン イロン イヨン イヨン

On $\ell^2(\mathbb{Z}^d)$, we consider the Anderson model $H_{\omega} = -\Delta + V_{\omega}$ where $V_{\omega} = \sum_{\gamma \in \mathbb{Z}^d} \omega_{\gamma} \pi_{\gamma}$ and

- $-\Delta$ is the standard discrete Laplacian,
- π_{γ} is the orthogonal projector on δ_{γ} ,
- the random variables (ω_γ)_{γ∈Z^d} are non trivial, i.i.d. bounded and admit a bounded density.

Well known : there exists a set, say $I \subset \mathbb{R}$, such that, in I, the spectrum of H_{ω} is localized.

Pick $E \in I$ and $L \in \mathbb{N}$. Let $\Lambda = \Lambda_L = [-L, L]^d \cap \mathbb{Z}^d \subset \mathbb{Z}^d$ and $H_{\omega}(\Lambda) = H_{\omega|\Lambda}$ (per. BC).

Denote its eigenvalues by $E_1(\omega, \Lambda) \leq E_2(\omega, \Lambda) \leq \cdots \leq E_N(\omega, \Lambda)$.

Integrated density of states: $N(E) = \lim_{N \to \infty} \frac{1}{N} \max\{j; E_j(\omega, \Lambda) \le N\}.$

Density of states v(E) = N'(E).

イロン イロン イヨン イヨン

On $\ell^2(\mathbb{Z}^d)$, we consider the Anderson model $H_{\omega} = -\Delta + V_{\omega}$ where $V_{\omega} = \sum_{\gamma \in \mathbb{Z}^d} \omega_{\gamma} \pi_{\gamma}$ and

- $-\Delta$ is the standard discrete Laplacian,
- π_{γ} is the orthogonal projector on δ_{γ} ,
- the random variables (ω_γ)_{γ∈Z^d} are non trivial, i.i.d. bounded and admit a bounded density.

Well known : there exists a set, say $I \subset \mathbb{R}$, such that, in I, the spectrum of H_{ω} is localized.

Pick $E \in I$ and $L \in \mathbb{N}$. Let $\Lambda = \Lambda_L = [-L, L]^d \cap \mathbb{Z}^d \subset \mathbb{Z}^d$ and $H_{\omega}(\Lambda) = H_{\omega|\Lambda}$ (per. BC).

Denote its eigenvalues by $E_1(\omega, \Lambda) \leq E_2(\omega, \Lambda) \leq \cdots \leq E_N(\omega, \Lambda)$.

Integrated density of states: $N(E) = \lim_{N \to \infty} \frac{1}{N} \max\{j; E_j(\omega, \Lambda) \le N\}.$

Density of states v(E) = N'(E).

イロン イロン イヨン イヨン

On $\ell^2(\mathbb{Z}^d)$, we consider the Anderson model $H_{\omega} = -\Delta + V_{\omega}$ where $V_{\omega} = \sum_{\gamma \in \mathbb{Z}^d} \omega_{\gamma} \pi_{\gamma}$ and

- $-\Delta$ is the standard discrete Laplacian,
- π_{γ} is the orthogonal projector on δ_{γ} ,
- the random variables (ω_γ)_{γ∈Z^d} are non trivial, i.i.d. bounded and admit a bounded density.

Well known : there exists a set, say $I \subset \mathbb{R}$, such that, in I, the spectrum of H_{ω} is localized.

Pick $E \in I$ and $L \in \mathbb{N}$. Let $\Lambda = \Lambda_L = [-L, L]^d \cap \mathbb{Z}^d \subset \mathbb{Z}^d$ and $H_{\omega}(\Lambda) = H_{\omega|\Lambda}$ (per. BC).

Denote its eigenvalues by $E_1(\omega, \Lambda) \leq E_2(\omega, \Lambda) \leq \cdots \leq E_N(\omega, \Lambda)$.

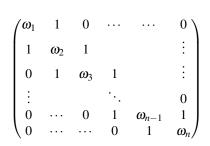
Integrated density of states: $N(E) = \lim_{N \to \infty} \frac{1}{N} \max\{j; E_j(\omega, \Lambda) \le N\}.$

Density of states v(E) = N'(E).

・ロト ・ 日 ・ ・ 日 ・ ・ 日

On $\ell^2(\mathbb{Z}^d)$, we consider the Anderson model $H_{\omega} = -\Delta + V_{\omega}$ where $V_{\omega} = \sum_{\gamma \in \mathbb{Z}^d} \omega_{\gamma} \pi_{\gamma}$ and

- $-\Delta$ is the standard discrete Laplacian,
- π_{γ} is the orthogonal projector on δ_{γ} ,
- the random variables (ω_γ)_{γ∈Z^d} are non trivial, i.i.d. bounded and admit a bounded density.



Well known : there exists a set, say $I \subset \mathbb{R}$, such that, in I, the spectrum of H_{ω} is localized.

Pick $E \in I$ and $L \in \mathbb{N}$. Let $\Lambda = \Lambda_L = [-L, L]^d \cap \mathbb{Z}^d \subset \mathbb{Z}^d$ and $H_{\omega}(\Lambda) = H_{\omega|\Lambda}$ (per. BC).

Denote its eigenvalues by $E_1(\omega, \Lambda) \leq E_2(\omega, \Lambda) \leq \cdots \leq E_N(\omega, \Lambda)$.

Integrated density of states: $N(E) = \lim_{N \to \infty} \frac{1}{N} \max\{j; E_j(\omega, \Lambda) \le N\}.$

Density of states v(E) = N'(E).

On $\ell^2(\mathbb{Z}^d)$, we consider the Anderson model	ω_1	1	0	•••		0 \
$H_{\boldsymbol{\omega}} = -\Delta + V_{\boldsymbol{\omega}}$ where $V_{\boldsymbol{\omega}} = \sum_{\gamma \in \mathbb{Z}^d} \omega_{\gamma} \pi_{\gamma}$ and	1	ω	1			:
• $-\Delta$ is the standard discrete Laplacian,						.
• π_{γ} is the orthogonal projector on δ_{γ} ,	0	1	ω_3	1		:
• the random variables $(\boldsymbol{\omega}_{\boldsymbol{\gamma}})_{\boldsymbol{\gamma}\in\mathbb{Z}^d}$ are non	1 :			٠.		0
trivial, i.i.d. bounded and admit a	0		0	1	ω_{n-1}	1
bounded density.	0 /	•••	•••	0	1	$\omega_n/$

Well known : there exists a set, say $I \subset \mathbb{R}$, such that, in I, the spectrum of H_{ω} is localized.

Pick $E \in I$ and $L \in \mathbb{N}$. Let $\Lambda = \Lambda_L = [-L, L]^d \cap \mathbb{Z}^d \subset \mathbb{Z}^d$ and $H_{\omega}(\Lambda) = H_{\omega|\Lambda}$ (per. BC).

Denote its eigenvalues by $E_1(\omega, \Lambda) \leq E_2(\omega, \Lambda) \leq \cdots \leq E_N(\omega, \Lambda)$.

Integrated density of states: $N(E) = \lim_{N \to \infty} \frac{1}{N} \max\{j; E_j(\omega, \Lambda) \le N\}.$

Density of states v(E) = N'(E).

イロト イポト イヨト イ

On $\ell^2(\mathbb{Z}^d)$, we consider the Anderson model	ω_1	1	0	•••		0 \
$H_{\boldsymbol{\omega}} = -\Delta + V_{\boldsymbol{\omega}}$ where $V_{\boldsymbol{\omega}} = \sum_{\gamma \in \mathbb{Z}^d} \omega_{\gamma} \pi_{\gamma}$ and	1	ω	1			:
• $-\Delta$ is the standard discrete Laplacian,						.
• π_{γ} is the orthogonal projector on δ_{γ} ,	0	1	ω_3	1		:
• the random variables $(\boldsymbol{\omega}_{\boldsymbol{\gamma}})_{\boldsymbol{\gamma}\in\mathbb{Z}^d}$ are non	1 :			٠.		0
trivial, i.i.d. bounded and admit a	0		0	1	ω_{n-1}	1
bounded density.	0 /	•••	•••	0	1	$\omega_n/$

Well known : there exists a set, say $I \subset \mathbb{R}$, such that, in I, the spectrum of H_{ω} is localized.

Pick $E \in I$ and $L \in \mathbb{N}$. Let $\Lambda = \Lambda_L = [-L, L]^d \cap \mathbb{Z}^d \subset \mathbb{Z}^d$ and $H_{\omega}(\Lambda) = H_{\omega|\Lambda}$ (per. BC).

Denote its eigenvalues by $E_1(\omega, \Lambda) \leq E_2(\omega, \Lambda) \leq \cdots \leq E_N(\omega, \Lambda)$.

Integrated density of states: $N(E) = \lim_{N \to \infty} \frac{1}{N} \max\{j; E_j(\omega, \Lambda) \le N\}.$

Density of states v(E) = N'(E).

イロト イポト イヨト イ

On $\ell^2(\mathbb{Z}^d)$, we consider the Anderson model	ω_1	1	0			0 \
$H_{\boldsymbol{\omega}} = -\Delta + V_{\boldsymbol{\omega}}$ where $V_{\boldsymbol{\omega}} = \sum_{\gamma \in \mathbb{Z}^d} \omega_{\gamma} \pi_{\gamma}$ and	1	ω_{2}	1			:
• $-\Delta$ is the standard discrete Laplacian,		-				.
• π_{γ} is the orthogonal projector on δ_{γ} ,	0	I	ω_3	I		:
• the random variables $(\omega_{\gamma})_{\gamma \in \mathbb{Z}^d}$ are non	l ÷			٠.		0
trivial, i.i.d. bounded and admit a	0	•••	0	1	ω_{n-1}	1
bounded density.	(0	•••	•••	0	1	$\omega_n/$

Well known : there exists a set, say $I \subset \mathbb{R}$, such that, in I, the spectrum of H_{ω} is localized.

Pick $E \in I$ and $L \in \mathbb{N}$. Let $\Lambda = \Lambda_L = [-L, L]^d \cap \mathbb{Z}^d \subset \mathbb{Z}^d$ and $H_{\omega}(\Lambda) = H_{\omega|\Lambda}$ (per. BC).

Denote its eigenvalues by $E_1(\omega, \Lambda) \leq E_2(\omega, \Lambda) \leq \cdots \leq E_N(\omega, \Lambda)$.

Integrated density of states: $N(E) = \lim_{N \to \infty} \frac{1}{N} \max\{j; E_j(\omega, \Lambda) \le N\}.$

Density of states v(E) = N'(E).

On $\ell^2(\mathbb{Z}^d)$, we consider the Anderson model	ω_1	1	0			0 \
$H_{\boldsymbol{\omega}} = -\Delta + V_{\boldsymbol{\omega}}$ where $V_{\boldsymbol{\omega}} = \sum_{\boldsymbol{\gamma} \in \mathbb{Z}^d} \omega_{\boldsymbol{\gamma}} \pi_{\boldsymbol{\gamma}}$ and	1	ω_{2}	1			:
• $-\Delta$ is the standard discrete Laplacian,						.
• π_{γ} is the orthogonal projector on δ_{γ} ,	0	1	ω_3	1		:
• the random variables $(\omega_{\gamma})_{\gamma \in \mathbb{Z}^d}$ are non	1 :			٠.		0
trivial, i.i.d. bounded and admit a	0		0	1	ω_{n-1}	1
bounded density.	(0	• • •	•••	0	1	$\omega_n/$

Well known : there exists a set, say $I \subset \mathbb{R}$, such that, in I, the spectrum of H_{ω} is localized.

Pick $E \in I$ and $L \in \mathbb{N}$. Let $\Lambda = \Lambda_L = [-L, L]^d \cap \mathbb{Z}^d \subset \mathbb{Z}^d$ and $H_{\omega}(\Lambda) = H_{\omega|\Lambda}$ (per. BC).

Denote its eigenvalues by $E_1(\omega, \Lambda) \leq E_2(\omega, \Lambda) \leq \cdots \leq E_N(\omega, \Lambda)$.

Integrated density of states: $N(E) = \lim_{N \to \infty} \frac{1}{N} \max\{j; E_j(\omega, \Lambda) \le N\}.$

Density of states v(E) = N'(E).

On $\ell^2(\mathbb{Z}^d)$, we consider the Anderson model	ω_1	1	0	•••		0 \
$H_{\boldsymbol{\omega}} = -\Delta + V_{\boldsymbol{\omega}}$ where $V_{\boldsymbol{\omega}} = \sum_{\boldsymbol{\gamma} \in \mathbb{Z}^d} \omega_{\boldsymbol{\gamma}} \pi_{\boldsymbol{\gamma}}$ and	1	ω_{2}	1			:
• $-\Delta$ is the standard discrete Laplacian,		1				
• π_{γ} is the orthogonal projector on δ_{γ} ,	0	I	ω_3	1		:
• the random variables $(\boldsymbol{\omega}_{\boldsymbol{\gamma}})_{\boldsymbol{\gamma}\in\mathbb{Z}^d}$ are non	1 :			·		0
trivial, i.i.d. bounded and admit a	0	•••	0	1	ω_{n-1}	1
bounded density.	(0	•••	•••	0	1	$\omega_n/$

Well known : there exists a set, say $I \subset \mathbb{R}$, such that, in I, the spectrum of H_{ω} is localized.

Pick $E \in I$ and $L \in \mathbb{N}$. Let $\Lambda = \Lambda_L = [-L, L]^d \cap \mathbb{Z}^d \subset \mathbb{Z}^d$ and $H_{\omega}(\Lambda) = H_{\omega|\Lambda}$ (per. BC).

Denote its eigenvalues by $E_1(\omega, \Lambda) \leq E_2(\omega, \Lambda) \leq \cdots \leq E_N(\omega, \Lambda)$.

Integrated density of states: $N(E) = \lim_{N \to \infty} \frac{1}{N} \max\{j; E_j(\omega, \Lambda) \le N\}.$

Density of states v(E) = N'(E).

On $\ell^2(\mathbb{Z}^d)$, we consider the Anderson model	ω_1	1	0	•••		0 \
$H_{\boldsymbol{\omega}} = -\Delta + V_{\boldsymbol{\omega}}$ where $V_{\boldsymbol{\omega}} = \sum_{\boldsymbol{\gamma} \in \mathbb{Z}^d} \omega_{\boldsymbol{\gamma}} \pi_{\boldsymbol{\gamma}}$ and	1	ω_{2}	1			:
• $-\Delta$ is the standard discrete Laplacian,		1				
• π_{γ} is the orthogonal projector on δ_{γ} ,	0	I	ω_3	1		:
• the random variables $(\boldsymbol{\omega}_{\boldsymbol{\gamma}})_{\boldsymbol{\gamma}\in\mathbb{Z}^d}$ are non	1 :			·		0
trivial, i.i.d. bounded and admit a	0	•••	0	1	ω_{n-1}	1
bounded density.	(0	•••	•••	0	1	$\omega_n/$

Well known : there exists a set, say $I \subset \mathbb{R}$, such that, in I, the spectrum of H_{ω} is localized.

Pick $E \in I$ and $L \in \mathbb{N}$. Let $\Lambda = \Lambda_L = [-L, L]^d \cap \mathbb{Z}^d \subset \mathbb{Z}^d$ and $H_{\omega}(\Lambda) = H_{\omega|\Lambda}$ (per. BC).

Denote its eigenvalues by $E_1(\omega, \Lambda) \leq E_2(\omega, \Lambda) \leq \cdots \leq E_N(\omega, \Lambda)$.

Integrated density of states: $N(E) = \lim_{N \to \infty} \frac{1}{N} \max\{j; E_j(\omega, \Lambda) \le N\}.$

Density of states v(E) = N'(E).

On $\ell^2(\mathbb{Z}^d)$, we consider the Anderson model	ω_1	1	0	•••		0 \
$H_{\boldsymbol{\omega}} = -\Delta + V_{\boldsymbol{\omega}}$ where $V_{\boldsymbol{\omega}} = \sum_{\boldsymbol{\gamma} \in \mathbb{Z}^d} \omega_{\boldsymbol{\gamma}} \pi_{\boldsymbol{\gamma}}$ and	1	ω_{2}	1			:
• $-\Delta$ is the standard discrete Laplacian,		1				
• π_{γ} is the orthogonal projector on δ_{γ} ,	0	I	ω_3	1		:
• the random variables $(\boldsymbol{\omega}_{\boldsymbol{\gamma}})_{\boldsymbol{\gamma}\in\mathbb{Z}^d}$ are non	1 :			·		0
trivial, i.i.d. bounded and admit a	0	•••	0	1	ω_{n-1}	1
bounded density.	(0	•••	•••	0	1	$\omega_n/$

Well known : there exists a set, say $I \subset \mathbb{R}$, such that, in I, the spectrum of H_{ω} is localized.

Pick $E \in I$ and $L \in \mathbb{N}$. Let $\Lambda = \Lambda_L = [-L, L]^d \cap \mathbb{Z}^d \subset \mathbb{Z}^d$ and $H_{\omega}(\Lambda) = H_{\omega|\Lambda}$ (per. BC).

Denote its eigenvalues by $E_1(\omega, \Lambda) \leq E_2(\omega, \Lambda) \leq \cdots \leq E_N(\omega, \Lambda)$.

Integrated density of states: $N(E) = \lim_{N \to \infty} \frac{1}{N} \max\{j; E_j(\omega, \Lambda) \le N\}.$

Density of states v(E) = N'(E).

$$\Xi(\xi, E, \omega, \Lambda) = \sum_{j=1}^{N} \delta_{\xi_{j}(E, \omega, \Lambda)}(\xi) \quad \text{where} \quad \xi_{j}(E, \omega, \Lambda) = |\Lambda| \, \nu(E) \, (E_{j}(\omega, \Lambda) - E).$$

Are the point processes $\Xi(E_0, \omega, \Lambda)$ and $\Xi(E'_0, \omega, \Lambda)$ asymptotically independent?

$$\Xi(\xi, E, \omega, \Lambda) = \sum_{j=1}^{N} \delta_{\xi_j(E, \omega, \Lambda)}(\xi) \quad \text{where} \quad \xi_j(E, \omega, \Lambda) = |\Lambda| \, \nu(E) \, (E_j(\omega, \Lambda) - E).$$

Theorem (Molchanov, Minami, Germinet-K.)

Assume that v(E) > 0. When $|\Lambda| \to +\infty$, the point process $\Xi(, \omega, \Lambda)$ converges weakly to a Poisson process on \mathbb{R} with intensity the Lebesgue measure.

Question: pick $E_0 \in I$ and $E'_0 \in I$ such that $E_0 \neq E'_0$, $v(E_0) > 0$ and $v(E'_0) > 0$;

Are the point processes $\Xi(E_0, \omega, \Lambda)$ and $\Xi(E'_0, \omega, \Lambda)$ asymptotically independent?

Not much known about this question for random Schrödinger operators. Results for random matrices.

$$\Xi(\xi, E, \omega, \Lambda) = \sum_{j=1}^{N} \delta_{\xi_j(E, \omega, \Lambda)}(\xi) \quad \text{where} \quad \xi_j(E, \omega, \Lambda) = |\Lambda| \, \nu(E) \, (E_j(\omega, \Lambda) - E).$$

Theorem (Molchanov, Minami, Germinet-K.)

Assume that v(E) > 0. When $|\Lambda| \to +\infty$, the point process $\Xi(, \omega, \Lambda)$ converges weakly to a Poisson process on \mathbb{R} with intensity the Lebesgue measure.

Question: pick $E_0 \in I$ and $E'_0 \in I$ such that $E_0 \neq E'_0$, $v(E_0) > 0$ and $v(E'_0) > 0$;

Are the point processes $\Xi(E_0, \omega, \Lambda)$ and $\Xi(E'_0, \omega, \Lambda)$ asymptotically independent?

Not much known about this question for random Schrödinger operators. Results for random matrices.

$$\Xi(\xi, E, \omega, \Lambda) = \sum_{j=1}^{N} \delta_{\xi_j(E, \omega, \Lambda)}(\xi) \quad \text{where} \quad \xi_j(E, \omega, \Lambda) = |\Lambda| \, \nu(E) \, (E_j(\omega, \Lambda) - E).$$

Theorem (Molchanov, Minami, Germinet-K.)

Assume that v(E) > 0. When $|\Lambda| \to +\infty$, the point process $\Xi(, \omega, \Lambda)$ converges weakly to a Poisson process on \mathbb{R} with intensity the Lebesgue measure.

Question: pick $E_0 \in I$ and $E'_0 \in I$ such that $E_0 \neq E'_0$, $\nu(E_0) > 0$ and $\nu(E'_0) > 0$;

Are the point processes $\Xi(E_0, \omega, \Lambda)$ and $\Xi(E'_0, \omega, \Lambda)$ asymptotically independent?

$$\Xi(\xi, E, \omega, \Lambda) = \sum_{j=1}^{N} \delta_{\xi_j(E, \omega, \Lambda)}(\xi) \quad \text{where} \quad \xi_j(E, \omega, \Lambda) = |\Lambda| \, \nu(E) \, (E_j(\omega, \Lambda) - E).$$

Theorem (Molchanov, Minami, Germinet-K.)

Assume that v(E) > 0. When $|\Lambda| \to +\infty$, the point process $\Xi(, \omega, \Lambda)$ converges weakly to a Poisson process on \mathbb{R} with intensity the Lebesgue measure.

Question: pick $E_0 \in I$ and $E'_0 \in I$ such that $E_0 \neq E'_0$, $\nu(E_0) > 0$ and $\nu(E'_0) > 0$;

Are the point processes $\Xi(E_0, \omega, \Lambda)$ and $\Xi(E'_0, \omega, \Lambda)$ asymptotically independent?

Not much known about this question for random Schrödinger operators.

$$\Xi(\xi, E, \omega, \Lambda) = \sum_{j=1}^{N} \delta_{\xi_j(E, \omega, \Lambda)}(\xi) \quad \text{where} \quad \xi_j(E, \omega, \Lambda) = |\Lambda| \, \nu(E) \, (E_j(\omega, \Lambda) - E).$$

Theorem (Molchanov, Minami, Germinet-K.)

Assume that v(E) > 0. When $|\Lambda| \to +\infty$, the point process $\Xi(, \omega, \Lambda)$ converges weakly to a Poisson process on \mathbb{R} with intensity the Lebesgue measure.

Question: pick $E_0 \in I$ and $E'_0 \in I$ such that $E_0 \neq E'_0$, $v(E_0) > 0$ and $v(E'_0) > 0$;

Are the point processes $\Xi(E_0, \omega, \Lambda)$ and $\Xi(E'_0, \omega, \Lambda)$ asymptotically independent?

Not much known about this question for random Schrödinger operators. Results for random matrices.

$$\Xi(\xi, E, \omega, \Lambda) = \sum_{j=1}^{N} \delta_{\xi_j(E, \omega, \Lambda)}(\xi) \quad \text{where} \quad \xi_j(E, \omega, \Lambda) = |\Lambda| \, \nu(E) \, (E_j(\omega, \Lambda) - E).$$

Theorem (Molchanov, Minami, Germinet-K.)

Assume that v(E) > 0. When $|\Lambda| \to +\infty$, the point process $\Xi(, \omega, \Lambda)$ converges weakly to a Poisson process on \mathbb{R} with intensity the Lebesgue measure.

Question: pick $E_0 \in I$ and $E'_0 \in I$ such that $E_0 \neq E'_0$, $v(E_0) > 0$ and $v(E'_0) > 0$;

Are the point processes $\Xi(E_0, \omega, \Lambda)$ and $\Xi(E'_0, \omega, \Lambda)$ asymptotically independent?

Not much known about this question for random Schrödinger operators. Results for random matrices.

$$\Xi(\xi, E, \omega, \Lambda) = \sum_{j=1}^{N} \delta_{\xi_j(E, \omega, \Lambda)}(\xi) \quad \text{where} \quad \xi_j(E, \omega, \Lambda) = |\Lambda| \, \nu(E) \, (E_j(\omega, \Lambda) - E).$$

Theorem (Molchanov, Minami, Germinet-K.)

Assume that v(E) > 0. When $|\Lambda| \to +\infty$, the point process $\Xi(, \omega, \Lambda)$ converges weakly to a Poisson process on \mathbb{R} with intensity the Lebesgue measure.

Question: pick $E_0 \in I$ and $E'_0 \in I$ such that $E_0 \neq E'_0$, $v(E_0) > 0$ and $v(E'_0) > 0$;

Are the point processes $\Xi(E_0, \omega, \Lambda)$ and $\Xi(E'_0, \omega, \Lambda)$ asymptotically independent?

Not much known about this question for random Schrödinger operators. Results for random matrices.

$$\Xi(\xi, E, \omega, \Lambda) = \sum_{j=1}^{N} \delta_{\xi_{j}(E, \omega, \Lambda)}(\xi) \quad \text{where} \quad \xi_{j}(E, \omega, \Lambda) = |\Lambda| \, v(E) \, (E_{j}(\omega, \Lambda) - E).$$

Theorem (Molchanov, Minami, Germinet-K.)

Assume that v(E) > 0. When $|\Lambda| \to +\infty$, the point process $\Xi(, \omega, \Lambda)$ converges weakly to a Poisson process on \mathbb{R} with intensity the Lebesgue measure.

Question: pick $E_0 \in I$ and $E'_0 \in I$ such that $E_0 \neq E'_0$, $v(E_0) > 0$ and $v(E'_0) > 0$;

Are the point processes $\Xi(E_0, \omega, \Lambda)$ and $\Xi(E'_0, \omega, \Lambda)$ asymptotically independent?

Not much known about this question for random Schrödinger operators. Results for random matrices.

The answer may be model dependent:

F. Klot

$$\begin{pmatrix} \omega_{1} & 0 & \cdots & 0 \\ 0 & \omega_{2} & 0 & \vdots \\ \vdots & \ddots & 0 \\ 0 & \cdots & 0 & \omega_{2n} \end{pmatrix} \qquad \begin{pmatrix} \omega_{1} & 0 & 0 & \cdots & 0 \\ 0 & \omega_{1} + 1 & 0 & \cdots & 0 \\ \vdots & 0 & \omega_{2} & 0 & \vdots \\ \vdots & & \ddots & 0 \\ 0 & 0 & \cdots & 0 & \omega_{n} + 1 \end{pmatrix} \xrightarrow{\text{current PARIS} 13}$$

$$p \text{ (Université Paris 13)} \qquad \text{Decorrelation estimates} \qquad \text{Euler Institute, St Petersburg} \quad 4/16$$

Theorem (Ge-Kl,Kl)

Assume that the dimension d = 1. When $|\Lambda| \to +\infty$, the point processes $\Xi(E_0, \omega, \Lambda)$ and $\Xi(E'_0, \omega, \Lambda)$ converge weakly respectively to two independent Poisson processes on \mathbb{R} with intensity the Lebesgue measure. That is, for $U_+ \subset \mathbb{R}$ and $U_- \subset \mathbb{R}$ compact intervals and $\{k_+, k_-\} \in \mathbb{N} \times \mathbb{N}$, one has

$$\mathbb{P}\left(\left\{\omega; \left\{\begin{array}{c} \#\{j;\xi_{j}(E_{0},\omega,\Lambda)\in U_{+}\}=k_{+}\\ \#\{j;\xi_{j}(E_{0}',\omega,\Lambda)\in U_{-}\}=k_{-}\end{array}\right\}\right) \xrightarrow{}_{\Lambda\to\mathbb{Z}^{d}} e^{-|U_{+}|}\frac{|U_{+}|^{k_{+}}}{k_{+}!}\cdot e^{-|U_{-}|}\frac{|U_{-}|^{k_{-}}}{k_{-}!}.$$

Theorem (Ge-Kl,Kl)

Pick $E_0 \in I$ and $E'_0 \in I$ such that $|E_0 - E'_0| > 2d$, $v(E_0) > 0$ and $v(E'_0) > 0$. When $|\Lambda| \to +\infty$, the point processes $\Xi(E_0, \omega, \Lambda)$ and $\Xi(E'_0, \omega, \Lambda)$ converge weakly respectively to two independent Poisson processes on \mathbb{R} with intensity the Lebesgue measure.

Theorem (Ge-Kl,Kl)

Assume that the dimension d = 1. When $|\Lambda| \to +\infty$, the point processes $\Xi(E_0, \omega, \Lambda)$ and $\Xi(E'_0, \omega, \Lambda)$ converge weakly respectively to two independent Poisson processes on \mathbb{R} with intensity the Lebesgue measure. That is, for $U_+ \subset \mathbb{R}$ and $U_- \subset \mathbb{R}$ compact intervals and $\{k_+, k_-\} \in \mathbb{N} \times \mathbb{N}$, one has

$$\mathbb{P}\left(\left\{\omega; \left\{\begin{array}{l} \#\{j;\xi_{j}(E_{0},\omega,\Lambda)\in U_{+}\}=k_{+}\\ \#\{j;\xi_{j}(E_{0}',\omega,\Lambda)\in U_{-}\}=k_{-}\end{array}\right\}\right) \xrightarrow{}_{\Lambda\to\mathbb{Z}^{d}} e^{-|U_{+}|} \frac{|U_{+}|^{k_{+}}}{k_{+}!} \cdot e^{-|U_{-}|} \frac{|U_{-}|^{k_{-}}}{k_{-}!}.$$

Theorem (Ge-Kl,Kl)

Pick $E_0 \in I$ and $E'_0 \in I$ such that $|E_0 - E'_0| > 2d$, $v(E_0) > 0$ and $v(E'_0) > 0$. When $|\Lambda| \to +\infty$, the point processes $\Xi(E_0, \omega, \Lambda)$ and $\Xi(E'_0, \omega, \Lambda)$ converge weakly respectively to two independent Poisson processes on \mathbb{R} with intensity the Lebesgue measure.

(a)

Theorem (Ge-Kl,Kl)

Assume that the dimension d = 1. When $|\Lambda| \to +\infty$, the point processes $\Xi(E_0, \omega, \Lambda)$ and $\Xi(E'_0, \omega, \Lambda)$ converge weakly respectively to two independent Poisson processes on \mathbb{R} with intensity the Lebesgue measure. That is, for $U_+ \subset \mathbb{R}$ and $U_- \subset \mathbb{R}$ compact intervals and $\{k_+, k_-\} \in \mathbb{N} \times \mathbb{N}$, one has

$$\mathbb{P}\left(\left\{\omega; \left\{\begin{array}{l} \#\{j;\xi_j(E_0,\omega,\Lambda)\in U_+\}=k_+\\ \#\{j;\xi_j(E_0',\omega,\Lambda)\in U_-\}=k_-\end{array}\right\}\right) \underset{\Lambda\to\mathbb{Z}^d}{\to} e^{-|U_+|}\frac{|U_+|^{k_+}}{k_+!} \cdot e^{-|U_-|}\frac{|U_-|^{k_-}}{k_-!}.$$

Theorem (Ge-Kl,Kl)

Pick $E_0 \in I$ and $E'_0 \in I$ such that $|E_0 - E'_0| > 2d$, $v(E_0) > 0$ and $v(E'_0) > 0$. When $|\Lambda| \to +\infty$, the point processes $\Xi(E_0, \omega, \Lambda)$ and $\Xi(E'_0, \omega, \Lambda)$ converge weakly respectively to two independent Poisson processes on \mathbb{R} with intensity the Lebesgue measure.

Theorem (Ge-Kl,Kl)

Assume that the dimension d = 1. When $|\Lambda| \to +\infty$, the point processes $\Xi(E_0, \omega, \Lambda)$ and $\Xi(E'_0, \omega, \Lambda)$ converge weakly respectively to two independent Poisson processes on \mathbb{R} with intensity the Lebesgue measure. That is, for $U_+ \subset \mathbb{R}$ and $U_- \subset \mathbb{R}$ compact intervals and $\{k_+, k_-\} \in \mathbb{N} \times \mathbb{N}$, one has

$$\mathbb{P}\left(\left\{\omega; \left\{\begin{array}{l} \#\{j;\xi_{j}(E_{0},\omega,\Lambda)\in U_{+}\}=k_{+}\\ \#\{j;\xi_{j}(E_{0}',\omega,\Lambda)\in U_{-}\}=k_{-}\end{array}\right\}\right) \xrightarrow[\Lambda\to\mathbb{Z}^{d} e^{-|U_{+}|}\frac{|U_{+}|^{k_{+}}}{k_{+}!}\cdot e^{-|U_{-}|}\frac{|U_{-}|^{k_{-}}}{k_{-}!}.$$

Theorem (Ge-Kl,Kl)

Pick $E_0 \in I$ and $E'_0 \in I$ such that $|E_0 - E'_0| > 2d$, $v(E_0) > 0$ and $v(E'_0) > 0$. When $|\Lambda| \to +\infty$, the point processes $\Xi(E_0, \omega, \Lambda)$ and $\Xi(E'_0, \omega, \Lambda)$ converge weakly respectively to two independent Poisson processes on \mathbb{R} with intensity the Lebesgue measure.

(a)

Theorem (Ge-Kl,Kl)

Assume that the dimension d = 1. When $|\Lambda| \to +\infty$, the point processes $\Xi(E_0, \omega, \Lambda)$ and $\Xi(E'_0, \omega, \Lambda)$ converge weakly respectively to two independent Poisson processes on \mathbb{R} with intensity the Lebesgue measure. That is, for $U_+ \subset \mathbb{R}$ and $U_- \subset \mathbb{R}$ compact intervals and $\{k_+, k_-\} \in \mathbb{N} \times \mathbb{N}$, one has

$$\mathbb{P}\left(\left\{\omega; \left\{\begin{array}{l} \#\{j;\xi_{j}(E_{0},\omega,\Lambda)\in U_{+}\}=k_{+}\\ \#\{j;\xi_{j}(E_{0}',\omega,\Lambda)\in U_{-}\}=k_{-}\end{array}\right\}\right) \xrightarrow{}_{\Lambda\to\mathbb{Z}^{d}} e^{-|U_{+}|} \frac{|U_{+}|^{k_{+}}}{k_{+}!} \cdot e^{-|U_{-}|} \frac{|U_{-}|^{k_{-}}}{k_{-}!}.$$

Theorem (Ge-Kl,Kl)

Pick $E_0 \in I$ and $E'_0 \in I$ such that $|E_0 - E'_0| > 2d$, $v(E_0) > 0$ and $v(E'_0) > 0$. When $|\Lambda| \to +\infty$, the point processes $\Xi(E_0, \omega, \Lambda)$ and $\Xi(E'_0, \omega, \Lambda)$ converge weakly respectively to two independent Poisson processes on \mathbb{R} with intensity the Lebesgue measure.

F. Klopp (Université Paris 13)

(a)

Theorem (Ge-Kl,Kl)

Assume that the dimension d = 1. When $|\Lambda| \to +\infty$, the point processes $\Xi(E_0, \omega, \Lambda)$ and $\Xi(E'_0, \omega, \Lambda)$ converge weakly respectively to two independent Poisson processes on \mathbb{R} with intensity the Lebesgue measure. That is, for $U_+ \subset \mathbb{R}$ and $U_- \subset \mathbb{R}$ compact intervals and $\{k_+, k_-\} \in \mathbb{N} \times \mathbb{N}$, one has

$$\mathbb{P}\left(\left\{\omega; \left\{\begin{array}{l} \#\{j;\xi_{j}(E_{0},\omega,\Lambda)\in U_{+}\}=k_{+}\\ \#\{j;\xi_{j}(E_{0}',\omega,\Lambda)\in U_{-}\}=k_{-}\end{array}\right\}\right) \xrightarrow{}_{\Lambda\to\mathbb{Z}^{d}} e^{-|U_{+}|} \frac{|U_{+}|^{k_{+}}}{k_{+}!} \cdot e^{-|U_{-}|} \frac{|U_{-}|^{k_{-}}}{k_{-}!}.$$

Theorem (Ge-Kl,Kl)

Pick $E_0 \in I$ and $E'_0 \in I$ such that $|E_0 - E'_0| > 2d$, $v(E_0) > 0$ and $v(E'_0) > 0$. When $|\Lambda| \to +\infty$, the point processes $\Xi(E_0, \omega, \Lambda)$ and $\Xi(E'_0, \omega, \Lambda)$ converge weakly respectively to two independent Poisson processes on \mathbb{R} with intensity the Lebesgue measure.

イロト イポト イヨト イヨ

Lemma (Kl)

For the discrete Anderson model, fix $\alpha \in (0,1)$, $\beta \in (1/2,1)$ and $\{E_0, E'_0\} \subset I$ s.t. $|E_0 - E'_0| > 2d$, for any c > 0, there exists C > 0 such that, for $L \geq 3$ and $cL^{\alpha} \leq \ell \leq L^{\alpha}/c$, one has

$$\mathbb{P}\left(\left\{\begin{array}{l}\sigma(H_{\omega}(\Lambda_{\ell}))\cap(E_{0}+L^{-d}(-1,1))\neq\emptyset,\\\sigma(H_{\omega}(\Lambda_{\ell}))\cap(E_{0}'+L^{-d}(-1,1))\neq\emptyset\end{array}\right\}\right)\leq C(\ell/L)^{2d}e^{(\log L)^{\beta}}$$

Lemma (Kl)

Assume d = 1. For the discrete Anderson model, for $\alpha \in (0,1)$ and $\{E_0, E'_0\} \subset I$ s.t. $E_0 \neq E'_0$, for any c > 0, there exists C > 0 such that, for $L \geq 3$ and $cL^{\alpha} \leq \ell \leq L^{\alpha}/c$, the result of the previous theorem holds.

Another decorrelation estimate: the Minami estimate

Theorem (Min, GV, BHS, CGK)

For $J \subset K$, one has

Lemma (Kl)

For the discrete Anderson model, fix $\alpha \in (0,1)$, $\beta \in (1/2,1)$ and $\{E_0, E'_0\} \subset I$ s.t. $|E_0 - E'_0| > 2d$, for any c > 0, there exists C > 0 such that, for $L \geq 3$ and $cL^{\alpha} \leq \ell \leq L^{\alpha}/c$, one has

$$\left\{ \begin{cases} \sigma(H_{\omega}(\Lambda_{\ell})) \cap (E_0 + L^{-d}(-1,1)) \neq \emptyset, \\ \sigma(H_{\omega}(\Lambda_{\ell})) \cap (E'_0 + L^{-d}(-1,1)) \neq \emptyset \end{cases} \right\} \leq C(\ell/L)^{2d} e^{(\log L)^{\beta}}$$

Lemma (Kl)

Assume d = 1. For the discrete Anderson model, for $\alpha \in (0,1)$ and $\{E_0, E'_0\} \subset I$ s.t. $E_0 \neq E'_0$, for any c > 0, there exists C > 0 such that, for $L \geq 3$ and $cL^{\alpha} \leq \ell \leq L^{\alpha}/c$, the result of the previous theorem holds.

Another decorrelation estimate: the Minami estimate

Theorem (Min, GV, BHS, CGK)

For $J \subset K$, one has

Lemma (Kl)

For the discrete Anderson model, fix $\alpha \in (0,1)$, $\beta \in (1/2,1)$ and $\{E_0, E'_0\} \subset I$ s.t. $|E_0 - E'_0| > 2d$, for any c > 0, there exists C > 0 such that, for $L \geq 3$ and $cL^{\alpha} \leq \ell \leq L^{\alpha}/c$, one has

 $\left\{ \begin{cases} \sigma(H_{\omega}(\Lambda_{\ell})) \cap (E_0 + L^{-d}(-1, 1)) \neq \emptyset, \\ \sigma(H_{\omega}(\Lambda_{\ell})) \cap (E'_0 + L^{-d}(-1, 1)) \neq \emptyset \end{cases} \right\} \leq C(\ell/L)^{2d} e^{(\log L)^{\beta}}$

Lemma (Kl)

Assume d = 1. For the discrete Anderson model, for $\alpha \in (0,1)$ and $\{E_0, E'_0\} \subset I$ s.t. $E_0 \neq E'_0$, for any c > 0, there exists C > 0 such that, for $L \geq 3$ and $cL^{\alpha} \leq \ell \leq L^{\alpha}/c$, the result of the previous theorem holds.

Another decorrelation estimate: the Minami estimate

Theorem (Min, GV, BHS, CGK)

For $J \subset K$, one has

Lemma (Kl)

For the discrete Anderson model, fix $\alpha \in (0,1)$, $\beta \in (1/2,1)$ and $\{E_0, E'_0\} \subset I$ s.t. $|E_0 - E'_0| > 2d$, for any c > 0, there exists C > 0 such that, for $L \geq 3$ and $cL^{\alpha} \leq \ell \leq L^{\alpha}/c$, one has

$$\mathbb{P}\left(\left\{\begin{array}{l}\sigma(H_{\omega}(\Lambda_{\ell}))\cap(E_{0}+L^{-d}(-1,1))\neq \emptyset,\\\sigma(H_{\omega}(\Lambda_{\ell}))\cap(E_{0}'+L^{-d}(-1,1))\neq \emptyset\right\}\right)\leq C(\ell/L)^{2d}e^{(\log L)^{\beta}}$$

Lemma (Kl)

Assume d = 1. For the discrete Anderson model, for $\alpha \in (0,1)$ and $\{E_0, E'_0\} \subset I$ s.t. $E_0 \neq E'_0$, for any c > 0, there exists C > 0 such that, for $L \geq 3$ and $cL^{\alpha} \leq \ell \leq L^{\alpha}/c$, the result of the previous theorem holds.

Another decorrelation estimate: the Minami estimate

Theorem (Min, GV, BHS, CGK)

For $J \subset K$, one has

Lemma (Kl)

For the discrete Anderson model, fix $\alpha \in (0,1)$, $\beta \in (1/2,1)$ and $\{E_0, E'_0\} \subset I$ s.t. $|E_0 - E'_0| > 2d$, for any c > 0, there exists C > 0 such that, for $L \geq 3$ and $cL^{\alpha} \leq \ell \leq L^{\alpha}/c$, one has

$$\mathbb{P}\left(\left\{\begin{array}{l}\sigma(H_{\omega}(\Lambda_{\ell}))\cap(E_{0}+L^{-d}(-1,1))\neq \emptyset,\\\sigma(H_{\omega}(\Lambda_{\ell}))\cap(E_{0}'+L^{-d}(-1,1))\neq \emptyset\right\}\right)\leq C(\ell/L)^{2d}e^{(\log L)^{\beta}}$$

Lemma (Kl)

Assume d = 1. For the discrete Anderson model, for $\alpha \in (0, 1)$ and $\{E_0, E'_0\} \subset I$ s.t. $E_0 \neq E'_0$, for any c > 0, there exists C > 0 such that, for $L \geq 3$ and $cL^{\alpha} \leq \ell \leq L^{\alpha}/c$, the result of the previous theorem holds.

Another decorrelation estimate: the Minami estimate

 Theorem (Min, GV, BHS, CGK)

 For $J \subset K$, one has

 $\mathbb{E}[tr[1_J(H_{\omega}(\Lambda))] \cdot (tr[1_K(H_{\omega}(\Lambda))] - 1)] \leq C|J| |K| |\Lambda|^2.$

 Extern Line (Universite Paris 13)

 Decorrelation estimates

 Euler Institute. St Petersburg

Lemma (Kl)

For the discrete Anderson model, fix $\alpha \in (0,1)$, $\beta \in (1/2,1)$ and $\{E_0, E'_0\} \subset I$ s.t. $|E_0 - E'_0| > 2d$, for any c > 0, there exists C > 0 such that, for $L \geq 3$ and $cL^{\alpha} \leq \ell \leq L^{\alpha}/c$, one has

$$\mathbb{P}\left(\left\{\begin{array}{l}\sigma(H_{\omega}(\Lambda_{\ell}))\cap(E_{0}+L^{-d}(-1,1))\neq\emptyset,\\\sigma(H_{\omega}(\Lambda_{\ell}))\cap(E_{0}'+L^{-d}(-1,1))\neq\emptyset\right\}\right)\leq C(\ell/L)^{2d}e^{(\log L)^{\beta}}$$

Lemma (Kl)

Assume d = 1. For the discrete Anderson model, for $\alpha \in (0,1)$ and $\{E_0, E'_0\} \subset I$ s.t. $E_0 \neq E'_0$, for any c > 0, there exists C > 0 such that, for $L \geq 3$ and $cL^{\alpha} \leq \ell \leq L^{\alpha}/c$, the result of the previous theorem holds.

Another decorrelation estimate: the Minami estimate

Theorem (Min, GV, BHS, CGK) For $J \subset K$, one has $\mathbb{E}[tr[\mathbf{1}_J(H_{\omega}(\Lambda))] \cdot (tr[\mathbf{1}_K(H_{\omega}(\Lambda))] - 1)] \leq C|J| |K| |\Lambda|^2.$

Lemma (Kl)

For the discrete Anderson model, fix $\alpha \in (0,1)$, $\beta \in (1/2,1)$ and $\{E_0, E'_0\} \subset I$ s.t. $|E_0 - E'_0| > 2d$, for any c > 0, there exists C > 0 such that, for $L \geq 3$ and $cL^{\alpha} \leq \ell \leq L^{\alpha}/c$, one has

$$\mathbb{P}\left(\left\{\begin{array}{l}\sigma(H_{\omega}(\Lambda_{\ell}))\cap(E_{0}+L^{-d}(-1,1))\neq\emptyset,\\\sigma(H_{\omega}(\Lambda_{\ell}))\cap(E_{0}'+L^{-d}(-1,1))\neq\emptyset\end{array}\right\}\right)\leq C(\ell/L)^{2d}e^{(\log L)^{\beta}}$$

Lemma (Kl)

Assume d = 1. For the discrete Anderson model, for $\alpha \in (0,1)$ and $\{E_0, E'_0\} \subset I$ s.t. $E_0 \neq E'_0$, for any c > 0, there exists C > 0 such that, for $L \geq 3$ and $cL^{\alpha} \leq \ell \leq L^{\alpha}/c$, the result of the previous theorem holds.

Another decorrelation estimate: the Minami estimate

Theorem (Min, GV, BHS, CGK)

For $J \subset K$, one has

The decorrelation lemmas

Lemma (Kl)

For the discrete Anderson model, fix $\alpha \in (0,1)$, $\beta \in (1/2,1)$ and $\{E_0, E'_0\} \subset I$ s.t. $|E_0 - E'_0| > 2d$, for any c > 0, there exists C > 0 such that, for $L \geq 3$ and $cL^{\alpha} \leq \ell \leq L^{\alpha}/c$, one has

$$\mathbb{P}\left(\left\{\begin{array}{l}\sigma(H_{\omega}(\Lambda_{\ell}))\cap(E_{0}+L^{-d}(-1,1))\neq\emptyset,\\\sigma(H_{\omega}(\Lambda_{\ell}))\cap(E_{0}'+L^{-d}(-1,1))\neq\emptyset\end{array}\right\}\right)\leq C(\ell/L)^{2d}e^{(\log L)^{\beta}}$$

Lemma (Kl)

Assume d = 1. For the discrete Anderson model, for $\alpha \in (0,1)$ and $\{E_0, E'_0\} \subset I$ s.t. $E_0 \neq E'_0$, for any c > 0, there exists C > 0 such that, for $L \geq 3$ and $cL^{\alpha} \leq \ell \leq L^{\alpha}/c$, the result of the previous theorem holds.

Another decorrelation estimate: the Minami estimate

Theorem (Min, GV, BHS, CGK) For $J \subset K$, one has $\mathbb{E}[tr[\mathbf{1}_J(H_{\omega}(\Lambda))] \cdot (tr[\mathbf{1}_K(H_{\omega}(\Lambda))] - 1)] \leq C|J| |K| |\Lambda|^2.$ Extension (Université Paris 13) Decorrelation estimates Euler Institute. St Petersburg 6/16

The decorrelation lemmas

Lemma (Kl)

For the discrete Anderson model, fix $\alpha \in (0,1)$, $\beta \in (1/2,1)$ and $\{E_0, E'_0\} \subset I$ s.t. $|E_0 - E'_0| > 2d$, for any c > 0, there exists C > 0 such that, for $L \geq 3$ and $cL^{\alpha} \leq \ell \leq L^{\alpha}/c$, one has

$$\mathbb{P}\left(\left\{\begin{array}{l}\sigma(H_{\omega}(\Lambda_{\ell}))\cap(E_{0}+L^{-d}(-1,1))\neq\emptyset,\\\sigma(H_{\omega}(\Lambda_{\ell}))\cap(E_{0}'+L^{-d}(-1,1))\neq\emptyset\right\}\right)\leq C(\ell/L)^{2d}e^{(\log L)^{\beta}}$$

Lemma (Kl)

Assume d = 1. For the discrete Anderson model, for $\alpha \in (0,1)$ and $\{E_0, E'_0\} \subset I$ s.t. $E_0 \neq E'_0$, for any c > 0, there exists C > 0 such that, for $L \geq 3$ and $cL^{\alpha} \leq \ell \leq L^{\alpha}/c$, the result of the previous theorem holds.

Another decorrelation estimate: the Minami estimate

Theorem (Min, GV, BHS, CGK)

For $J \subset K$, one has

 $\mathbb{E}\left[tr[\mathbf{1}_J(H_{\omega}(\Lambda))] \cdot (tr[\mathbf{1}_K(H_{\omega}(\Lambda))] - 1)\right] \le C|J| |K| |\Lambda|^2.$

Let $J_L = E_0 + L^{-d}(-1, 1)$ and $J'_L = E'_0 + L^{-d}(-1, 1)$. By Minami's estimate

 $\mathbb{P}\left(\#[\sigma(H_{\omega}(\Lambda_{\ell})) \cap J_{L}] \geq 2 \text{ or } \#[\sigma(H_{\omega}(\Lambda_{\ell})) \cap J_{L}'] \geq 2\right) \leq C(\ell/L)^{2d}$

If $\mathbb{P}_0 = \mathbb{P}(\#[\sigma(H_{\omega}(\Lambda_{\ell})) \cap J_L] = 1, \#[\sigma(H_{\omega}(\Lambda_{\ell})) \cap J'_L] = 1)$, suffices to show that $\mathbb{P}_0 \le C(\ell/L)^{2d} e^{(\log L)^{\beta}}.$

Let $E_j(\omega)$ and $E_k(\omega)$ be the eigenvalues resp. in J_L and J'_L . Need to show that they don't vary "synchronously".

Basic idea: find random variables $(\omega_{\gamma}, \omega_{\gamma'})$ such that $\psi: (\omega_{\gamma}, \omega_{\gamma'}) \mapsto (E_j(\omega), E_k(\omega))$ be a local diffeomorphism

Let $J_L = E_0 + L^{-d}(-1, 1)$ and $J'_L = E'_0 + L^{-d}(-1, 1)$.

By Minami's estimate

 $\mathbb{P}\left(\#[\sigma(H_{\omega}(\Lambda_{\ell})) \cap J_{L}] \geq 2 \text{ or } \#[\sigma(H_{\omega}(\Lambda_{\ell})) \cap J_{L}'] \geq 2\right) \leq C(\ell/L)^{2d}$

If $\mathbb{P}_0 = \mathbb{P}(\#[\sigma(H_{\omega}(\Lambda_{\ell})) \cap J_L] = 1, \#[\sigma(H_{\omega}(\Lambda_{\ell})) \cap J'_L] = 1)$, suffices to show that $\mathbb{P}_0 \le C(\ell/L)^{2d} e^{(\log L)^{\beta}}.$

Let $E_j(\omega)$ and $E_k(\omega)$ be the eigenvalues resp. in J_L and J'_L . Need to show that they don't vary "synchronously".

Basic idea: find random variables $(\omega_{\gamma}, \omega_{\gamma'})$ such that $\psi: (\omega_{\gamma}, \omega_{\gamma'}) \mapsto (E_j(\omega), E_k(\omega))$ be a local diffeomorphism

Let $J_L = E_0 + L^{-d}(-1, 1)$ and $J'_L = E'_0 + L^{-d}(-1, 1)$. By Minami's estimate

 $\mathbb{P}\left(\#[\sigma(H_{\omega}(\Lambda_{\ell})) \cap J_{L}] \geq 2 \text{ or } \#[\sigma(H_{\omega}(\Lambda_{\ell})) \cap J_{L}'] \geq 2\right) \leq C(\ell/L)^{2d}$

If $\mathbb{P}_0 = \mathbb{P}(\#[\sigma(H_{\omega}(\Lambda_{\ell})) \cap J_L] = 1, \#[\sigma(H_{\omega}(\Lambda_{\ell})) \cap J'_L] = 1)$, suffices to show that $\mathbb{P}_0 \le C(\ell/L)^{2d} e^{(\log L)^{\beta}}.$

Let $E_j(\omega)$ and $E_k(\omega)$ be the eigenvalues resp. in J_L and J'_L . Need to show that they don't vary "synchronously".

Basic idea: find random variables $(\omega_{\gamma}, \omega_{\gamma'})$ such that $\psi : (\omega_{\gamma}, \omega_{\gamma'}) \mapsto (E_j(\omega), E_k(\omega))$ be a local diffeomorphism

Let $J_L = E_0 + L^{-d}(-1, 1)$ and $J'_L = E'_0 + L^{-d}(-1, 1)$. By Minami's estimate

 $\mathbb{P}\left(\#[\sigma(H_{\omega}(\Lambda_{\ell})) \cap J_{L}] \geq 2 \text{ or } \#[\sigma(H_{\omega}(\Lambda_{\ell})) \cap J_{L}'] \geq 2\right) \leq C(\ell/L)^{2d}$

If $\mathbb{P}_0 = \mathbb{P}(\#[\sigma(H_\omega(\Lambda_\ell)) \cap J_L] = 1, \#[\sigma(H_\omega(\Lambda_\ell)) \cap J'_L] = 1)$, suffices to show that $\mathbb{P}_0 \le C(\ell/L)^{2d} e^{(\log L)^{\beta}}.$

Let $E_j(\omega)$ and $E_k(\omega)$ be the eigenvalues resp. in J_L and J'_L . Need to show that they don't vary "synchronously".

Basic idea: find random variables $(\omega_{\gamma}, \omega_{\gamma'})$ such that $\psi : (\omega_{\gamma}, \omega_{\gamma'}) \mapsto (E_j(\omega), E_k(\omega))$ be a local diffeomorphism

Let $J_L = E_0 + L^{-d}(-1, 1)$ and $J'_L = E'_0 + L^{-d}(-1, 1)$. By Minami's estimate

$$\mathbb{P}\left(\#[\sigma(H_{\omega}(\Lambda_{\ell})) \cap J_{L}] \geq 2 \text{ or } \#[\sigma(H_{\omega}(\Lambda_{\ell})) \cap J_{L}'] \geq 2\right) \leq C(\ell/L)^{2d}$$

If $\mathbb{P}_0 = \mathbb{P}(\#[\sigma(H_{\omega}(\Lambda_{\ell})) \cap J_L] = 1, \#[\sigma(H_{\omega}(\Lambda_{\ell})) \cap J'_L] = 1)$, suffices to show that $\mathbb{P}_0 \le C(\ell/L)^{2d} e^{(\log L)^{\beta}}.$

Let $E_j(\omega)$ and $E_k(\omega)$ be the eigenvalues resp. in J_L and J'_L . Need to show that they don't vary "synchronously".

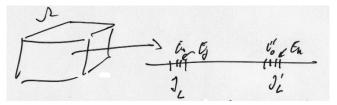
Basic idea: find random variables $(\omega_{\gamma}, \omega_{\gamma'})$ such that $\psi: (\omega_{\gamma}, \omega_{\gamma'}) \mapsto (E_j(\omega), E_k(\omega))$ be a local diffeomorphism

Let $J_L = E_0 + L^{-d}(-1, 1)$ and $J'_L = E'_0 + L^{-d}(-1, 1)$. By Minami's estimate

$$\mathbb{P}\left(\#[\sigma(H_{\omega}(\Lambda_{\ell})) \cap J_{L}] \geq 2 \text{ or } \#[\sigma(H_{\omega}(\Lambda_{\ell})) \cap J_{L}'] \geq 2\right) \leq C(\ell/L)^{2a}$$

If $\mathbb{P}_0 = \mathbb{P}(\#[\sigma(H_{\omega}(\Lambda_{\ell})) \cap J_L] = 1, \#[\sigma(H_{\omega}(\Lambda_{\ell})) \cap J'_L] = 1)$, suffices to show that $\mathbb{P}_0 \le C(\ell/L)^{2d} e^{(\log L)^{\beta}}.$

Let $E_j(\omega)$ and $E_k(\omega)$ be the eigenvalues resp. in J_L and J'_L . Need to show that they don't vary "synchronously".



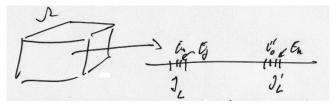
Basic idea: find random variables $(\omega_{\gamma}, \omega_{\gamma'})$ such that $\psi : (\omega_{\gamma}, \omega_{\gamma'}) \mapsto (E_j(\omega), E_k(\omega))$ be a local diffeomorphism.

Let $J_L = E_0 + L^{-d}(-1, 1)$ and $J'_L = E'_0 + L^{-d}(-1, 1)$. By Minami's estimate

$$\mathbb{P}\left(\#[\sigma(H_{\omega}(\Lambda_{\ell})) \cap J_{L}] \geq 2 \text{ or } \#[\sigma(H_{\omega}(\Lambda_{\ell})) \cap J_{L}'] \geq 2\right) \leq C(\ell/L)^{2d}$$

If $\mathbb{P}_0 = \mathbb{P}(\#[\sigma(H_{\omega}(\Lambda_{\ell})) \cap J_L] = 1, \#[\sigma(H_{\omega}(\Lambda_{\ell})) \cap J'_L] = 1)$, suffices to show that $\mathbb{P}_0 \le C(\ell/L)^{2d} e^{(\log L)^{\beta}}.$

Let $E_j(\omega)$ and $E_k(\omega)$ be the eigenvalues resp. in J_L and J'_L . Need to show that they don't vary "synchronously".



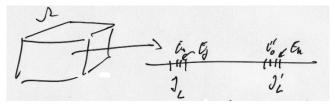
Basic idea: find random variables $(\omega_{\gamma}, \omega_{\gamma'})$ such that ψ : $(\omega_{\gamma}, \omega_{\gamma'}) \mapsto (E_j(\omega), E_k(\omega))$ be a local diffeomorphism.

Let $J_L = E_0 + L^{-d}(-1, 1)$ and $J'_L = E'_0 + L^{-d}(-1, 1)$. By Minami's estimate

$$\mathbb{P}\left(\#[\sigma(H_{\omega}(\Lambda_{\ell})) \cap J_{L}] \geq 2 \text{ or } \#[\sigma(H_{\omega}(\Lambda_{\ell})) \cap J_{L}'] \geq 2\right) \leq C(\ell/L)^{2a}$$

If $\mathbb{P}_0 = \mathbb{P}(\#[\sigma(H_{\omega}(\Lambda_{\ell})) \cap J_L] = 1, \#[\sigma(H_{\omega}(\Lambda_{\ell})) \cap J'_L] = 1)$, suffices to show that $\mathbb{P}_0 \le C(\ell/L)^{2d} e^{(\log L)^{\beta}}.$

Let $E_j(\omega)$ and $E_k(\omega)$ be the eigenvalues resp. in J_L and J'_L . Need to show that they don't vary "synchronously".



Basic idea: find random variables $(\omega_{\gamma}, \omega_{\gamma'})$ such that ψ : $(\omega_{\gamma}, \omega_{\gamma'}) \mapsto (E_j(\omega), E_k(\omega))$ be a local diffeomorphism.

$$\operatorname{Proba} \leq \sum_{j,k} \sum_{\gamma,\gamma'} L^{-2d} \asymp \ell^{4d} / L^{2d}.$$

We need to reduce the volume of the cube Λ_{ℓ} .

Reduction to localization boxes:

This can be done using localization.

Lemma

There exists C > 0 such that for L sufficiently large

 $\mathbb{P}_0 \le C(\ell/L)^{2d} + C(\ell/\tilde{\ell})^d \,\mathbb{P}_1$

where

•
$$\mathbb{P}_1 := \mathbb{P}(\#[\sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap \tilde{J}_L] = \#[\sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap \tilde{J}'_L] = 1)$$

• $\tilde{\ell} \asymp \log L, \quad \tilde{J}_L = J_L + [-L^{-d}, L^{-d}] \quad and \quad \tilde{J}'_I = J'_I + [-L^{-d}, L^{-d}]$

$$\operatorname{Proba} \leq \sum_{j,k} \sum_{\gamma,\gamma'} L^{-2d} \asymp \ell^{4d} / L^{2d}.$$

We need to reduce the volume of the cube Λ_{ℓ} .

Reduction to localization boxes:

This can be done using localization.

Lemma

There exists C > 0 such that for L sufficiently large

 $\mathbb{P}_0 \le C(\ell/L)^{2d} + C(\ell/\tilde{\ell})^d \,\mathbb{P}_1$

where

•
$$\mathbb{P}_1 := \mathbb{P}(\#[\sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap \tilde{J}_L] = \#[\sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap \tilde{J}'_L] = 1)$$

• $\tilde{\ell} \asymp \log L, \quad \tilde{J}_L = J_L + [-L^{-d}, L^{-d}] \quad and \quad \tilde{J}'_I = J'_I + [-L^{-d}, L^{-d}]$

$$\operatorname{Proba} \leq \sum_{j,k} \sum_{\gamma,\gamma'} L^{-2d} \asymp \ell^{4d} / L^{2d}.$$

We need to reduce the volume of the cube Λ_{ℓ} .

Reduction to localization boxes:

This can be done using localization.

Lemma

There exists C > 0 such that for L sufficiently large

 $\mathbb{P}_0 \le C(\ell/L)^{2d} + C(\ell/\tilde{\ell})^d \mathbb{P}_1$

where

•
$$\mathbb{P}_1 := \mathbb{P}(\#[\sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap \tilde{J}_L] = \#[\sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap \tilde{J}'_L] = 1)$$

• $\tilde{\ell} \asymp \log L, \quad \tilde{J}_L = J_L + [-L^{-d}, L^{-d}] \quad and \quad \tilde{J}'_I = J'_I + [-L^{-d}, L^{-d}]$

$$\operatorname{Proba} \leq \sum_{j,k} \sum_{\gamma,\gamma'} L^{-2d} \asymp \ell^{4d} / L^{2d}.$$

We need to reduce the volume of the cube Λ_{ℓ} .

Reduction to localization boxes:

This can be done using localization.

Lemma

There exists C > 0 such that for L sufficiently large

 $\mathbb{P}_0 \le C(\ell/L)^{2d} + C(\ell/\tilde{\ell})^d \mathbb{P}_1$

where

•
$$\mathbb{P}_1 := \mathbb{P}(\#[\sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap \tilde{J}_L] = \#[\sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap \tilde{J}'_L] = 1)$$

• $\tilde{\ell} \asymp \log L$, $\tilde{J}_L = J_L + [-L^{-d}, L^{-d}]$ and $\tilde{J}'_I = J'_I + [-L^{-d}, L^{-d}]$

$$\operatorname{Proba} \leq \sum_{j,k} \sum_{\gamma,\gamma'} L^{-2d} \asymp \ell^{4d} / L^{2d}.$$

We need to reduce the volume of the cube Λ_{ℓ} .

Reduction to localization boxes:

This can be done using localization.

Lemma

There exists C > 0 such that for L sufficiently large

 $\mathbb{P}_0 \leq C(\ell/L)^{2d} + C(\ell/\tilde{\ell})^d \,\mathbb{P}_1$

where

• $\mathbb{P}_1 := \mathbb{P}(\#[\sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap \tilde{J}_L] = \#[\sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap \tilde{J}'_L] = 1)$ • $\tilde{\ell} \asymp \log L, \quad \tilde{J}_L = J_L + [-L^{-d}, L^{-d}] \quad and \quad \tilde{J}'_L = J'_L + [-L^{-d}, L^{-d}]$

$$\operatorname{Proba} \leq \sum_{j,k} \sum_{\gamma,\gamma'} L^{-2d} \asymp \ell^{4d} / L^{2d}.$$

We need to reduce the volume of the cube Λ_{ℓ} .

Reduction to localization boxes:

This can be done using localization.

Lemma

There exists C > 0 such that for L sufficiently large

 $\mathbb{P}_0 \leq C(\ell/L)^{2d} + C(\ell/\tilde{\ell})^d \,\mathbb{P}_1$

where

•
$$\mathbb{P}_1 := \mathbb{P}(\#[\sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap \tilde{J}_L] = \#[\sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap \tilde{J}'_L] = 1)$$

• $\tilde{\ell} \simeq \log L, \quad \tilde{J}_L = J_L + [-L^{-d}, L^{-d}] \quad and \quad \tilde{J}'_L = J'_L + [-L^{-d}, L^{-d}]$

Idea of proof: if e.v. distinct loc. centers, use Wegner and spacial independence

As localization boxes of size $ilde{\ell},$ remains to estimate \mathbb{P}_1

F. Klopp (Université Paris 13)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ

$$\operatorname{Proba} \leq \sum_{j,k} \sum_{\gamma,\gamma'} L^{-2d} \asymp \ell^{4d} / L^{2d}.$$

We need to reduce the volume of the cube Λ_{ℓ} .

Reduction to localization boxes:

This can be done using localization.

Lemma

There exists C > 0 such that for L sufficiently large

 $\mathbb{P}_0 \leq C(\ell/L)^{2d} + C(\ell/\tilde{\ell})^d \,\mathbb{P}_1$

where

•
$$\mathbb{P}_1 := \mathbb{P}(\#[\sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap \tilde{J}_L] = \#[\sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap \tilde{J}'_L] = 1)$$

• $\tilde{\ell} \asymp \log L$, $\tilde{J}_L = J_L + [-L^{-d}, L^{-d}]$ and $\tilde{J}'_L = J'_L + [-L^{-d}, L^{-d}]$

Idea of proof: if e.v. distinct loc. centers, use Wegner and spacial independence

As localization boxes of size $ilde{\ell}$, remains to estimate \mathbb{P}_1

F. Klopp (Université Paris 13)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ

$$\operatorname{Proba} \leq \sum_{j,k} \sum_{\gamma,\gamma'} L^{-2d} \asymp \ell^{4d} / L^{2d}.$$

We need to reduce the volume of the cube Λ_{ℓ} .

Reduction to localization boxes:

This can be done using localization.

Lemma

There exists C > 0 such that for L sufficiently large

 $\mathbb{P}_0 \le C(\ell/L)^{2d} + C(\ell/\tilde{\ell})^d \,\mathbb{P}_1$

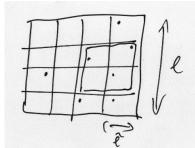
where

•
$$\mathbb{P}_1 := \mathbb{P}(\#[\sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap \tilde{J}_L] = \#[\sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap \tilde{J}'_L] = 1)$$

• $\tilde{\ell} \asymp \log L$, $\tilde{J}_L = J_L + [-L^{-d}, L^{-d}]$ and $\tilde{J}'_L = J'_L + [-L^{-d}, L^{-d}]$

Idea of proof: if e.v. distinct loc. centers, use Wegner and spacial independence.

As localization boxes of size $ilde{\ell}$, remains to estimate \mathbb{P}_1



$$\operatorname{Proba} \leq \sum_{j,k} \sum_{\gamma,\gamma'} L^{-2d} \asymp \ell^{4d} / L^{2d}.$$

We need to reduce the volume of the cube Λ_{ℓ} .

Reduction to localization boxes:

This can be done using localization.

Lemma

There exists C > 0 such that for L sufficiently large

 $\mathbb{P}_0 < C(\ell/L)^{2d} + C(\ell/\tilde{\ell})^d \mathbb{P}_1$

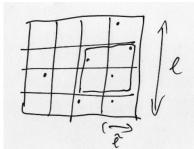
where

•
$$\mathbb{P}_1 := \mathbb{P}(\#[\sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap \tilde{J}_L] = \#[\sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap \tilde{J}'_L] = 1)$$

• $\tilde{\ell} \asymp \log L$, $\tilde{J}_L = J_L + [-L^{-d}, L^{-d}]$ and $\tilde{J}'_L = J'_L + [-L^{-d}, L^{-d}]$

Idea of proof: if e.v. distinct loc. centers, use Wegner and spacial independence As localization boxes of size $\tilde{\ell}$, remains to estimate \mathbb{P}_1 .

F. Klopp (Université Paris 13)



Let $\omega \mapsto E(\omega)$ be the e.v of $H_{\omega}(\Lambda_{\tilde{\ell}})$ in J_L .

- *E*(ω) being simple, ω → *E*(ω) and the ass. eigenvect. ω → φ(ω) analytic;
 ∂_{ων}*E*(ω) = ⟨π_γφ(ω), φ(ω)⟩ ≥ 0 ; hence ||∇_ω*E*(ω)||_{ℓ¹} = 1;
- Hess_{ω} $E(\omega) = ((h_{\gamma\beta}))_{\gamma,\beta}, h_{\gamma,\beta} = -2\text{Re}\langle (H_{\omega}(\Lambda_{\tilde{\ell}}) E(\omega))^{-1}\psi_{\gamma}(\omega), \psi_{\beta}(\omega) \rangle$ where
 - $\psi_{\gamma} = \Pi(\omega) \pi_{\gamma} \varphi(\omega),$
 - $\Pi(\omega)$ is the orthogonal projector on the orthogonal to $\varphi(\omega)$.

Lemma

$$\|Hess_{\omega}(E(\omega))\|_{\ell^{\infty} \to \ell^{1}} \leq \frac{C}{\operatorname{dist}(E(\omega), \sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \setminus \{E(\omega)\})}.$$

Hence, by Minami's estimate

For
$$\varepsilon \in (4L^{-d}, 1)$$
, one has $\mathbb{P}_1 \leq C \varepsilon \tilde{\ell}^{2d} L^{-d} + \mathbb{P}_{\varepsilon}$ where $\mathbb{P}_{\varepsilon} = \mathbb{P}(\Omega_0(\varepsilon))$ and

$$\Omega_{0}(\varepsilon) = \begin{cases} \sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap \tilde{J}_{L} = \{E(\omega)\} = \sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap (E - C\varepsilon, E + C\varepsilon), \\ \sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap \tilde{J}'_{L} = \{E'(\omega)\} = \sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap (E' - C\varepsilon, E' + C\varepsilon) \end{cases}$$

Let $\omega \mapsto E(\omega)$ be the e.v of $H_{\omega}(\Lambda_{\tilde{\ell}})$ in J_L .

- $E(\omega)$ being simple, $\omega \mapsto E(\omega)$ and the ass. eigenvect. $\omega \mapsto \varphi(\omega)$ analytic;
- Solution Hess_{ω} $E(\omega) = ((h_{\gamma\beta}))_{\gamma,\beta}, \quad h_{\gamma,\beta} = -2\text{Re}\langle (H_{\omega}(\Lambda_{\tilde{\ell}}) E(\omega))^{-1}\psi_{\gamma}(\omega), \psi_{\beta}(\omega) \rangle$ where
 - $\psi_{\gamma} = \Pi(\omega) \pi_{\gamma} \varphi(\omega),$
 - $\Pi(\omega)$ is the orthogonal projector on the orthogonal to $\varphi(\omega)$.

Lemma

$$\|Hess_{\omega}(E(\omega))\|_{\ell^{\infty} \to \ell^{1}} \leq \frac{C}{\operatorname{dist}(E(\omega), \sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \setminus \{E(\omega)\})}.$$

Hence, by Minami's estimate

For
$$\varepsilon \in (4L^{-d}, 1)$$
, one has $\mathbb{P}_1 \leq C \varepsilon \tilde{\ell}^{2d} L^{-d} + \mathbb{P}_{\varepsilon}$ where $\mathbb{P}_{\varepsilon} = \mathbb{P}(\Omega_0(\varepsilon))$ and

$$\Omega_{0}(\varepsilon) = \begin{cases} \sigma(H_{\omega}(\Lambda_{\bar{\ell}})) \cap \tilde{J}_{L} = \{E(\omega)\} = \sigma(H_{\omega}(\Lambda_{\bar{\ell}})) \cap (E - C\varepsilon, E + C\varepsilon), \\ \sigma(H_{\omega}(\Lambda_{\bar{\ell}})) \cap \tilde{J}'_{L} = \{E'(\omega)\} = \sigma(H_{\omega}(\Lambda_{\bar{\ell}})) \cap (E' - C\varepsilon, E' + C\varepsilon) \end{cases}$$

Let $\omega \mapsto E(\omega)$ be the e.v of $H_{\omega}(\Lambda_{\tilde{\ell}})$ in J_L .

- $E(\omega)$ being simple, $\omega \mapsto E(\omega)$ and the ass. eigenvect. $\omega \mapsto \varphi(\omega)$ analytic;
- Hess_{ω} $E(\omega) = ((h_{\gamma\beta}))_{\gamma,\beta}, \quad h_{\gamma,\beta} = -2\text{Re}\langle (H_{\omega}(\Lambda_{\tilde{\ell}}) E(\omega))^{-1}\psi_{\gamma}(\omega), \psi_{\beta}(\omega)\rangle$ where
 - $\psi_{\gamma} = \Pi(\omega) \pi_{\gamma} \varphi(\omega),$
 - $\Pi(\omega)$ is the orthogonal projector on the orthogonal to $\varphi(\omega)$.

Lemma

$$\|Hess_{\omega}(E(\omega))\|_{\ell^{\infty} \to \ell^{1}} \leq \frac{C}{\operatorname{dist}(E(\omega), \sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \setminus \{E(\omega)\})}.$$

Hence, by Minami's estimate

For
$$\varepsilon \in (4L^{-d}, 1)$$
, one has $\mathbb{P}_1 \leq C \varepsilon \tilde{\ell}^{2d} L^{-d} + \mathbb{P}_{\varepsilon}$ where $\mathbb{P}_{\varepsilon} = \mathbb{P}(\Omega_0(\varepsilon))$ and

$$\Omega_{0}(\varepsilon) = \begin{cases} \sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap \tilde{J}_{L} = \{E(\omega)\} = \sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap (E - C\varepsilon, E + C\varepsilon), \\ \sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap \tilde{J}'_{L} = \{E'(\omega)\} = \sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap (E' - C\varepsilon, E' + C\varepsilon) \end{cases}$$

Let $\omega \mapsto E(\omega)$ be the e.v of $H_{\omega}(\Lambda_{\tilde{\ell}})$ in J_L .

- $E(\omega)$ being simple, $\omega \mapsto E(\omega)$ and the ass. eigenvect. $\omega \mapsto \varphi(\omega)$ analytic;

• Hess_{ω} $E(\omega) = ((h_{\gamma\beta}))_{\gamma,\beta}, h_{\gamma,\beta} = -2\text{Re}\langle (H_{\omega}(\Lambda_{\bar{\ell}}) - E(\omega))^{-1}\psi_{\gamma}(\omega), \psi_{\beta}(\omega) \rangle$ where

- $\psi_{\gamma} = \Pi(\omega) \pi_{\gamma} \varphi(\omega),$
- $\Pi(\omega)$ is the orthogonal projector on the orthogonal to $\varphi(\omega)$.

Lemma

$$\|Hess_{\omega}(E(\omega))\|_{\ell^{\infty} \to \ell^{1}} \leq \frac{C}{\operatorname{dist}(E(\omega), \sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \setminus \{E(\omega)\})}.$$

Hence, by Minami's estimate

For
$$\varepsilon \in (4L^{-d}, 1)$$
, one has $\mathbb{P}_1 \leq C \varepsilon \tilde{\ell}^{2d} L^{-d} + \mathbb{P}_{\varepsilon}$ where $\mathbb{P}_{\varepsilon} = \mathbb{P}(\Omega_0(\varepsilon))$ and

$$\Omega_{0}(\varepsilon) = \begin{cases} \sigma(H_{\omega}(\Lambda_{\bar{\ell}})) \cap \tilde{J}_{L} = \{E(\omega)\} = \sigma(H_{\omega}(\Lambda_{\bar{\ell}})) \cap (E - C\varepsilon, E + C\varepsilon), \\ \sigma(H_{\omega}(\Lambda_{\bar{\ell}})) \cap \tilde{J}'_{L} = \{E'(\omega)\} = \sigma(H_{\omega}(\Lambda_{\bar{\ell}})) \cap (E' - C\varepsilon, E' + C\varepsilon) \end{cases}$$

Let $\omega \mapsto E(\omega)$ be the e.v of $H_{\omega}(\Lambda_{\tilde{\ell}})$ in J_L .

- $E(\omega)$ being simple, $\omega \mapsto E(\omega)$ and the ass. eigenvect. $\omega \mapsto \varphi(\omega)$ analytic;
- Hess_{ω} $E(\omega) = ((h_{\gamma\beta}))_{\gamma,\beta}, \quad h_{\gamma,\beta} = -2\text{Re}\langle (H_{\omega}(\Lambda_{\tilde{\ell}}) E(\omega))^{-1}\psi_{\gamma}(\omega), \psi_{\beta}(\omega)\rangle$ where
 - $\psi_{\gamma} = \Pi(\omega) \pi_{\gamma} \varphi(\omega),$
 - $\Pi(\omega)$ is the orthogonal projector on the orthogonal to $\varphi(\omega)$.

Lemma

$$\|Hess_{\omega}(E(\omega))\|_{\ell^{\infty} \to \ell^{1}} \leq \frac{C}{\operatorname{dist}(E(\omega), \sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \setminus \{E(\omega)\})}.$$

Hence, by Minami's estimate

For
$$\varepsilon \in (4L^{-d}, 1)$$
, one has $\mathbb{P}_1 \leq C \varepsilon \tilde{\ell}^{2d} L^{-d} + \mathbb{P}_{\varepsilon}$ where $\mathbb{P}_{\varepsilon} = \mathbb{P}(\Omega_0(\varepsilon))$ and

$$\Omega_{0}(\varepsilon) = \begin{cases} \sigma(H_{\omega}(\Lambda_{\bar{\ell}})) \cap \tilde{J}_{L} = \{E(\omega)\} = \sigma(H_{\omega}(\Lambda_{\bar{\ell}})) \cap (E - C\varepsilon, E + C\varepsilon), \\ \sigma(H_{\omega}(\Lambda_{\bar{\ell}})) \cap \tilde{J}'_{L} = \{E'(\omega)\} = \sigma(H_{\omega}(\Lambda_{\bar{\ell}})) \cap (E' - C\varepsilon, E' + C\varepsilon) \end{cases}$$

Let $\omega \mapsto E(\omega)$ be the e.v of $H_{\omega}(\Lambda_{\tilde{\ell}})$ in J_L .

- $E(\omega)$ being simple, $\omega \mapsto E(\omega)$ and the ass. eigenvect. $\omega \mapsto \varphi(\omega)$ analytic;
- Hess_{ω} $E(\omega) = ((h_{\gamma\beta}))_{\gamma,\beta}, h_{\gamma,\beta} = -2\text{Re}\langle (H_{\omega}(\Lambda_{\tilde{\ell}}) E(\omega))^{-1}\psi_{\gamma}(\omega), \psi_{\beta}(\omega)\rangle$ where
 - $\psi_{\gamma} = \Pi(\omega) \pi_{\gamma} \varphi(\omega),$
 - $\Pi(\omega)$ is the orthogonal projector on the orthogonal to $\varphi(\omega)$.

Lemma

$$\|Hess_{\omega}(E(\omega))\|_{\ell^{\infty} \to \ell^{1}} \leq \frac{C}{\operatorname{dist}(E(\omega), \sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \setminus \{E(\omega)\})}.$$

Hence, by Minami's estimate

For
$$\varepsilon \in (4L^{-d}, 1)$$
, one has $\mathbb{P}_1 \leq C \varepsilon \tilde{\ell}^{2d} L^{-d} + \mathbb{P}_{\varepsilon}$ where $\mathbb{P}_{\varepsilon} = \mathbb{P}(\Omega_0(\varepsilon))$ and

$$\Omega_{0}(\varepsilon) = \begin{cases} \sigma(H_{\omega}(\Lambda_{\bar{\ell}})) \cap \tilde{J}_{L} = \{E(\omega)\} = \sigma(H_{\omega}(\Lambda_{\bar{\ell}})) \cap (E - C\varepsilon, E + C\varepsilon), \\ \sigma(H_{\omega}(\Lambda_{\bar{\ell}})) \cap \tilde{J}'_{L} = \{E'(\omega)\} = \sigma(H_{\omega}(\Lambda_{\bar{\ell}})) \cap (E' - C\varepsilon, E' + C\varepsilon) \end{cases}$$

Let $\omega \mapsto E(\omega)$ be the e.v of $H_{\omega}(\Lambda_{\tilde{\ell}})$ in J_L .

- $E(\omega)$ being simple, $\omega \mapsto E(\omega)$ and the ass. eigenvect. $\omega \mapsto \varphi(\omega)$ analytic;
- Hess_{ω} $E(\omega) = ((h_{\gamma\beta}))_{\gamma,\beta}, \quad h_{\gamma,\beta} = -2\text{Re}\langle (H_{\omega}(\Lambda_{\tilde{\ell}}) E(\omega))^{-1}\psi_{\gamma}(\omega), \psi_{\beta}(\omega)\rangle$ where
 - $\psi_{\gamma} = \Pi(\omega) \pi_{\gamma} \varphi(\omega),$
 - $\Pi(\omega)$ is the orthogonal projector on the orthogonal to $\varphi(\omega)$.

Lemma

$$\|Hess_{\omega}(E(\omega))\|_{\ell^{\infty} \to \ell^{1}} \leq \frac{C}{\operatorname{dist}(E(\omega), \sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \setminus \{E(\omega)\})}.$$

Hence, by Minami's estimate

For
$$\varepsilon \in (4L^{-d}, 1)$$
, one has $\mathbb{P}_1 \leq C \varepsilon \tilde{\ell}^{2d} L^{-d} + \mathbb{P}_{\varepsilon}$ where $\mathbb{P}_{\varepsilon} = \mathbb{P}(\Omega_0(\varepsilon))$ and

$$\Omega_{0}(\varepsilon) = \begin{cases} \sigma(H_{\omega}(\Lambda_{\bar{\ell}})) \cap \tilde{J}_{L} = \{E(\omega)\} = \sigma(H_{\omega}(\Lambda_{\bar{\ell}})) \cap (E - C\varepsilon, E + C\varepsilon), \\ \sigma(H_{\omega}(\Lambda_{\bar{\ell}})) \cap \tilde{J}'_{L} = \{E'(\omega)\} = \sigma(H_{\omega}(\Lambda_{\bar{\ell}})) \cap (E' - C\varepsilon, E' + C\varepsilon) \end{cases}$$

Let $\omega \mapsto E(\omega)$ be the e.v of $H_{\omega}(\Lambda_{\tilde{\ell}})$ in J_L .

- $E(\omega)$ being simple, $\omega \mapsto E(\omega)$ and the ass. eigenvect. $\omega \mapsto \varphi(\omega)$ analytic;
- Hess_{ω} $E(\omega) = ((h_{\gamma\beta}))_{\gamma,\beta}, \quad h_{\gamma,\beta} = -2\text{Re}\langle (H_{\omega}(\Lambda_{\tilde{\ell}}) E(\omega))^{-1}\psi_{\gamma}(\omega), \psi_{\beta}(\omega)\rangle$ where
 - $\psi_{\gamma} = \Pi(\omega) \pi_{\gamma} \varphi(\omega),$
 - $\Pi(\omega)$ is the orthogonal projector on the orthogonal to $\varphi(\omega)$.

Lemma

$$\|Hess_{\boldsymbol{\omega}}(E(\boldsymbol{\omega}))\|_{\ell^{\infty}\to\ell^{1}}\leq \frac{C}{\operatorname{dist}(E(\boldsymbol{\omega}),\sigma(H_{\boldsymbol{\omega}}(\Lambda_{\bar{\ell}}))\setminus\{E(\boldsymbol{\omega})\})}.$$

Hence, by Minami's estimate

For
$$\varepsilon \in (4L^{-d}, 1)$$
, one has $\mathbb{P}_1 \leq C \varepsilon \tilde{\ell}^{2d} L^{-d} + \mathbb{P}_{\varepsilon}$ where $\mathbb{P}_{\varepsilon} = \mathbb{P}(\Omega_0(\varepsilon))$ and

$$\Omega_{0}(\varepsilon) = \begin{cases} \sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap \tilde{J}_{L} = \{E(\omega)\} = \sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap (E - C\varepsilon, E + C\varepsilon), \\ \sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap \tilde{J}'_{L} = \{E'(\omega)\} = \sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap (E' - C\varepsilon, E' + C\varepsilon) \end{cases}$$

Let $\omega \mapsto E(\omega)$ be the e.v of $H_{\omega}(\Lambda_{\tilde{\ell}})$ in J_L .

- $E(\omega)$ being simple, $\omega \mapsto E(\omega)$ and the ass. eigenvect. $\omega \mapsto \varphi(\omega)$ analytic;
- Hess_{ω} $E(\omega) = ((h_{\gamma\beta}))_{\gamma,\beta}, h_{\gamma,\beta} = -2\text{Re}\langle (H_{\omega}(\Lambda_{\tilde{\ell}}) E(\omega))^{-1}\psi_{\gamma}(\omega), \psi_{\beta}(\omega)\rangle$ where
 - $\psi_{\gamma} = \Pi(\omega) \pi_{\gamma} \varphi(\omega),$
 - $\Pi(\omega)$ is the orthogonal projector on the orthogonal to $\varphi(\omega)$.

Lemma

$$\|Hess_{\omega}(E(\omega))\|_{\ell^{\infty} \to \ell^{1}} \leq \frac{C}{\operatorname{dist}(E(\omega), \sigma(H_{\omega}(\Lambda_{\overline{\ell}})) \setminus \{E(\omega)\})}.$$

Hence, by Minami's estimate

Lemma

For
$$\varepsilon \in (4L^{-d}, 1)$$
, one has $\mathbb{P}_1 \leq C \varepsilon \tilde{\ell}^{2d} L^{-d} + \mathbb{P}_{\varepsilon}$ where $\mathbb{P}_{\varepsilon} = \mathbb{P}(\Omega_0(\varepsilon))$ and

 $\Omega_{0}(\varepsilon) = \begin{cases} \sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap \tilde{J}_{L} = \{E(\omega)\} = \sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap (E - C\varepsilon, E + C\varepsilon), \\ \sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap \tilde{J}'_{L} = \{E'(\omega)\} = \sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap (E' - C\varepsilon, E' + C\varepsilon) \end{cases}$

Let $\omega \mapsto E(\omega)$ be the e.v of $H_{\omega}(\Lambda_{\tilde{\ell}})$ in J_L .

- $E(\omega)$ being simple, $\omega \mapsto E(\omega)$ and the ass. eigenvect. $\omega \mapsto \varphi(\omega)$ analytic;
- Hess_{ω} $E(\omega) = ((h_{\gamma\beta}))_{\gamma,\beta}, h_{\gamma,\beta} = -2\text{Re}\langle (H_{\omega}(\Lambda_{\tilde{\ell}}) E(\omega))^{-1}\psi_{\gamma}(\omega), \psi_{\beta}(\omega)\rangle$ where
 - $\psi_{\gamma} = \Pi(\omega) \pi_{\gamma} \varphi(\omega),$
 - $\Pi(\omega)$ is the orthogonal projector on the orthogonal to $\varphi(\omega)$.

Lemma

$$\|Hess_{\omega}(E(\omega))\|_{\ell^{\infty} \to \ell^{1}} \leq \frac{C}{\operatorname{dist}(E(\omega), \sigma(H_{\omega}(\Lambda_{\overline{\ell}})) \setminus \{E(\omega)\})}.$$

Hence, by Minami's estimate

For
$$\varepsilon \in (4L^{-d}, 1)$$
, one has $\mathbb{P}_1 \leq C \varepsilon \tilde{\ell}^{2d} L^{-d} + \mathbb{P}_{\varepsilon}$ where $\mathbb{P}_{\varepsilon} = \mathbb{P}(\Omega_0(\varepsilon))$ and

$$\Omega_{0}(\varepsilon) = \begin{cases} \sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap \tilde{J}_{L} = \{E(\omega)\} = \sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap (E - C\varepsilon, E + C\varepsilon), \\ \sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap \tilde{J}'_{L} = \{E'(\omega)\} = \sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap (E' - C\varepsilon, E' + C\varepsilon) \end{cases}$$

Let $\omega \mapsto E(\omega)$ be the e.v of $H_{\omega}(\Lambda_{\tilde{\ell}})$ in J_L .

- $E(\omega)$ being simple, $\omega \mapsto E(\omega)$ and the ass. eigenvect. $\omega \mapsto \varphi(\omega)$ analytic;
- Hess_{ω} $E(\omega) = ((h_{\gamma\beta}))_{\gamma,\beta}, h_{\gamma,\beta} = -2\text{Re}\langle (H_{\omega}(\Lambda_{\tilde{\ell}}) E(\omega))^{-1}\psi_{\gamma}(\omega), \psi_{\beta}(\omega)\rangle$ where
 - $\psi_{\gamma} = \Pi(\omega) \pi_{\gamma} \varphi(\omega),$
 - $\Pi(\omega)$ is the orthogonal projector on the orthogonal to $\varphi(\omega)$.

Lemma

$$\|Hess_{\omega}(E(\omega))\|_{\ell^{\infty} \to \ell^{1}} \leq \frac{C}{\operatorname{dist}(E(\omega), \sigma(H_{\omega}(\Lambda_{\overline{\ell}})) \setminus \{E(\omega)\})}.$$

Hence, by Minami's estimate

For
$$\varepsilon \in (4L^{-d}, 1)$$
, one has $\mathbb{P}_1 \leq C \varepsilon \ell^{2d} L^{-d} + \mathbb{P}_{\varepsilon}$ where $\mathbb{P}_{\varepsilon} = \mathbb{P}(\Omega_0(\varepsilon))$ and

$$\Omega_{0}(\varepsilon) = \begin{cases} \sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap \tilde{J}_{L} = \{E(\omega)\} = \sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap (E - C\varepsilon, E + C\varepsilon), \\ \sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap \tilde{J}'_{L} = \{E'(\omega)\} = \sigma(H_{\omega}(\Lambda_{\tilde{\ell}})) \cap (E' - C\varepsilon, E' + C\varepsilon) \end{cases}$$

Lemma

Pick
$$(u,v) \in (\mathbb{R}^+)^{2n}$$
 such that $||u||_1 = ||v||_1 = 1$. Then $\max_{j \neq k} \begin{vmatrix} u_j & u_k \\ v_j & v_k \end{vmatrix}^2 \ge \frac{1}{2n^3} ||u-v||_1^2$.

Difficulty : gradient may be colinear e.g. for $\omega = 0$.

The fundamental estimate:

Lemma

- In any dimension d: for $\Delta E > 2d$, if the random variables $(\omega_{\gamma})_{\gamma \in \Lambda}$ are bounded by K, for $E_j(\omega)$ and $E_k(\omega)$ are simple eigenvalues of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) - E_j(\omega)| \ge \Delta E$, one has $\|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_2 \ge \frac{\Delta E - 2d}{K} L^{-d/2}$;
- *in dimension 1: fix* E < E' and $\beta > 1/2$; let \mathbb{P} denote the probability that there exists $E_j(\omega)$ and $E_k(\omega)$, simple eigenvalues of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) E| + |E_j(\omega) E'| \le e^{-L^{\beta}}$ and such that

$$\|\nabla_{\boldsymbol{\omega}}(E_j(\boldsymbol{\omega})-E_k(\boldsymbol{\omega}))\|_1 \leq e^{-L^{\beta}};$$

Lemma

Pick
$$(u,v) \in (\mathbb{R}^+)^{2n}$$
 such that $||u||_1 = ||v||_1 = 1$. Then $\max_{j \neq k} \left| \begin{array}{c} u_j & u_k \\ v_j & v_k \end{array} \right|^2 \ge \frac{1}{2n^3} ||u-v||_1^2$.

Difficulty : gradient may be colinear e.g. for $\omega = 0$.

The fundamental estimate:

Lemma

- In any dimension d: for $\Delta E > 2d$, if the random variables $(\omega_{\gamma})_{\gamma \in \Lambda}$ are bounded by K, for $E_j(\omega)$ and $E_k(\omega)$ are simple eigenvalues of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) - E_j(\omega)| \ge \Delta E$, one has $\|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_2 \ge \frac{\Delta E - 2d}{K} L^{-d/2}$;
- *in dimension 1: fix E* < *E'* and β > 1/2; let \mathbb{P} denote the probability that there exists $E_j(\omega)$ and $E_k(\omega)$, simple eigenvalues of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) E| + |E_j(\omega) E'| \le e^{-L^{\beta}}$ and such that

$$\|\nabla_{\boldsymbol{\omega}}(E_j(\boldsymbol{\omega})-E_k(\boldsymbol{\omega}))\|_1 \leq e^{-L^{\beta}};$$

Lemma

Pick
$$(u,v) \in (\mathbb{R}^+)^{2n}$$
 such that $||u||_1 = ||v||_1 = 1$. Then $\max_{j \neq k} \begin{vmatrix} u_j & u_k \\ v_j & v_k \end{vmatrix}^2 \ge \frac{1}{2n^3} ||u-v||_1^2$.

Difficulty : gradient may be colinear e.g. for $\omega = 0$.

The fundamental estimate:

Lemma

- In any dimension d: for $\Delta E > 2d$, if the random variables $(\omega_{\gamma})_{\gamma \in \Lambda}$ are bounded by K, for $E_j(\omega)$ and $E_k(\omega)$ are simple eigenvalues of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) - E_j(\omega)| \ge \Delta E$, one has $\|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_2 \ge \frac{\Delta E - 2d}{K} L^{-d/2}$;
- *in dimension 1: fix E* < *E'* and β > 1/2; let \mathbb{P} denote the probability that there exists $E_j(\omega)$ and $E_k(\omega)$, simple eigenvalues of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) E| + |E_j(\omega) E'| \le e^{-L^{\beta}}$ and such that

$$\|\nabla_{\boldsymbol{\omega}}(E_j(\boldsymbol{\omega})-E_k(\boldsymbol{\omega}))\|_1 \leq e^{-L^{\beta}};$$

Lemma

Pick
$$(u,v) \in (\mathbb{R}^+)^{2n}$$
 such that $||u||_1 = ||v||_1 = 1$. Then $\max_{j \neq k} \begin{vmatrix} u_j & u_k \\ v_j & v_k \end{vmatrix}^2 \ge \frac{1}{2n^3} ||u-v||_1^2$.

Difficulty : gradient may be colinear e.g. for $\omega = 0$.

The fundamental estimate:

Lemma

- In any dimension d: for $\Delta E > 2d$, if the random variables $(\omega_{\gamma})_{\gamma \in \Lambda}$ are bounded by K, for $E_j(\omega)$ and $E_k(\omega)$ are simple eigenvalues of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) - E_j(\omega)| \ge \Delta E$, one has $\|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_2 \ge \frac{\Delta E - 2d}{K} L^{-d/2}$;
- *in dimension 1: fix E* < *E'* and β > 1/2; let \mathbb{P} denote the probability that there exists $E_j(\omega)$ and $E_k(\omega)$, simple eigenvalues of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) E| + |E_j(\omega) E'| \le e^{-L^{\beta}}$ and such that

$$\|\nabla_{\boldsymbol{\omega}}(E_j(\boldsymbol{\omega})-E_k(\boldsymbol{\omega}))\|_1 \leq e^{-L^{\beta}};$$

Lemma

Pick
$$(u,v) \in (\mathbb{R}^+)^{2n}$$
 such that $||u||_1 = ||v||_1 = 1$. Then $\max_{j \neq k} \begin{vmatrix} u_j & u_k \\ v_j & v_k \end{vmatrix}^2 \ge \frac{1}{2n^3} ||u-v||_1^2$.

Difficulty : gradient may be colinear e.g. for $\omega = 0$.

The fundamental estimate:

Lemma

- In any dimension d: for $\Delta E > 2d$, if the random variables $(\omega_{\gamma})_{\gamma \in \Lambda}$ are bounded by K, for $E_j(\omega)$ and $E_k(\omega)$ are simple eigenvalues of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) - E_j(\omega)| \ge \Delta E$, one has $\|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_2 \ge \frac{\Delta E - 2d}{K} L^{-d/2}$;
- *in dimension 1: fix E* < *E'* and β > 1/2; let \mathbb{P} denote the probability that there exists $E_j(\omega)$ and $E_k(\omega)$, simple eigenvalues of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) E| + |E_j(\omega) E'| \le e^{-L^{\beta}}$ and such that

$$\|\nabla_{\boldsymbol{\omega}}(E_j(\boldsymbol{\omega})-E_k(\boldsymbol{\omega}))\|_1 \leq e^{-L^{\boldsymbol{\beta}}};$$

Lemma

Pick
$$(u,v) \in (\mathbb{R}^+)^{2n}$$
 such that $||u||_1 = ||v||_1 = 1$. Then $\max_{j \neq k} \begin{vmatrix} u_j & u_k \\ v_j & v_k \end{vmatrix}^2 \ge \frac{1}{2n^3} ||u-v||_1^2$.

Difficulty : gradient may be colinear e.g. for $\omega = 0$.

The fundamental estimate:

Lemma

- In any dimension d: for $\Delta E > 2d$, if the random variables $(\omega_{\gamma})_{\gamma \in \Lambda}$ are bounded by K, for $E_j(\omega)$ and $E_k(\omega)$ are simple eigenvalues of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) - E_j(\omega)| \ge \Delta E$, one has $\|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_2 \ge \frac{\Delta E - 2d}{K} L^{-d/2}$;
- in dimension 1: fix E < E' and β > 1/2; let P denote the probability that there exists E_j(ω) and E_k(ω), simple eigenvalues of H_ω(Λ_L) such that |E_k(ω) E| + |E_j(ω) E'| ≤ e^{-L^β} and such that

$$\|\nabla_{\omega}(E_j(\omega)-E_k(\omega))\|_1 \leq e^{-L^{\beta}};$$

Lemma

Pick
$$(u,v) \in (\mathbb{R}^+)^{2n}$$
 such that $||u||_1 = ||v||_1 = 1$. Then $\max_{j \neq k} \begin{vmatrix} u_j & u_k \\ v_j & v_k \end{vmatrix}^2 \ge \frac{1}{2n^3} ||u-v||_1^2$.

Difficulty : gradient may be colinear e.g. for $\omega = 0$.

The fundamental estimate:

Lemma

- In any dimension d: for $\Delta E > 2d$, if the random variables $(\omega_{\gamma})_{\gamma \in \Lambda}$ are bounded by K, for $E_j(\omega)$ and $E_k(\omega)$ are simple eigenvalues of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) - E_j(\omega)| \ge \Delta E$, one has $\|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_2 \ge \frac{\Delta E - 2d}{\kappa} L^{-d/2}$;
- in dimension 1: fix E < E' and β > 1/2; let P denote the probability that there exists E_j(ω) and E_k(ω), simple eigenvalues of H_ω(Λ_L) such that |E_k(ω) E| + |E_j(ω) E'| ≤ e^{-L^β} and such that

$$\|\nabla_{\boldsymbol{\omega}}(E_j(\boldsymbol{\omega})-E_k(\boldsymbol{\omega}))\|_1 \leq e^{-L^{\boldsymbol{\beta}}};$$

Lemma

Pick
$$(u,v) \in (\mathbb{R}^+)^{2n}$$
 such that $||u||_1 = ||v||_1 = 1$. Then $\max_{j \neq k} \begin{vmatrix} u_j & u_k \\ v_j & v_k \end{vmatrix}^2 \ge \frac{1}{2n^3} ||u-v||_1^2$.

Difficulty : gradient may be colinear e.g. for $\omega = 0$.

The fundamental estimate:

Lemma

- In any dimension d: for ΔE > 2d, if the random variables (ω_γ)_{γ∈Λ} are bounded by K, for E_j(ω) and E_k(ω) are simple eigenvalues of H_ω(Λ_L) such that |E_k(ω) E_j(ω)| ≥ ΔE, one has ||∇_ω(E_j(ω) E_k(ω))||₂ ≥ ΔE 2d/K L^{-d/2};
- in dimension 1: fix E < E' and β > 1/2; let P denote the probability that there exists E_j(ω) and E_k(ω), simple eigenvalues of H_ω(Λ_L) such that |E_k(ω) E| + |E_j(ω) E'| ≤ e^{-L^β} and such that

$$\|\nabla_{\boldsymbol{\omega}}(E_j(\boldsymbol{\omega})-E_k(\boldsymbol{\omega}))\|_1 \leq e^{-L^{\boldsymbol{\beta}}};$$

Lemma

Pick
$$(u,v) \in (\mathbb{R}^+)^{2n}$$
 such that $||u||_1 = ||v||_1 = 1$. Then $\max_{j \neq k} \begin{vmatrix} u_j & u_k \\ v_j & v_k \end{vmatrix}^2 \ge \frac{1}{2n^3} ||u-v||_1^2$.

Difficulty : gradient may be colinear e.g. for $\omega = 0$.

The fundamental estimate:

Lemma

- In any dimension d: for $\Delta E > 2d$, if the random variables $(\omega_{\gamma})_{\gamma \in \Lambda}$ are bounded by K, for $E_j(\omega)$ and $E_k(\omega)$ are simple eigenvalues of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) - E_j(\omega)| \ge \Delta E$, one has $\|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_2 \ge \frac{\Delta E - 2d}{\kappa} L^{-d/2}$;
- in dimension 1: fix E < E' and β > 1/2; let P denote the probability that there exists E_j(ω) and E_k(ω), simple eigenvalues of H_ω(Λ_L) such that |E_k(ω) E| + |E_j(ω) E'| ≤ e^{-L^β} and such that

$$\|\nabla_{\boldsymbol{\omega}}(E_j(\boldsymbol{\omega})-E_k(\boldsymbol{\omega}))\|_1 \leq e^{-L^{\boldsymbol{\beta}}};$$

Lemma

Pick
$$(u,v) \in (\mathbb{R}^+)^{2n}$$
 such that $||u||_1 = ||v||_1 = 1$. Then $\max_{j \neq k} \begin{vmatrix} u_j & u_k \\ v_j & v_k \end{vmatrix}^2 \ge \frac{1}{2n^3} ||u-v||_1^2$.

Difficulty : gradient may be colinear e.g. for $\omega = 0$.

The fundamental estimate:

Lemma

- In any dimension d: for $\Delta E > 2d$, if the random variables $(\omega_{\gamma})_{\gamma \in \Lambda}$ are bounded by K, for $E_j(\omega)$ and $E_k(\omega)$ are simple eigenvalues of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) - E_j(\omega)| \ge \Delta E$, one has $\|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_2 \ge \frac{\Delta E - 2d}{\kappa} L^{-d/2}$;
- in dimension 1: fix E < E' and β > 1/2; let P denote the probability that there exists E_j(ω) and E_k(ω), simple eigenvalues of H_ω(Λ_L) such that |E_k(ω) E| + |E_j(ω) E'| ≤ e^{-L^β} and such that

$$\|\nabla_{\boldsymbol{\omega}}(E_j(\boldsymbol{\omega})-E_k(\boldsymbol{\omega}))\|_1 \leq e^{-L^{\boldsymbol{\beta}}};$$

Lemma

Pick
$$(u,v) \in (\mathbb{R}^+)^{2n}$$
 such that $||u||_1 = ||v||_1 = 1$. Then $\max_{j \neq k} \begin{vmatrix} u_j & u_k \\ v_j & v_k \end{vmatrix}^2 \ge \frac{1}{2n^3} ||u-v||_1^2$.

Difficulty : gradient may be colinear e.g. for $\omega = 0$.

The fundamental estimate:

Lemma

- In any dimension d: for $\Delta E > 2d$, if the random variables $(\omega_{\gamma})_{\gamma \in \Lambda}$ are bounded by K, for $E_j(\omega)$ and $E_k(\omega)$ are simple eigenvalues of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) - E_j(\omega)| \ge \Delta E$, one has $\|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_2 \ge \frac{\Delta E - 2d}{K} L^{-d/2}$;
- in dimension 1: fix E < E' and β > 1/2; let P denote the probability that there exists E_j(ω) and E_k(ω), simple eigenvalues of H_ω(Λ_L) such that |E_k(ω) E| + |E_j(ω) E'| ≤ e^{-L^β} and such that

$$\|\nabla_{\boldsymbol{\omega}}(E_j(\boldsymbol{\omega})-E_k(\boldsymbol{\omega}))\|_1 \leq e^{-L^{\boldsymbol{\beta}}};$$

Lemma

Pick
$$(u,v) \in (\mathbb{R}^+)^{2n}$$
 such that $||u||_1 = ||v||_1 = 1$. Then $\max_{j \neq k} \begin{vmatrix} u_j & u_k \\ v_j & v_k \end{vmatrix}^2 \ge \frac{1}{2n^3} ||u-v||_1^2$.

Difficulty : gradient may be colinear e.g. for $\omega = 0$.

The fundamental estimate:

Lemma

- In any dimension d: for $\Delta E > 2d$, if the random variables $(\omega_{\gamma})_{\gamma \in \Lambda}$ are bounded by K, for $E_j(\omega)$ and $E_k(\omega)$ are simple eigenvalues of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) - E_j(\omega)| \ge \Delta E$, one has $\|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_2 \ge \frac{\Delta E - 2d}{K} L^{-d/2}$;
- in dimension 1: fix E < E' and β > 1/2; let P denote the probability that there exists E_j(ω) and E_k(ω), simple eigenvalues of H_ω(Λ_L) such that |E_k(ω) E| + |E_j(ω) E'| ≤ e^{-L^β} and such that

$$\|\nabla_{\boldsymbol{\omega}}(E_j(\boldsymbol{\omega})-E_k(\boldsymbol{\omega}))\|_1 \leq e^{-L^{\beta}};$$

then, there exists c > 0 such that $\mathbb{P} \leq e^{-cL^{2\beta}}$.

Due now has
$$\mathbb{P}_{\varepsilon} \leq \sum_{\gamma \neq \gamma'} \mathbb{P}(\Omega_{0,v}^{\gamma,\gamma'}(\varepsilon)) + \mathbb{P}_{r}$$
 where
• $\Omega_{0,v}^{\gamma,\gamma'}(\varepsilon) = \Omega_{0}(\varepsilon) \cap \left\{ \omega; |J_{\gamma,\gamma'}(E(\omega), E'(\omega))| \geq e^{-\ell^{\beta}} \right\};$
• $J_{\gamma,\gamma'}(E(\omega), E'(\omega)) = \begin{vmatrix} \partial_{\omega_{\gamma}} E(\omega) & \partial_{\omega_{\gamma'}} E(\omega) \\ \partial_{\omega_{\gamma}} E'(\omega) & \partial_{\omega_{\gamma'}} E'(\omega) \end{vmatrix};$

• in dimension 1, we have $\mathbb{P}_r \leq Ce^{-c\tilde{\ell}^{2\beta}}$, thus, $\mathbb{P}_r \leq L^{-2d}$;

• in dimension d, as by assumption $\Delta E > 2d$, one has $\mathbb{P}_r = 0$. The estimate of Jacobian and picking $\varepsilon \simeq L^{-d} \tilde{\ell}^{\nu+1}$ yields

$$\mathbb{P}(\Omega_{0,\nu}^{\gamma,\gamma'}(\varepsilon)) \leq CL^{-2d} e^{2\tilde{\ell}^{\beta}}.$$

Summing over $(\gamma, \gamma') \in \Lambda^2_{\tilde{\rho}}$, we obtain

$$\mathbb{P}_{\varepsilon} \leq CL^{-2d} e^{4\tilde{\ell}^{\beta}}$$

Proof is complete.

One now has
$$\mathbb{P}_{\varepsilon} \leq \sum_{\gamma \neq \gamma'} \mathbb{P}(\Omega_{0,\nu}^{\gamma,\gamma'}(\varepsilon)) + \mathbb{P}_{r}$$
 where
• $\Omega_{0,\nu}^{\gamma,\gamma'}(\varepsilon) = \Omega_{0}(\varepsilon) \cap \left\{ \omega; |J_{\gamma,\gamma'}(E(\omega), E'(\omega))| \geq e^{-\ell^{\beta}} \right\};$
• $J_{\gamma,\gamma'}(E(\omega), E'(\omega)) = \begin{vmatrix} \partial_{\omega_{\gamma}} E(\omega) & \partial_{\omega_{\gamma'}} E(\omega) \\ \partial_{\omega_{\gamma}} E'(\omega) & \partial_{\omega_{\gamma'}} E'(\omega) \end{vmatrix};$

• in dimension 1, we have $\mathbb{P}_r \leq Ce^{-c\tilde{\ell}^{2\beta}}$, thus, $\mathbb{P}_r \leq L^{-2d}$;

• in dimension d, as by assumption $\Delta E > 2d$, one has $\mathbb{P}_r = 0$. The estimate of Jacobian and picking $\mathcal{E} \simeq L^{-d} \tilde{\ell}^{\nu+1}$ yields

$$\mathbb{P}(\Omega_{0,\nu}^{\gamma,\gamma'}(\varepsilon)) \leq CL^{-2d} e^{2\tilde{\ell}^{\beta}}.$$

Summing over $(\gamma, \gamma') \in \Lambda^2_{\tilde{\rho}}$, we obtain

$$\mathbb{P}_{\varepsilon} \leq CL^{-2d} e^{4\tilde{\ell}^{\beta}}$$

Proof is complete.

One now has
$$\mathbb{P}_{\varepsilon} \leq \sum_{\gamma \neq \gamma'} \mathbb{P}(\Omega_{0,\nu}^{\gamma,\gamma'}(\varepsilon)) + \mathbb{P}_{r}$$
 where
• $\Omega_{0,\nu}^{\gamma,\gamma'}(\varepsilon) = \Omega_{0}(\varepsilon) \cap \left\{ \omega; |J_{\gamma,\gamma'}(E(\omega), E'(\omega))| \geq e^{-\ell^{\beta}} \right\};$
• $J_{\gamma,\gamma'}(E(\omega), E'(\omega)) = \begin{vmatrix} \partial_{\omega_{\gamma}} E(\omega) & \partial_{\omega_{\gamma}} E(\omega) \\ \partial_{\omega_{\gamma}} E'(\omega) & \partial_{\omega_{\gamma}} E'(\omega) \end{vmatrix};$

• in dimension 1, we have $\mathbb{P}_r \leq Ce^{-c\tilde{\ell}^{2\beta}}$, thus, $\mathbb{P}_r \leq L^{-2d}$;

• in dimension d, as by assumption $\Delta E > 2d$, one has $\mathbb{P}_r = 0$. The estimate of Jacobian and picking $\mathcal{E} \simeq L^{-d\tilde{\rho}v+1}$ yields

$$\mathbb{P}(\Omega_{0,\nu}^{\gamma,\gamma'}(\varepsilon)) \leq CL^{-2d} e^{2\tilde{\ell}^{\beta}}.$$

Summing over $(\gamma, \gamma') \in \Lambda^2_{\tilde{\rho}}$, we obtain

$$\mathbb{P}_{\varepsilon} \leq CL^{-2d} e^{4\tilde{\ell}^{\beta}}$$

Proof is complete.

One now has $\mathbb{P}_{\varepsilon} \leq \sum_{\gamma \neq \gamma'} \mathbb{P}(\Omega_{0,\nu}^{\gamma,\gamma'}(\varepsilon)) + \mathbb{P}_{r}$ where • $\Omega_{0,\nu}^{\gamma,\gamma'}(\varepsilon) = \Omega_{0}(\varepsilon) \cap \left\{ \omega; |J_{\gamma,\gamma'}(E(\omega), E'(\omega))| \geq e^{-\ell^{\beta}} \right\};$ • $J_{\gamma,\gamma'}(E(\omega), E'(\omega)) = \begin{vmatrix} \partial_{\omega_{\gamma}} E(\omega) & \partial_{\omega_{\gamma'}} E(\omega) \\ \partial_{\omega_{\gamma}} E'(\omega) & \partial_{\omega_{\gamma'}} E'(\omega) \end{vmatrix};$

• in dimension 1, we have $\mathbb{P}_r \leq C e^{-c\tilde{\ell}^{2\beta}}$, thus, $\mathbb{P}_r \leq L^{-2d}$;

• in dimension *d*, as by assumption $\Delta E > 2d$, one has $\mathbb{P}_r = 0$. The estimate of Jacobian and picking $\varepsilon \simeq L^{-d} \tilde{\ell}^{\nu+1}$ yields

$$\mathbb{P}(\Omega_{0,\nu}^{\gamma,\gamma'}(\varepsilon)) \leq CL^{-2d} e^{2\tilde{\ell}^{\beta}}.$$

Summing over $(\gamma, \gamma') \in \Lambda^2_{\tilde{\rho}}$, we obtain

$$\mathbb{P}_{\varepsilon} \leq CL^{-2d} e^{4\tilde{\ell}^{\beta}}$$

Proof is complete.

One now has $\mathbb{P}_{\varepsilon} \leq \sum_{\gamma \neq \gamma'} \mathbb{P}(\Omega_{0,\nu}^{\gamma,\gamma'}(\varepsilon)) + \mathbb{P}_{r}$ where • $\Omega_{0,\nu}^{\gamma,\gamma'}(\varepsilon) = \Omega_{0}(\varepsilon) \cap \left\{ \omega; |J_{\gamma,\gamma'}(E(\omega), E'(\omega))| \geq e^{-\tilde{\ell}^{\beta}} \right\};$ • $J_{\gamma,\gamma'}(E(\omega), E'(\omega)) = \begin{vmatrix} \partial_{\omega_{\gamma}} E(\omega) & \partial_{\omega_{\gamma'}} E(\omega) \\ \partial_{\omega_{\gamma}} E'(\omega) & \partial_{\omega_{\gamma'}} E'(\omega) \end{vmatrix};$

• in dimension 1, we have $\mathbb{P}_r \leq Ce^{-c\tilde{\ell}^{2\beta}}$, thus, $\mathbb{P}_r \leq L^{-2d}$;

• in dimension *d*, as by assumption $\Delta E > 2d$, one has $\mathbb{P}_r = 0$. The estimate of Jacobian and picking $\varepsilon \simeq L^{-d} \tilde{\ell}^{\nu+1}$ yields

$$\mathbb{P}(\Omega_{0,\nu}^{\gamma,\gamma'}(\varepsilon)) \leq CL^{-2d} e^{2\tilde{\ell}^{\beta}}.$$

Summing over $(\gamma, \gamma') \in \Lambda^2_{\tilde{\rho}}$, we obtain

$$\mathbb{P}_{\varepsilon} \leq CL^{-2d} e^{4\tilde{\ell}^{\beta}}$$

Proof is complete.

(日) (四) (日) (日) (日)

One now has $\mathbb{P}_{\varepsilon} \leq \sum_{\gamma \neq \gamma'} \mathbb{P}(\Omega_{0,\nu}^{\gamma,\gamma'}(\varepsilon)) + \mathbb{P}_{r}$ where • $\Omega_{0,\nu}^{\gamma,\gamma'}(\varepsilon) = \Omega_{0}(\varepsilon) \cap \left\{ \omega; |J_{\gamma,\gamma'}(E(\omega), E'(\omega))| \geq e^{-\ell^{\beta}} \right\};$ • $J_{\gamma,\gamma'}(E(\omega), E'(\omega)) = \begin{vmatrix} \partial_{\omega_{\gamma}} E(\omega) & \partial_{\omega_{\gamma'}} E(\omega) \\ \partial_{\omega_{\gamma}} E'(\omega) & \partial_{\omega_{\gamma'}} E'(\omega) \end{vmatrix};$

• in dimension 1, we have $\mathbb{P}_r \leq Ce^{-c\tilde{\ell}^{2\beta}}$, thus, $\mathbb{P}_r \leq L^{-2d}$;

• in dimension *d*, as by assumption $\Delta E > 2d$, one has $\mathbb{P}_r = 0$. The estimate of Jacobian and picking $\varepsilon \simeq L^{-d} \tilde{\ell}^{\nu+1}$ yields

$$\mathbb{P}(\Omega_{0,v}^{\gamma,\gamma'}(\varepsilon)) \leq CL^{-2d} e^{2\tilde{\ell}^{\beta}}.$$

Summing over $(\gamma, \gamma') \in \Lambda^2_{\tilde{\rho}}$, we obtain

$$\mathbb{P}_{\varepsilon} \leq CL^{-2d} e^{4\tilde{\ell}^{\beta}}$$

Proof is complete.

(日) (四) (日) (日) (日)

One now has $\mathbb{P}_{\varepsilon} \leq \sum_{\gamma \neq \gamma'} \mathbb{P}(\Omega_{0,v}^{\gamma,\gamma'}(\varepsilon)) + \mathbb{P}_r$ where

•
$$\Omega_{0,\nu}^{\gamma,\gamma'}(\varepsilon) = \Omega_0(\varepsilon) \cap \left\{ \omega; |J_{\gamma,\gamma'}(E(\omega), E'(\omega))| \ge e^{-\tilde{\ell}^{\beta}} \right\};$$

• $J_{\gamma,\gamma'}(E(\omega), E'(\omega)) = \begin{vmatrix} \partial_{\omega_{\gamma}} E(\omega) & \partial_{\omega_{\gamma'}} E(\omega) \\ \partial_{\omega_{\gamma}} E'(\omega) & \partial_{\omega_{\gamma'}} E'(\omega) \end{vmatrix};$

• in dimension 1, we have $\mathbb{P}_r \leq Ce^{-c\tilde{\ell}^{2\beta}}$, thus, $\mathbb{P}_r \leq L^{-2d}$;

• in dimension *d*, as by assumption $\Delta E > 2d$, one has $\mathbb{P}_r = 0$.

The estimate of Jacobian and picking ${m {\cal E}} symp L^{-d} ilde{\ell}^{
u+1}$ yields

 $\mathbb{P}(\Omega_{0,\nu}^{\gamma,\gamma'}(\varepsilon)) \leq CL^{-2d} e^{2\tilde{\ell}^{\beta}}.$

Summing over $(\gamma, \gamma') \in \Lambda^2_{\tilde{\rho}}$, we obtain

$$\mathbb{P}_{\varepsilon} \leq CL^{-2d} e^{4\tilde{\ell}^{\beta}}$$

Proof is complete.

One now has $\mathbb{P}_{\varepsilon} \leq \sum_{\gamma \neq \gamma'} \mathbb{P}(\Omega_{0,v}^{\gamma,\gamma'}(\varepsilon)) + \mathbb{P}_r$ where

•
$$\Omega_{0,\nu}^{\gamma,\gamma'}(\varepsilon) = \Omega_0(\varepsilon) \cap \left\{ \omega; |J_{\gamma,\gamma'}(E(\omega), E'(\omega))| \ge e^{-\tilde{\ell}^{\beta}} \right\};$$

• $J_{\gamma,\gamma'}(E(\omega), E'(\omega)) = \begin{vmatrix} \partial_{\omega_{\gamma}} E(\omega) & \partial_{\omega_{\gamma'}} E(\omega) \\ \partial_{\omega_{\gamma}} E'(\omega) & \partial_{\omega_{\gamma'}} E'(\omega) \end{vmatrix};$

• in dimension 1, we have $\mathbb{P}_r \leq Ce^{-c\tilde{\ell}^{2\beta}}$, thus, $\mathbb{P}_r \leq L^{-2d}$;

• in dimension *d*, as by assumption $\Delta E > 2d$, one has $\mathbb{P}_r = 0$.

The estimate of Jacobian and picking $\varepsilon \asymp L^{-d} \tilde{\ell}^{\nu+1}$ yields

$$\mathbb{P}(\Omega_{0,v}^{\gamma,\gamma'}(\varepsilon)) \leq CL^{-2d} e^{2\tilde{\ell}^{\beta}}.$$

Summing over $(\gamma, \gamma') \in \Lambda^2_{\tilde{\ell}}$, we obtain

$$\mathbb{P}_{\varepsilon} \leq C L^{-2d} e^{4\tilde{\ell}^{\beta}}$$

Proof is complete.

イロト イポト イヨト イヨ

One now has $\mathbb{P}_{\varepsilon} \leq \sum_{\gamma \neq \gamma'} \mathbb{P}(\Omega_{0,v}^{\gamma,\gamma'}(\varepsilon)) + \mathbb{P}_r$ where

•
$$\Omega_{0,\nu}^{\gamma,\gamma'}(\varepsilon) = \Omega_0(\varepsilon) \cap \left\{ \omega; |J_{\gamma,\gamma'}(E(\omega), E'(\omega))| \ge e^{-\tilde{\ell}^{\beta}} \right\};$$

• $J_{\gamma,\gamma'}(E(\omega), E'(\omega)) = \begin{vmatrix} \partial_{\omega_{\gamma}} E(\omega) & \partial_{\omega_{\gamma'}} E(\omega) \\ \partial_{\omega_{\gamma}} E'(\omega) & \partial_{\omega_{\gamma'}} E'(\omega) \end{vmatrix};$

• in dimension 1, we have $\mathbb{P}_r \leq Ce^{-c\tilde{\ell}^{2\beta}}$, thus, $\mathbb{P}_r \leq L^{-2d}$;

• in dimension *d*, as by assumption $\Delta E > 2d$, one has $\mathbb{P}_r = 0$.

The estimate of Jacobian and picking $\varepsilon \asymp L^{-d} \tilde{\ell}^{\nu+1}$ yields

$$\mathbb{P}(\Omega_{0,v}^{\gamma,\gamma'}(\varepsilon)) \leq CL^{-2d} e^{2\tilde{\ell}^{\beta}}.$$

Summing over $(\gamma, \gamma') \in \Lambda^2_{\tilde{\ell}}$, we obtain

$$\mathbb{P}_{\varepsilon} \leq CL^{-2d} e^{4\tilde{\ell}^{\beta}}$$

Proof is complete.

• □ > • < </p>
• □ > • < </p>

 $E_j(\omega)$ and $E_k(\omega)$ simple evs of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) - E_j(\omega)| \ge \Delta E > 2d$.

Then, $\boldsymbol{\omega} \mapsto E_i(\boldsymbol{\omega})$ and $\boldsymbol{\omega} \mapsto E_k(\boldsymbol{\omega})$ are real analytic functions.

Let $\omega \mapsto \varphi_j(\omega)$ and $\omega \mapsto \varphi_k(\omega)$ be normalized eigenvec. ass. resp. to $E_j(\omega)$ and $E_k(\omega)$.

Differentiating the eigenvalue equation in ω , one computes

$$\begin{split} \boldsymbol{\omega} \cdot \nabla_{\boldsymbol{\omega}}(E_j(\boldsymbol{\omega}) - E_k(\boldsymbol{\omega})) &= \langle V_{\boldsymbol{\omega}} \varphi_j(\boldsymbol{\omega}), \varphi_j(\boldsymbol{\omega}) \rangle - \langle V_{\boldsymbol{\omega}} \varphi_k(\boldsymbol{\omega}), \varphi_k(\boldsymbol{\omega}) \rangle \\ &= E_j(\boldsymbol{\omega}) - E_k(\boldsymbol{\omega}) + \langle -\Delta \varphi_k(\boldsymbol{\omega}), \varphi_k(\boldsymbol{\omega}) \rangle - \langle -\Delta \varphi_j(\boldsymbol{\omega}), \varphi_j(\boldsymbol{\omega}) \rangle. \end{split}$$

So

$$\Delta E - 2d \le |E_j(\omega) - E_k(\omega)| - 2d \le |\omega \cdot \nabla_{\omega}(E_j(\omega) - E_k(\omega))|.$$

Hence,

$$\|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_2 \ge \frac{\Delta E - 2d}{K} L^{-d/2}$$

< ロ > < 回 > < 回 > < 回 > < 回</p>

 $E_j(\omega)$ and $E_k(\omega)$ simple evs of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) - E_j(\omega)| \ge \Delta E > 2d$. Then, $\omega \mapsto E_j(\omega)$ and $\omega \mapsto E_k(\omega)$ are real analytic functions.

Let $\omega \mapsto \varphi_j(\omega)$ and $\omega \mapsto \varphi_k(\omega)$ be normalized eigenvec. ass. resp. to $E_j(\omega)$ and $E_k(\omega)$.

Differentiating the eigenvalue equation in ω , one computes

$$\begin{split} \boldsymbol{\omega} \cdot \nabla_{\boldsymbol{\omega}}(E_j(\boldsymbol{\omega}) - E_k(\boldsymbol{\omega})) &= \langle V_{\boldsymbol{\omega}} \varphi_j(\boldsymbol{\omega}), \varphi_j(\boldsymbol{\omega}) \rangle - \langle V_{\boldsymbol{\omega}} \varphi_k(\boldsymbol{\omega}), \varphi_k(\boldsymbol{\omega}) \rangle \\ &= E_j(\boldsymbol{\omega}) - E_k(\boldsymbol{\omega}) + \langle -\Delta \varphi_k(\boldsymbol{\omega}), \varphi_k(\boldsymbol{\omega}) \rangle - \langle -\Delta \varphi_j(\boldsymbol{\omega}), \varphi_j(\boldsymbol{\omega}) \rangle. \end{split}$$

So

$$\Delta E - 2d \le |E_j(\omega) - E_k(\omega)| - 2d \le |\omega \cdot \nabla_{\omega}(E_j(\omega) - E_k(\omega))|.$$

Hence,

$$\|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_2 \ge \frac{\Delta E - 2d}{K} L^{-d/2}$$

 $E_j(\omega)$ and $E_k(\omega)$ simple evs of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) - E_j(\omega)| \ge \Delta E > 2d$. Then, $\omega \mapsto E_i(\omega)$ and $\omega \mapsto E_k(\omega)$ are real analytic functions.

Let $\omega \mapsto \varphi_j(\omega)$ and $\omega \mapsto \varphi_k(\omega)$ be normalized eigenvec. ass. resp. to $E_j(\omega)$ and $E_k(\omega)$.

Differentiating the eigenvalue equation in ω , one computes

$$\begin{split} \boldsymbol{\omega} \cdot \nabla_{\boldsymbol{\omega}}(E_j(\boldsymbol{\omega}) - E_k(\boldsymbol{\omega})) &= \langle V_{\boldsymbol{\omega}} \varphi_j(\boldsymbol{\omega}), \varphi_j(\boldsymbol{\omega}) \rangle - \langle V_{\boldsymbol{\omega}} \varphi_k(\boldsymbol{\omega}), \varphi_k(\boldsymbol{\omega}) \rangle \\ &= E_j(\boldsymbol{\omega}) - E_k(\boldsymbol{\omega}) + \langle -\Delta \varphi_k(\boldsymbol{\omega}), \varphi_k(\boldsymbol{\omega}) \rangle - \langle -\Delta \varphi_j(\boldsymbol{\omega}), \varphi_j(\boldsymbol{\omega}) \rangle. \end{split}$$

So

$$\Delta E - 2d \le |E_j(\omega) - E_k(\omega)| - 2d \le |\omega \cdot \nabla_{\omega}(E_j(\omega) - E_k(\omega))|.$$

Hence,

$$\|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_2 \ge \frac{\Delta E - 2d}{K} L^{-d/2}$$

 $E_j(\omega)$ and $E_k(\omega)$ simple evs of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) - E_j(\omega)| \ge \Delta E > 2d$. Then, $\omega \mapsto E_i(\omega)$ and $\omega \mapsto E_k(\omega)$ are real analytic functions.

Let $\omega \mapsto \varphi_j(\omega)$ and $\omega \mapsto \varphi_k(\omega)$ be normalized eigenvec. ass. resp. to $E_j(\omega)$ and $E_k(\omega)$.

Differentiating the eigenvalue equation in ω , one computes

$$\begin{split} \boldsymbol{\omega} \cdot \nabla_{\boldsymbol{\omega}}(E_j(\boldsymbol{\omega}) - E_k(\boldsymbol{\omega})) &= \langle V_{\boldsymbol{\omega}} \varphi_j(\boldsymbol{\omega}), \varphi_j(\boldsymbol{\omega}) \rangle - \langle V_{\boldsymbol{\omega}} \varphi_k(\boldsymbol{\omega}), \varphi_k(\boldsymbol{\omega}) \rangle \\ &= E_j(\boldsymbol{\omega}) - E_k(\boldsymbol{\omega}) + \langle -\Delta \varphi_k(\boldsymbol{\omega}), \varphi_k(\boldsymbol{\omega}) \rangle - \langle -\Delta \varphi_j(\boldsymbol{\omega}), \varphi_j(\boldsymbol{\omega}) \rangle. \end{split}$$

So

$$\Delta E - 2d \le |E_j(\omega) - E_k(\omega)| - 2d \le |\omega \cdot \nabla_{\omega}(E_j(\omega) - E_k(\omega))|.$$

Hence,

$$\|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_2 \ge \frac{\Delta E - 2d}{K} L^{-d/2}$$

 $E_j(\omega)$ and $E_k(\omega)$ simple evs of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) - E_j(\omega)| \ge \Delta E > 2d$. Then, $\omega \mapsto E_i(\omega)$ and $\omega \mapsto E_k(\omega)$ are real analytic functions.

Let $\omega \mapsto \varphi_j(\omega)$ and $\omega \mapsto \varphi_k(\omega)$ be normalized eigenvec. ass. resp. to $E_j(\omega)$ and $E_k(\omega)$.

Differentiating the eigenvalue equation in ω , one computes

$$\begin{split} \boldsymbol{\omega} \cdot \nabla_{\boldsymbol{\omega}}(E_j(\boldsymbol{\omega}) - E_k(\boldsymbol{\omega})) &= \langle V_{\boldsymbol{\omega}} \varphi_j(\boldsymbol{\omega}), \varphi_j(\boldsymbol{\omega}) \rangle - \langle V_{\boldsymbol{\omega}} \varphi_k(\boldsymbol{\omega}), \varphi_k(\boldsymbol{\omega}) \rangle \\ &= E_j(\boldsymbol{\omega}) - E_k(\boldsymbol{\omega}) + \langle -\Delta \varphi_k(\boldsymbol{\omega}), \varphi_k(\boldsymbol{\omega}) \rangle - \langle -\Delta \varphi_j(\boldsymbol{\omega}), \varphi_j(\boldsymbol{\omega}) \rangle. \end{split}$$

So

$$\Delta E - 2d \leq |E_j(\boldsymbol{\omega}) - E_k(\boldsymbol{\omega})| - 2d \leq |\boldsymbol{\omega} \cdot \nabla_{\boldsymbol{\omega}}(E_j(\boldsymbol{\omega}) - E_k(\boldsymbol{\omega}))|.$$

Hence,

$$\|
abla_{oldsymbol{\omega}}(E_j(oldsymbol{\omega}) - E_k(oldsymbol{\omega}))\|_2 \geq rac{\Delta E - 2d}{K} L^{-d/2}.$$

Let us now assume d = 1. We prove a weaker result.

Theorem

Fix v > 8. For the discrete Anderson model in dimension 1, there exists $\Delta \mathscr{E}$ of total measure such that, for $E - E' \in \Delta \mathscr{E}$, for L sufficiently large, if $E_j(\omega)$ and $E_k(\omega)$ are simple eigenvalues of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) - E| + |E_j(\omega) - E'| \le L^{-\nu}$ then $\|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_1 \ge L^{-\nu}$;

Fix E < E'. Pick $E_j(\omega)$ and $E_k(\omega)$, simple evs s.t. $|E_k(\omega) - E| + |E_j(\omega) - E'| \le L^{-\alpha}$. Then,

$$4L^{-2\nu} \ge \|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_2^2 = \sum_{\gamma \in \Lambda_L} |\varphi_{\gamma}^j(\omega) - \varphi_{\gamma}^k(\omega)|^2 \cdot |\varphi_{\gamma}^j(\omega) + \varphi_{\gamma}^k(\omega)|^2$$

there exists a partition of Λ_L , say $\mathscr{P} \subset \Lambda_L$ and $\mathscr{Q} \subset \Lambda_L$ s.t.

• for $\gamma \in \mathscr{P}, |\varphi_{\gamma}^{l}(\omega) - \varphi_{\gamma}^{k}(\omega)| \leq L^{-\nu};$

• for $\gamma \in \mathcal{Q}$, $|\varphi_{\gamma}^{j}(\omega) + \varphi_{\gamma}^{k}(\omega)| \leq L^{-\nu}$.

Introduce the orthogonal projectors P and Q defined by

$$P = \sum_{\gamma \in \mathscr{P}} |\gamma\rangle \langle \gamma|$$
 and $Q = \sum_{\gamma \in \mathscr{Q}} |\gamma\rangle \langle \gamma|.$

Let us now assume d = 1. We prove a weaker result.

Theorem

Fix v > 8. For the discrete Anderson model in dimension 1, there exists $\Delta \mathscr{E}$ of total measure such that, for $E - E' \in \Delta \mathscr{E}$, for L sufficiently large, if $E_j(\omega)$ and $E_k(\omega)$ are simple eigenvalues of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) - E| + |E_j(\omega) - E'| \le L^{-v}$ then $\|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_1 \ge L^{-v}$;

Fix E < E'. Pick $E_j(\omega)$ and $E_k(\omega)$, simple evs s.t. $|E_k(\omega) - E| + |E_j(\omega) - E'| \le L^{-\alpha}$. Then,

$$4L^{-2\nu} \ge \|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_2^2 = \sum_{\gamma \in \Lambda_L} |\varphi_{\gamma}^j(\omega) - \varphi_{\gamma}^k(\omega)|^2 \cdot |\varphi_{\gamma}^j(\omega) + \varphi_{\gamma}^k(\omega)|^2$$

there exists a partition of Λ_L , say $\mathscr{P} \subset \Lambda_L$ and $\mathscr{Q} \subset \Lambda_L$ s.t.

• for $\gamma \in \mathscr{P}, |\varphi_{\gamma}^{l}(\omega) - \varphi_{\gamma}^{k}(\omega)| \leq L^{-\nu};$

• for $\gamma \in \mathcal{Q}$, $|\varphi_{\gamma}^{j}(\omega) + \varphi_{\gamma}^{k}(\omega)| \leq L^{-\nu}$.

Introduce the orthogonal projectors P and Q defined by

$$P = \sum_{\gamma \in \mathscr{P}} |\gamma\rangle \langle \gamma|$$
 and $Q = \sum_{\gamma \in \mathscr{Q}} |\gamma\rangle \langle \gamma|.$

Let us now assume d = 1. We prove a weaker result.

Theorem

Fix v > 8. For the discrete Anderson model in dimension 1, there exists $\Delta \mathscr{E}$ of total measure such that, for $E - E' \in \Delta \mathscr{E}$, for L sufficiently large, if $E_j(\omega)$ and $E_k(\omega)$ are simple eigenvalues of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) - E| + |E_j(\omega) - E'| \le L^{-v}$ then $\|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_1 \ge L^{-v}$;

Fix E < E'. Pick $E_j(\omega)$ and $E_k(\omega)$, simple evs s.t. $|E_k(\omega) - E| + |E_j(\omega) - E'| \le L^{-\alpha}$. Then,

$$4L^{-2\nu} \ge \|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_2^2 = \sum_{\gamma \in \Lambda_L} |\varphi_{\gamma}^j(\omega) - \varphi_{\gamma}^k(\omega)|^2 \cdot |\varphi_{\gamma}^j(\omega) + \varphi_{\gamma}^k(\omega)|^2$$

there exists a partition of Λ_L , say $\mathscr{P} \subset \Lambda_L$ and $\mathscr{Q} \subset \Lambda_L$ s.t.

• for $\gamma \in \mathscr{P}, |\varphi_{\gamma}^{l}(\omega) - \varphi_{\gamma}^{k}(\omega)| \leq L^{-\nu};$

• for $\gamma \in \mathcal{Q}$, $|\varphi_{\gamma}^{j}(\omega) + \varphi_{\gamma}^{k}(\omega)| \leq L^{-\nu}$.

Introduce the orthogonal projectors P and Q defined by

$$P = \sum_{\gamma \in \mathscr{P}} |\gamma\rangle \langle \gamma|$$
 and $Q = \sum_{\gamma \in \mathscr{Q}} |\gamma\rangle \langle \gamma|.$

< ロ > < 回 > < 回 > < 回 > < 回</p>

Let us now assume d = 1. We prove a weaker result.

Theorem

Fix v > 8. For the discrete Anderson model in dimension 1, there exists $\Delta \mathscr{E}$ of total measure such that, for $E - E' \in \Delta \mathscr{E}$, for L sufficiently large, if $E_j(\omega)$ and $E_k(\omega)$ are simple eigenvalues of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) - E| + |E_j(\omega) - E'| \le L^{-v}$ then $\|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_1 \ge L^{-v}$;

Fix E < E'. Pick $E_j(\omega)$ and $E_k(\omega)$, simple evs s.t. $|E_k(\omega) - E| + |E_j(\omega) - E'| \le L^{-\alpha}$. Then,

$$4L^{-2\nu} \ge \|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_2^2 = \sum_{\gamma \in \Lambda_L} |\varphi_{\gamma}^j(\omega) - \varphi_{\gamma}^k(\omega)|^2 \cdot |\varphi_{\gamma}^j(\omega) + \varphi_{\gamma}^k(\omega)|^2$$

there exists a partition of Λ_L , say $\mathscr{P} \subset \Lambda_L$ and $\mathscr{Q} \subset \Lambda_L$ s.t.

• for $\gamma \in \mathscr{P}, |\varphi_{\gamma}^{l}(\omega) - \varphi_{\gamma}^{k}(\omega)| \leq L^{-\nu};$

• for $\gamma \in \mathcal{Q}$, $|\varphi_{\gamma}^{j}(\omega) + \varphi_{\gamma}^{k}(\omega)| \leq L^{-\nu}$.

Introduce the orthogonal projectors P and Q defined by

$$P = \sum_{\gamma \in \mathscr{P}} |\gamma\rangle \langle \gamma|$$
 and $Q = \sum_{\gamma \in \mathscr{Q}} |\gamma\rangle \langle \gamma|.$

< ロ > < 回 > < 回 > < 回 > < 回</p>

Let us now assume d = 1. We prove a weaker result.

Theorem

Fix v > 8. For the discrete Anderson model in dimension 1, there exists $\Delta \mathscr{E}$ of total measure such that, for $E - E' \in \Delta \mathscr{E}$, for L sufficiently large, if $E_j(\omega)$ and $E_k(\omega)$ are simple eigenvalues of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) - E| + |E_j(\omega) - E'| \le L^{-v}$ then $\|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_1 \ge L^{-v}$;

Fix E < E'. Pick $E_j(\omega)$ and $E_k(\omega)$, simple evs s.t. $|E_k(\omega) - E| + |E_j(\omega) - E'| \le L^{-\alpha}$. Then,

$$4L^{-2\nu} \ge \|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_2^2 = \sum_{\gamma \in \Lambda_L} |\varphi_{\gamma}^j(\omega) - \varphi_{\gamma}^k(\omega)|^2 \cdot |\varphi_{\gamma}^j(\omega) + \varphi_{\gamma}^k(\omega)|^2$$

there exists a partition of Λ_L , say $\mathscr{P} \subset \Lambda_L$ and $\mathscr{Q} \subset \Lambda_L$ s.t.

• for $\gamma \in \mathscr{P}, |\varphi_{\gamma}^{l}(\omega) - \varphi_{\gamma}^{k}(\omega)| \leq L^{-\nu};$

• for $\gamma \in \mathcal{Q}$, $|\varphi_{\gamma}^{j}(\omega) + \varphi_{\gamma}^{k}(\omega)| \leq L^{-\nu}$.

Introduce the orthogonal projectors P and Q defined by

$$P = \sum_{\gamma \in \mathscr{P}} |\gamma\rangle \langle \gamma|$$
 and $Q = \sum_{\gamma \in \mathscr{Q}} |\gamma\rangle \langle \gamma|.$

Let us now assume d = 1. We prove a weaker result.

Theorem

Fix v > 8. For the discrete Anderson model in dimension 1, there exists $\Delta \mathscr{E}$ of total measure such that, for $E - E' \in \Delta \mathscr{E}$, for L sufficiently large, if $E_j(\omega)$ and $E_k(\omega)$ are simple eigenvalues of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) - E| + |E_j(\omega) - E'| \le L^{-v}$ then $\|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_1 \ge L^{-v}$;

Fix E < E'. Pick $E_j(\omega)$ and $E_k(\omega)$, simple evs s.t. $|E_k(\omega) - E| + |E_j(\omega) - E'| \le L^{-\alpha}$. Then,

$$4L^{-2\nu} \ge \|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_2^2 = \sum_{\gamma \in \Lambda_L} |\varphi_{\gamma}^j(\omega) - \varphi_{\gamma}^k(\omega)|^2 \cdot |\varphi_{\gamma}^j(\omega) + \varphi_{\gamma}^k(\omega)|^2$$

there exists a partition of Λ_L , say $\mathscr{P} \subset \Lambda_L$ and $\mathscr{Q} \subset \Lambda_L$ s.t.

• for $\gamma \in \mathscr{P}, |\varphi_{\gamma}^{l}(\omega) - \varphi_{\gamma}^{k}(\omega)| \leq L^{-\nu};$

• for $\gamma \in \mathcal{Q}$, $|\varphi_{\gamma}^{j}(\omega) + \varphi_{\gamma}^{k}(\omega)| \leq L^{-\nu}$.

Introduce the orthogonal projectors P and Q defined by

$$P = \sum_{\gamma \in \mathscr{P}} |\gamma\rangle \langle \gamma|$$
 and $Q = \sum_{\gamma \in \mathscr{Q}} |\gamma\rangle \langle \gamma|.$

イロト イポト イヨト イヨ

Let us now assume d = 1. We prove a weaker result.

Theorem

Fix v > 8. For the discrete Anderson model in dimension 1, there exists $\Delta \mathscr{E}$ of total measure such that, for $E - E' \in \Delta \mathscr{E}$, for L sufficiently large, if $E_j(\omega)$ and $E_k(\omega)$ are simple eigenvalues of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) - E| + |E_j(\omega) - E'| \le L^{-v}$ then $\|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_1 \ge L^{-v}$;

Fix E < E'. Pick $E_j(\omega)$ and $E_k(\omega)$, simple evs s.t. $|E_k(\omega) - E| + |E_j(\omega) - E'| \le L^{-\alpha}$. Then,

$$4L^{-2\nu} \geq \|\nabla_{\boldsymbol{\omega}}(E_j(\boldsymbol{\omega}) - E_k(\boldsymbol{\omega}))\|_2^2 = \sum_{\boldsymbol{\gamma} \in \Lambda_L} |\boldsymbol{\varphi}_{\boldsymbol{\gamma}}^j(\boldsymbol{\omega}) - \boldsymbol{\varphi}_{\boldsymbol{\gamma}}^k(\boldsymbol{\omega})|^2 \cdot |\boldsymbol{\varphi}_{\boldsymbol{\gamma}}^j(\boldsymbol{\omega}) + \boldsymbol{\varphi}_{\boldsymbol{\gamma}}^k(\boldsymbol{\omega})|^2$$

there exists a partition of Λ_L , say $\mathscr{P} \subset \Lambda_L$ and $\mathscr{Q} \subset \Lambda_L$ s.t.

• for $\gamma \in \mathscr{P}, |\varphi_{\gamma}^{l}(\omega) - \varphi_{\gamma}^{k}(\omega)| \leq L^{-\nu};$

• for $\gamma \in \mathcal{Q}$, $|\varphi_{\gamma}^{j}(\omega) + \varphi_{\gamma}^{k}(\omega)| \leq L^{-\nu}$.

Introduce the orthogonal projectors P and Q defined by

$$P = \sum_{\gamma \in \mathscr{P}} |\gamma\rangle \langle \gamma|$$
 and $Q = \sum_{\gamma \in \mathscr{Q}} |\gamma\rangle \langle \gamma|.$

イロト イポト イヨト イヨ

Let us now assume d = 1. We prove a weaker result.

Theorem

Fix v > 8. For the discrete Anderson model in dimension 1, there exists $\Delta \mathscr{E}$ of total measure such that, for $E - E' \in \Delta \mathscr{E}$, for L sufficiently large, if $E_j(\omega)$ and $E_k(\omega)$ are simple eigenvalues of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) - E| + |E_j(\omega) - E'| \le L^{-v}$ then $\|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_1 \ge L^{-v}$;

Fix E < E'. Pick $E_j(\omega)$ and $E_k(\omega)$, simple evs s.t. $|E_k(\omega) - E| + |E_j(\omega) - E'| \le L^{-\alpha}$. Then,

$$4L^{-2\nu} \geq \|\nabla_{\boldsymbol{\omega}}(E_j(\boldsymbol{\omega}) - E_k(\boldsymbol{\omega}))\|_2^2 = \sum_{\boldsymbol{\gamma} \in \Lambda_L} |\boldsymbol{\varphi}_{\boldsymbol{\gamma}}^j(\boldsymbol{\omega}) - \boldsymbol{\varphi}_{\boldsymbol{\gamma}}^k(\boldsymbol{\omega})|^2 \cdot |\boldsymbol{\varphi}_{\boldsymbol{\gamma}}^j(\boldsymbol{\omega}) + \boldsymbol{\varphi}_{\boldsymbol{\gamma}}^k(\boldsymbol{\omega})|^2$$

there exists a partition of Λ_L , say $\mathscr{P} \subset \Lambda_L$ and $\mathscr{Q} \subset \Lambda_L$ s.t.

• for $\gamma \in \mathscr{P}$, $|\varphi_{\gamma}^{l}(\omega) - \varphi_{\gamma}^{k}(\omega)| \leq L^{-\nu}$;

• for $\gamma \in \mathcal{Q}$, $|\varphi_{\gamma}^{l}(\omega) + \varphi_{\gamma}^{k}(\omega)| \leq L^{-\nu}$.

Introduce the orthogonal projectors P and Q defined by

$$P = \sum_{\gamma \in \mathscr{P}} |\gamma\rangle \langle \gamma|$$
 and $Q = \sum_{\gamma \in \mathscr{Q}} |\gamma\rangle \langle \gamma|.$

Let us now assume d = 1. We prove a weaker result.

Theorem

Fix v > 8. For the discrete Anderson model in dimension 1, there exists $\Delta \mathscr{E}$ of total measure such that, for $E - E' \in \Delta \mathscr{E}$, for L sufficiently large, if $E_j(\omega)$ and $E_k(\omega)$ are simple eigenvalues of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) - E| + |E_j(\omega) - E'| \le L^{-v}$ then $\|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_1 \ge L^{-v}$;

Fix E < E'. Pick $E_j(\omega)$ and $E_k(\omega)$, simple evs s.t. $|E_k(\omega) - E| + |E_j(\omega) - E'| \le L^{-\alpha}$. Then,

$$4L^{-2\nu} \geq \|\nabla_{\boldsymbol{\omega}}(E_j(\boldsymbol{\omega}) - E_k(\boldsymbol{\omega}))\|_2^2 = \sum_{\boldsymbol{\gamma} \in \Lambda_L} |\boldsymbol{\varphi}_{\boldsymbol{\gamma}}^j(\boldsymbol{\omega}) - \boldsymbol{\varphi}_{\boldsymbol{\gamma}}^k(\boldsymbol{\omega})|^2 \cdot |\boldsymbol{\varphi}_{\boldsymbol{\gamma}}^j(\boldsymbol{\omega}) + \boldsymbol{\varphi}_{\boldsymbol{\gamma}}^k(\boldsymbol{\omega})|^2$$

there exists a partition of Λ_L , say $\mathscr{P} \subset \Lambda_L$ and $\mathscr{Q} \subset \Lambda_L$ s.t.

- for $\gamma \in \mathscr{P}$, $|\varphi_{\gamma}^{l}(\omega) \varphi_{\gamma}^{k}(\omega)| \leq L^{-\nu}$;
- for $\gamma \in \mathscr{Q}$, $|\varphi_{\gamma}^{j}(\omega) + \varphi_{\gamma}^{k}(\omega)| \leq L^{-\nu}$.

Introduce the orthogonal projectors P and Q defined by

$$P = \sum_{\gamma \in \mathscr{P}} |\gamma\rangle \langle \gamma|$$
 and $Q = \sum_{\gamma \in \mathscr{Q}} |\gamma\rangle \langle \gamma|.$

イロト イポト イヨト イ

Let us now assume d = 1. We prove a weaker result.

Theorem

Fix v > 8. For the discrete Anderson model in dimension 1, there exists $\Delta \mathscr{E}$ of total measure such that, for $E - E' \in \Delta \mathscr{E}$, for L sufficiently large, if $E_j(\omega)$ and $E_k(\omega)$ are simple eigenvalues of $H_{\omega}(\Lambda_L)$ such that $|E_k(\omega) - E| + |E_j(\omega) - E'| \le L^{-v}$ then $\|\nabla_{\omega}(E_j(\omega) - E_k(\omega))\|_1 \ge L^{-v}$;

Fix E < E'. Pick $E_j(\omega)$ and $E_k(\omega)$, simple evs s.t. $|E_k(\omega) - E| + |E_j(\omega) - E'| \le L^{-\alpha}$. Then,

$$4L^{-2\nu} \geq \|\nabla_{\boldsymbol{\omega}}(E_{j}(\boldsymbol{\omega}) - E_{k}(\boldsymbol{\omega}))\|_{2}^{2} = \sum_{\boldsymbol{\gamma} \in \Lambda_{L}} |\boldsymbol{\varphi}_{\boldsymbol{\gamma}}^{j}(\boldsymbol{\omega}) - \boldsymbol{\varphi}_{\boldsymbol{\gamma}}^{k}(\boldsymbol{\omega})|^{2} \cdot |\boldsymbol{\varphi}_{\boldsymbol{\gamma}}^{j}(\boldsymbol{\omega}) + \boldsymbol{\varphi}_{\boldsymbol{\gamma}}^{k}(\boldsymbol{\omega})|^{2}$$

there exists a partition of Λ_L , say $\mathscr{P} \subset \Lambda_L$ and $\mathscr{Q} \subset \Lambda_L$ s.t.

- for $\gamma \in \mathscr{P}$, $|\varphi_{\gamma}^{l}(\omega) \varphi_{\gamma}^{k}(\omega)| \leq L^{-\nu}$;
- for $\gamma \in \mathcal{Q}$, $|\varphi_{\gamma}^{j}(\omega) + \varphi_{\gamma}^{k}(\omega)| \leq L^{-\nu}$.

Introduce the orthogonal projectors P and Q defined by

$$P = \sum_{\gamma \in \mathscr{P}} |\gamma
angle \langle \gamma | \quad ext{ and } \quad Q = \sum_{\gamma \in \mathscr{Q}} |\gamma
angle \langle \gamma |.$$

• • • • • • • • • • • • • •

$$||P\varphi^{j}||^{2} = \frac{1}{2} + O(L^{-\nu+d/2}) \text{ and } ||Q\varphi^{j}||^{2} = \frac{1}{2} + O(L^{-\nu+d/2}).$$

This implies that $\mathscr{P} \neq \emptyset$ and $\mathscr{Q} \neq \emptyset$.

To simplify the notation, from now on, we write $u = \varphi_j$. So $\varphi_k = Pu - Qu + O(L^{-\nu})$. Plugging this into the eigenavalue equations yields

$$\begin{cases} [-(P\Delta Q + Q\Delta P) - \Delta E]u &= O(L^{-\alpha})\\ [-(P\Delta P + Q\Delta Q) + V_{\omega} - \overline{E}]u &= O(L^{-\alpha}) \end{cases}$$

where $\Delta E = E' - E$ and $\overline{E} = (E + E')/2$.

- ΔE is at a distance at most $L^{-\alpha}$ to the spectrum of $-(P\Delta Q + Q\Delta P)$,
- *u* is close to being an eigenvector associated to this eigenvalue,
- *u* is also close to being in the kernel of $-(P\Delta P + Q\Delta Q) + V_{\omega} \overline{E}$.

$$||P\varphi^{j}||^{2} = \frac{1}{2} + O(L^{-\nu+d/2}) \text{ and } ||Q\varphi^{j}||^{2} = \frac{1}{2} + O(L^{-\nu+d/2}).$$

This implies that $\mathscr{P} \neq \emptyset$ and $\mathscr{Q} \neq \emptyset$.

To simplify the notation, from now on, we write $u = \varphi_j$. So $\varphi_k = Pu - Qu + O(L^{-\nu})$. Plugging this into the eigenavalue equations yields

$$\begin{cases} [-(P\Delta Q + Q\Delta P) - \Delta E]u &= O(L^{-\alpha})\\ [-(P\Delta P + Q\Delta Q) + V_{\omega} - \overline{E}]u &= O(L^{-\alpha}) \end{cases}$$

where $\Delta E = E' - E$ and $\overline{E} = (E + E')/2$.

- ΔE is at a distance at most $L^{-\alpha}$ to the spectrum of $-(P\Delta Q + Q\Delta P)$,
- *u* is close to being an eigenvector associated to this eigenvalue,
- *u* is also close to being in the kernel of $-(P\Delta P + Q\Delta Q) + V_{\omega} \overline{E}$.

$$||P\varphi^{j}||^{2} = \frac{1}{2} + O(L^{-\nu+d/2}) \text{ and } ||Q\varphi^{j}||^{2} = \frac{1}{2} + O(L^{-\nu+d/2}).$$

This implies that $\mathscr{P} \neq \emptyset$ and $\mathscr{Q} \neq \emptyset$.

To simplify the notation, from now on, we write $u = \varphi_j$. So $\varphi_k = Pu - Qu + O(L^{-\nu})$. Plugging this into the eigenavalue equations yields

$$\begin{cases} [-(P\Delta Q + Q\Delta P) - \Delta E]u &= O(L^{-\alpha})\\ [-(P\Delta P + Q\Delta Q) + V_{\omega} - \overline{E}]u &= O(L^{-\alpha}) \end{cases}$$

where $\Delta E = E' - E$ and $\overline{E} = (E + E')/2$.

- ΔE is at a distance at most $L^{-\alpha}$ to the spectrum of $-(P\Delta Q + Q\Delta P)$,
- *u* is close to being an eigenvector associated to this eigenvalue,
- *u* is also close to being in the kernel of $-(P\Delta P + Q\Delta Q) + V_{\omega} \overline{E}$.

$$\|P\varphi^{j}\|^{2} = \frac{1}{2} + O(L^{-\nu+d/2}) \text{ and } \|Q\varphi^{j}\|^{2} = \frac{1}{2} + O(L^{-\nu+d/2}).$$

This implies that $\mathscr{P} \neq \emptyset$ and $\mathscr{Q} \neq \emptyset$.

To simplify the notation, from now on, we write $u = \varphi_j$. So $\varphi_k = Pu - Qu + O(L^{-\nu})$. Plugging this into the eigenavalue equations yields

$$\begin{cases} [-(P\Delta Q + Q\Delta P) - \Delta E]u &= O(L^{-\alpha})\\ [-(P\Delta P + Q\Delta Q) + V_{\omega} - \overline{E}]u &= O(L^{-\alpha}) \end{cases}$$

where $\Delta E = E' - E$ and $\overline{E} = (E + E')/2$.

- ΔE is at a distance at most $L^{-\alpha}$ to the spectrum of $-(P\Delta Q + Q\Delta P)$,
- *u* is close to being an eigenvector associated to this eigenvalue,
- *u* is also close to being in the kernel of $-(P\Delta P + Q\Delta Q) + V_{\omega} \overline{E}$.

$$\|P\varphi^{j}\|^{2} = \frac{1}{2} + O(L^{-\nu+d/2}) \text{ and } \|Q\varphi^{j}\|^{2} = \frac{1}{2} + O(L^{-\nu+d/2}).$$

This implies that $\mathscr{P} \neq \emptyset$ and $\mathscr{Q} \neq \emptyset$.

To simplify the notation, from now on, we write $u = \varphi_j$. So $\varphi_k = Pu - Qu + O(L^{-\nu})$. Plugging this into the eigenavalue equations yields

$$\begin{cases} [-(P\Delta Q + Q\Delta P) - \Delta E]u &= O(L^{-\alpha}) \\ [-(P\Delta P + Q\Delta Q) + V_{\omega} - \overline{E}]u &= O(L^{-\alpha}), \end{cases}$$

where $\Delta E = E' - E$ and $\overline{E} = (E + E')/2$.

- ΔE is at a distance at most $L^{-\alpha}$ to the spectrum of $-(P\Delta Q + Q\Delta P)$,
- *u* is close to being an eigenvector associated to this eigenvalue,
- *u* is also close to being in the kernel of $-(P\Delta P + Q\Delta Q) + V_{\omega} \overline{E}$.

$$\|P\varphi^{j}\|^{2} = \frac{1}{2} + O(L^{-\nu+d/2}) \text{ and } \|Q\varphi^{j}\|^{2} = \frac{1}{2} + O(L^{-\nu+d/2}).$$

This implies that $\mathscr{P} \neq \emptyset$ and $\mathscr{Q} \neq \emptyset$.

To simplify the notation, from now on, we write $u = \varphi_j$. So $\varphi_k = Pu - Qu + O(L^{-\nu})$. Plugging this into the eigenavalue equations yields

$$\begin{cases} [-(P\Delta Q + Q\Delta P) - \Delta E]u &= O(L^{-\alpha}) \\ [-(P\Delta P + Q\Delta Q) + V_{\omega} - \overline{E}]u &= O(L^{-\alpha}), \end{cases}$$

where $\Delta E = E' - E$ and $\overline{E} = (E + E')/2$.

- ΔE is at a distance at most $L^{-\alpha}$ to the spectrum of $-(P\Delta Q + Q\Delta P)$,
- *u* is close to being an eigenvector associated to this eigenvalue,
- *u* is also close to being in the kernel of $-(P\Delta P + Q\Delta Q) + V_{\omega} \overline{E}$.

One has $\|P\phi^{j} - P\phi^{k}\|_{2} \le L^{-\nu+d/2}$ and $\|Q\phi^{j} + Q\phi^{k}\|_{2} \le L^{-\nu+d/2}$. As $\|Pu\|^{2} + \|Qu\|^{2} = \|u\|^{2}$ and $\langle \phi^{j}, \phi^{k} \rangle = 0$, one has

$$\|P\varphi^{j}\|^{2} = \frac{1}{2} + O(L^{-\nu+d/2}) \text{ and } \|Q\varphi^{j}\|^{2} = \frac{1}{2} + O(L^{-\nu+d/2}).$$

This implies that $\mathscr{P} \neq \emptyset$ and $\mathscr{Q} \neq \emptyset$.

To simplify the notation, from now on, we write $u = \varphi_j$. So $\varphi_k = Pu - Qu + O(L^{-\nu})$. Plugging this into the eigenavalue equations yields

$$\begin{cases} [-(P\Delta Q + Q\Delta P) - \Delta E]u &= O(L^{-\alpha}) \\ [-(P\Delta P + Q\Delta Q) + V_{\omega} - \overline{E}]u &= O(L^{-\alpha}), \end{cases}$$

where $\Delta E = E' - E$ and $\overline{E} = (E + E')/2$.

So

- ΔE is at a distance at most $L^{-\alpha}$ to the spectrum of $-(P\Delta Q + Q\Delta P)$,
- *u* is close to being an eigenvector associated to this eigenvalue,
- *u* is also close to being in the kernel of $-(P\Delta P + Q\Delta Q) + V_{\omega} \overline{E}$.

One has $\|P\phi^{j} - P\phi^{k}\|_{2} \le L^{-\nu+d/2}$ and $\|Q\phi^{j} + Q\phi^{k}\|_{2} \le L^{-\nu+d/2}$. As $\|Pu\|^{2} + \|Qu\|^{2} = \|u\|^{2}$ and $\langle \phi^{j}, \phi^{k} \rangle = 0$, one has

$$\|P\varphi^{j}\|^{2} = \frac{1}{2} + O(L^{-\nu+d/2}) \text{ and } \|Q\varphi^{j}\|^{2} = \frac{1}{2} + O(L^{-\nu+d/2}).$$

This implies that $\mathscr{P} \neq \emptyset$ and $\mathscr{Q} \neq \emptyset$.

To simplify the notation, from now on, we write $u = \varphi_j$. So $\varphi_k = Pu - Qu + O(L^{-\nu})$. Plugging this into the eigenavalue equations yields

$$\begin{cases} [-(P\Delta Q + Q\Delta P) - \Delta E]u &= O(L^{-\alpha}) \\ [-(P\Delta P + Q\Delta Q) + V_{\omega} - \overline{E}]u &= O(L^{-\alpha}), \end{cases}$$

where $\Delta E = E' - E$ and $\overline{E} = (E + E')/2$.

So

- ΔE is at a distance at most $L^{-\alpha}$ to the spectrum of $-(P\Delta Q + Q\Delta P)$,
- *u* is close to being an eigenvector associated to this eigenvalue,
- *u* is also close to being in the kernel of $-(P\Delta P + Q\Delta Q) + V_{\omega} \overline{E}$.

 $-P\Delta Q - Q\Delta P = \sum_{\gamma \in \partial \mathscr{P}} (|\gamma + 1\rangle \langle \gamma| + |\gamma\rangle \langle \gamma + 1|) + \sum_{\gamma \in \partial \mathscr{Q}} (|\gamma + 1\rangle \langle \gamma| + |\gamma\rangle \langle \gamma + 1|)$

where $\partial \mathscr{P} = \{\gamma \in \mathscr{P}; \ \gamma + 1 \in \mathscr{Q}\} \subset \mathscr{P} \text{ and } \partial \mathscr{Q} = \{\gamma \in \mathscr{Q}; \ \gamma + 1 \in \mathscr{P}\} \subset \mathscr{Q}.$ One checks $\partial \mathscr{P} \neq \emptyset$, and $\partial \mathscr{Q} \neq \emptyset$ and $\partial \mathscr{P} \cap \partial \mathscr{Q} = \emptyset.$

For $\mathscr{A} \subset \Lambda_L$ we define $\mathscr{A} + 1 = \{p + 1; p \in \mathscr{A}\}$ to be the shift by one of \mathscr{A} .

One clearly has $(\partial \mathscr{P} + 1) \subset \mathscr{Q}$ and $(\partial \mathscr{Q} + 1) \subset \mathscr{P}$.

Hence, $(\partial \mathscr{P} + 1) \cap \partial \mathscr{P} = \emptyset$ and $(\partial \mathscr{Q} + 1) \cap \partial \mathscr{Q} = \emptyset$.

Consider the set $\mathscr{C} := \partial \mathscr{P} \cup \partial \mathscr{Q}$.

Partition it into its "connected components" i.e. \mathscr{C} can be written a disjoint union of intervals of integers, say $\mathscr{C} = \bigcup_{l=1}^{l_0} \mathscr{C}_l^c$.

Then, for $l \neq l'$,

$$\mathscr{C}_l^c \cap \mathscr{C}_{l'}^c = \mathscr{C}_l^c \cap (\mathscr{C}_{l'}^c + 1) = \emptyset.$$

Define $\mathscr{C}_l = \mathscr{C}_l^c \cup (\mathscr{C}_l^c + 1)$. One has, for $l \neq l', \mathscr{C}_l \cap \mathscr{C}_{l'} = \emptyset$. Note that one may have $\bigcup_{l=1}^{l_0} \mathscr{C}_l = \Lambda_L$.

$$-P\Delta Q - Q\Delta P = \sum_{\gamma \in \partial \mathscr{P}} (|\gamma + 1\rangle \langle \gamma| + |\gamma\rangle \langle \gamma + 1|) + \sum_{\gamma \in \partial \mathscr{Q}} (|\gamma + 1\rangle \langle \gamma| + |\gamma\rangle \langle \gamma + 1|)$$

where $\partial \mathscr{P} = \{\gamma \in \mathscr{P}; \gamma + 1 \in \mathscr{Q}\} \subset \mathscr{P} \text{ and } \partial \mathscr{Q} = \{\gamma \in \mathscr{Q}; \gamma + 1 \in \mathscr{P}\} \subset \mathscr{Q}.$

One checks $\partial \mathscr{P} \neq \emptyset$, and $\partial \mathscr{Q} \neq \emptyset$ and $\partial \mathscr{P} \cap \partial \mathscr{Q} = \emptyset$.

For $\mathscr{A} \subset \Lambda_L$ we define $\mathscr{A} + 1 = \{p + 1; p \in \mathscr{A}\}$ to be the shift by one of \mathscr{A} .

One clearly has $(\partial \mathscr{P} + 1) \subset \mathscr{Q}$ and $(\partial \mathscr{Q} + 1) \subset \mathscr{P}$.

Hence, $(\partial \mathscr{P} + 1) \cap \partial \mathscr{P} = \emptyset$ and $(\partial \mathscr{Q} + 1) \cap \partial \mathscr{Q} = \emptyset$.

Consider the set $\mathscr{C} := \partial \mathscr{P} \cup \partial \mathscr{Q}$.

Partition it into its "connected components" i.e. \mathscr{C} can be written a disjoint union of intervals of integers, say $\mathscr{C} = \bigcup_{l=1}^{l_0} \mathscr{C}_l^c$.

Then, for $l \neq l'$,

$$\mathscr{C}_l^c \cap \mathscr{C}_{l'}^c = \mathscr{C}_l^c \cap (\mathscr{C}_{l'}^c + 1) = \emptyset.$$

Define $\mathscr{C}_l = \mathscr{C}_l^c \cup (\mathscr{C}_l^c + 1)$. One has, for $l \neq l', \mathscr{C}_l \cap \mathscr{C}_{l'} = \emptyset$. Note that one may have $\bigcup_{l=1}^{l_0} \mathscr{C}_l = \Lambda_L$.

$$-P\Delta Q - Q\Delta P = \sum_{\gamma \in \partial \mathscr{P}} (|\gamma + 1\rangle \langle \gamma| + |\gamma\rangle \langle \gamma + 1|) + \sum_{\gamma \in \partial \mathscr{Q}} (|\gamma + 1\rangle \langle \gamma| + |\gamma\rangle \langle \gamma + 1|)$$

where $\partial \mathscr{P} = \{\gamma \in \mathscr{P}; \ \gamma + 1 \in \mathscr{Q}\} \subset \mathscr{P} \text{ and } \partial \mathscr{Q} = \{\gamma \in \mathscr{Q}; \ \gamma + 1 \in \mathscr{P}\} \subset \mathscr{Q}.$ One checks $\partial \mathscr{P} \neq \emptyset$, and $\partial \mathscr{Q} \neq \emptyset$ and $\partial \mathscr{P} \cap \partial \mathscr{Q} = \emptyset$.

For $\mathscr{A} \subset \Lambda_L$ we define $\mathscr{A} + 1 = \{p + 1; p \in \mathscr{A}\}$ to be the shift by one of \mathscr{A} .

One clearly has $(\partial \mathscr{P} + 1) \subset \mathscr{Q}$ and $(\partial \mathscr{Q} + 1) \subset \mathscr{P}$.

Hence, $(\partial \mathscr{P} + 1) \cap \partial \mathscr{P} = \emptyset$ and $(\partial \mathscr{Q} + 1) \cap \partial \mathscr{Q} = \emptyset$.

Consider the set $\mathscr{C} := \partial \mathscr{P} \cup \partial \mathscr{Q}$.

Partition it into its "connected components" i.e. \mathscr{C} can be written a disjoint union of intervals of integers, say $\mathscr{C} = \bigcup_{l=1}^{l_0} \mathscr{C}_l^c$.

Then, for $l \neq l'$,

$$\mathscr{C}_l^c \cap \mathscr{C}_{l'}^c = \mathscr{C}_l^c \cap (\mathscr{C}_{l'}^c + 1) = \emptyset.$$

Define $\mathscr{C}_l = \mathscr{C}_l^c \cup (\mathscr{C}_l^c + 1)$. One has, for $l \neq l', \mathscr{C}_l \cap \mathscr{C}_{l'} = \emptyset$. Note that one may have $\bigcup_{l=1}^{l_0} \mathscr{C}_l = \Lambda_L$.

$$-P\Delta Q - Q\Delta P = \sum_{\gamma \in \partial \mathscr{P}} (|\gamma + 1\rangle \langle \gamma| + |\gamma\rangle \langle \gamma + 1|) + \sum_{\gamma \in \partial \mathscr{Q}} (|\gamma + 1\rangle \langle \gamma| + |\gamma\rangle \langle \gamma + 1|)$$

where $\partial \mathscr{P} = \{\gamma \in \mathscr{P}; \ \gamma + 1 \in \mathscr{Q}\} \subset \mathscr{P} \text{ and } \partial \mathscr{Q} = \{\gamma \in \mathscr{Q}; \ \gamma + 1 \in \mathscr{P}\} \subset \mathscr{Q}.$ One checks $\partial \mathscr{P} \neq \emptyset$, and $\partial \mathscr{Q} \neq \emptyset$ and $\partial \mathscr{P} \cap \partial \mathscr{Q} = \emptyset$.

For $\mathscr{A} \subset \Lambda_L$ we define $\mathscr{A} + 1 = \{p + 1; p \in \mathscr{A}\}$ to be the shift by one of \mathscr{A} .

One clearly has $(\partial \mathscr{P} + 1) \subset \mathscr{Q}$ and $(\partial \mathscr{Q} + 1) \subset \mathscr{P}$.

Hence, $(\partial \mathscr{P} + 1) \cap \partial \mathscr{P} = \emptyset$ and $(\partial \mathscr{Q} + 1) \cap \partial \mathscr{Q} = \emptyset$.

Consider the set $\mathscr{C} := \partial \mathscr{P} \cup \partial \mathscr{Q}$.

Partition it into its "connected components" i.e. \mathscr{C} can be written a disjoint union of intervals of integers, say $\mathscr{C} = \bigcup_{l=1}^{l_0} \mathscr{C}_l^c$.

Then, for $l \neq l'$,

$$\mathscr{C}_l^c \cap \mathscr{C}_{l'}^c = \mathscr{C}_l^c \cap (\mathscr{C}_{l'}^c + 1) = \emptyset.$$

Define $\mathscr{C}_l = \mathscr{C}_l^c \cup (\mathscr{C}_l^c + 1)$. One has, for $l \neq l', \mathscr{C}_l \cap \mathscr{C}_{l'} = \emptyset$. Note that one may have $\bigcup_{l=1}^{l_0} \mathscr{C}_l = \Lambda_L$.

$$-P\Delta Q - Q\Delta P = \sum_{\gamma \in \partial \mathscr{P}} (|\gamma + 1\rangle \langle \gamma| + |\gamma\rangle \langle \gamma + 1|) + \sum_{\gamma \in \partial \mathscr{Q}} (|\gamma + 1\rangle \langle \gamma| + |\gamma\rangle \langle \gamma + 1|)$$

where $\partial \mathscr{P} = \{\gamma \in \mathscr{P}; \ \gamma + 1 \in \mathscr{Q}\} \subset \mathscr{P} \text{ and } \partial \mathscr{Q} = \{\gamma \in \mathscr{Q}; \ \gamma + 1 \in \mathscr{P}\} \subset \mathscr{Q}.$ One checks $\partial \mathscr{P} \neq \emptyset$, and $\partial \mathscr{Q} \neq \emptyset$ and $\partial \mathscr{P} \cap \partial \mathscr{Q} = \emptyset$.

For $\mathscr{A} \subset \Lambda_L$ we define $\mathscr{A} + 1 = \{p + 1; p \in \mathscr{A}\}$ to be the shift by one of \mathscr{A} .

One clearly has $(\partial \mathscr{P} + 1) \subset \mathscr{Q}$ and $(\partial \mathscr{Q} + 1) \subset \mathscr{P}$.

Hence, $(\partial \mathscr{P} + 1) \cap \partial \mathscr{P} = \emptyset$ and $(\partial \mathscr{Q} + 1) \cap \partial \mathscr{Q} = \emptyset$.

Consider the set $\mathscr{C} := \partial \mathscr{P} \cup \partial \mathscr{Q}$.

Partition it into its "connected components" i.e. \mathscr{C} can be written a disjoint union of intervals of integers, say $\mathscr{C} = \bigcup_{l=1}^{l_0} \mathscr{C}_l^c$.

Then, for $l \neq l'$,

$$\mathscr{C}_l^c \cap \mathscr{C}_{l'}^c = \mathscr{C}_l^c \cap (\mathscr{C}_{l'}^c + 1) = \emptyset.$$

Define $\mathscr{C}_l = \mathscr{C}_l^c \cup (\mathscr{C}_l^c + 1)$. One has, for $l \neq l', \mathscr{C}_l \cap \mathscr{C}_{l'} = \emptyset$. Note that one may have $\bigcup_{l=1}^{l_0} \mathscr{C}_l = \Lambda_L$.

$$-P\Delta Q - Q\Delta P = \sum_{\gamma \in \partial \mathscr{P}} (|\gamma + 1\rangle \langle \gamma| + |\gamma\rangle \langle \gamma + 1|) + \sum_{\gamma \in \partial \mathscr{Q}} (|\gamma + 1\rangle \langle \gamma| + |\gamma\rangle \langle \gamma + 1|)$$

where $\partial \mathscr{P} = \{\gamma \in \mathscr{P}; \ \gamma + 1 \in \mathscr{Q}\} \subset \mathscr{P} \text{ and } \partial \mathscr{Q} = \{\gamma \in \mathscr{Q}; \ \gamma + 1 \in \mathscr{P}\} \subset \mathscr{Q}.$ One checks $\partial \mathscr{P} \neq \emptyset$, and $\partial \mathscr{Q} \neq \emptyset$ and $\partial \mathscr{P} \cap \partial \mathscr{Q} = \emptyset$.

For $\mathscr{A} \subset \Lambda_L$ we define $\mathscr{A} + 1 = \{p + 1; p \in \mathscr{A}\}$ to be the shift by one of \mathscr{A} .

One clearly has $(\partial \mathscr{P} + 1) \subset \mathscr{Q}$ and $(\partial \mathscr{Q} + 1) \subset \mathscr{P}$.

Hence, $(\partial \mathscr{P} + 1) \cap \partial \mathscr{P} = \emptyset$ and $(\partial \mathscr{Q} + 1) \cap \partial \mathscr{Q} = \emptyset$.

Consider the set $\mathscr{C} := \partial \mathscr{P} \cup \partial \mathscr{Q}$.

Partition it into its "connected components" i.e. \mathscr{C} can be written a disjoint union of intervals of integers, say $\mathscr{C} = \bigcup_{l=1}^{l_0} \mathscr{C}_l^c$.

Then, for $l \neq l'$,

$$\mathscr{C}_l^c \cap \mathscr{C}_{l'}^c = \mathscr{C}_l^c \cap (\mathscr{C}_{l'}^c + 1) = \emptyset.$$

Define $\mathscr{C}_l = \mathscr{C}_l^c \cup (\mathscr{C}_l^c + 1)$. One has, for $l \neq l', \mathscr{C}_l \cap \mathscr{C}_{l'} = \emptyset$. Note that one may have $\bigcup_{l=1}^{l_0} \mathscr{C}_l = \Lambda_L$.

$$-P\Delta Q - Q\Delta P = \sum_{\gamma \in \partial \mathscr{P}} (|\gamma + 1\rangle \langle \gamma| + |\gamma\rangle \langle \gamma + 1|) + \sum_{\gamma \in \partial \mathscr{Q}} (|\gamma + 1\rangle \langle \gamma| + |\gamma\rangle \langle \gamma + 1|)$$

where $\partial \mathscr{P} = \{\gamma \in \mathscr{P}; \ \gamma + 1 \in \mathscr{Q}\} \subset \mathscr{P} \text{ and } \partial \mathscr{Q} = \{\gamma \in \mathscr{Q}; \ \gamma + 1 \in \mathscr{P}\} \subset \mathscr{Q}.$ One checks $\partial \mathscr{P} \neq \emptyset$, and $\partial \mathscr{Q} \neq \emptyset$ and $\partial \mathscr{P} \cap \partial \mathscr{Q} = \emptyset$.

For $\mathscr{A} \subset \Lambda_L$ we define $\mathscr{A} + 1 = \{p + 1; p \in \mathscr{A}\}$ to be the shift by one of \mathscr{A} .

One clearly has $(\partial \mathscr{P} + 1) \subset \mathscr{Q}$ and $(\partial \mathscr{Q} + 1) \subset \mathscr{P}$.

Hence, $(\partial \mathscr{P} + 1) \cap \partial \mathscr{P} = \emptyset$ and $(\partial \mathscr{Q} + 1) \cap \partial \mathscr{Q} = \emptyset$.

Consider the set $\mathscr{C} := \partial \mathscr{P} \cup \partial \mathscr{Q}$.

Partition it into its "connected components" i.e. \mathscr{C} can be written a a disjoint union of integers, say $\mathscr{C} = \bigcup_{l=1}^{l_0} \mathscr{C}_l^c$.

Then, for $l \neq l'$,

$$\mathscr{C}_l^c \cap \mathscr{C}_{l'}^c = \mathscr{C}_l^c \cap (\mathscr{C}_{l'}^c + 1) = \emptyset.$$

Define $\mathscr{C}_l = \mathscr{C}_l^c \cup (\mathscr{C}_l^c + 1)$. One has, for $l \neq l', \mathscr{C}_l \cap \mathscr{C}_{l'} = \emptyset$. Note that one may have $\bigcup_{l=1}^{l_0} \mathscr{C}_l = \Lambda_L$.

$$-P\Delta Q - Q\Delta P = \sum_{\gamma \in \partial \mathscr{P}} (|\gamma + 1\rangle \langle \gamma| + |\gamma\rangle \langle \gamma + 1|) + \sum_{\gamma \in \partial \mathscr{Q}} (|\gamma + 1\rangle \langle \gamma| + |\gamma\rangle \langle \gamma + 1|)$$

where $\partial \mathscr{P} = \{\gamma \in \mathscr{P}; \ \gamma + 1 \in \mathscr{Q}\} \subset \mathscr{P} \text{ and } \partial \mathscr{Q} = \{\gamma \in \mathscr{Q}; \ \gamma + 1 \in \mathscr{P}\} \subset \mathscr{Q}.$ One checks $\partial \mathscr{P} \neq \emptyset$, and $\partial \mathscr{Q} \neq \emptyset$ and $\partial \mathscr{P} \cap \partial \mathscr{Q} = \emptyset$.

For $\mathscr{A} \subset \Lambda_L$ we define $\mathscr{A} + 1 = \{p + 1; p \in \mathscr{A}\}$ to be the shift by one of \mathscr{A} .

One clearly has $(\partial \mathscr{P} + 1) \subset \mathscr{Q}$ and $(\partial \mathscr{Q} + 1) \subset \mathscr{P}$.

Hence, $(\partial \mathscr{P} + 1) \cap \partial \mathscr{P} = \emptyset$ and $(\partial \mathscr{Q} + 1) \cap \partial \mathscr{Q} = \emptyset$.

Consider the set $\mathscr{C} := \partial \mathscr{P} \cup \partial \mathscr{Q}$.

Partition it into its "connected components" i.e. \mathscr{C} can be written a a disjoint union of intervals of integers, say $\mathscr{C} = \bigcup_{l=1}^{l_0} \mathscr{C}_l^c$.

Then, for $l \neq l'$,

$$\mathscr{C}_l^c \cap \mathscr{C}_{l'}^c = \mathscr{C}_l^c \cap (\mathscr{C}_{l'}^c + 1) = \emptyset.$$

Define $\mathscr{C}_{l} = \mathscr{C}_{l}^{c} \cup (\mathscr{C}_{l}^{c} + 1)$. One has, for $l \neq l', \mathscr{C}_{l} \cap \mathscr{C}_{l'} = \emptyset$. Note that one may have $\bigcup_{l=1}^{l_{0}} \mathscr{C}_{l} = \Lambda_{L}$.

$$-P\Delta Q - Q\Delta P = \sum_{\gamma \in \partial \mathscr{P}} (|\gamma + 1\rangle \langle \gamma| + |\gamma\rangle \langle \gamma + 1|) + \sum_{\gamma \in \partial \mathscr{Q}} (|\gamma + 1\rangle \langle \gamma| + |\gamma\rangle \langle \gamma + 1|)$$

where $\partial \mathscr{P} = \{\gamma \in \mathscr{P}; \ \gamma + 1 \in \mathscr{Q}\} \subset \mathscr{P} \text{ and } \partial \mathscr{Q} = \{\gamma \in \mathscr{Q}; \ \gamma + 1 \in \mathscr{P}\} \subset \mathscr{Q}.$ One checks $\partial \mathscr{P} \neq \emptyset$, and $\partial \mathscr{Q} \neq \emptyset$ and $\partial \mathscr{P} \cap \partial \mathscr{Q} = \emptyset$.

For $\mathscr{A} \subset \Lambda_L$ we define $\mathscr{A} + 1 = \{p + 1; p \in \mathscr{A}\}$ to be the shift by one of \mathscr{A} .

One clearly has $(\partial \mathscr{P} + 1) \subset \mathscr{Q}$ and $(\partial \mathscr{Q} + 1) \subset \mathscr{P}$.

Hence, $(\partial \mathscr{P} + 1) \cap \partial \mathscr{P} = \emptyset$ and $(\partial \mathscr{Q} + 1) \cap \partial \mathscr{Q} = \emptyset$.

Consider the set $\mathscr{C} := \partial \mathscr{P} \cup \partial \mathscr{Q}$.

Partition it into its "connected components" i.e. \mathscr{C} can be written a a disjoint union of intervals of integers, say $\mathscr{C} = \bigcup_{l=1}^{l_0} \mathscr{C}_l^c$.

Then, for $l \neq l'$,

$$\mathscr{C}_l^c \cap \mathscr{C}_{l'}^c = \mathscr{C}_l^c \cap (\mathscr{C}_{l'}^c + 1) = \emptyset.$$

Define $\mathscr{C}_l = \mathscr{C}_l^c \cup (\mathscr{C}_l^c + 1)$. One has, for $l \neq l', \mathscr{C}_l \cap \mathscr{C}_{l'} = \emptyset$. Note that one may have $\cup_{l=1}^{l_0} \mathscr{C}_l = \Lambda_L$.

$$-P\Delta Q - Q\Delta P = \sum_{\gamma \in \partial \mathscr{P}} (|\gamma + 1\rangle \langle \gamma| + |\gamma\rangle \langle \gamma + 1|) + \sum_{\gamma \in \partial \mathscr{Q}} (|\gamma + 1\rangle \langle \gamma| + |\gamma\rangle \langle \gamma + 1|)$$

where $\partial \mathscr{P} = \{\gamma \in \mathscr{P}; \ \gamma + 1 \in \mathscr{Q}\} \subset \mathscr{P} \text{ and } \partial \mathscr{Q} = \{\gamma \in \mathscr{Q}; \ \gamma + 1 \in \mathscr{P}\} \subset \mathscr{Q}.$ One checks $\partial \mathscr{P} \neq \emptyset$, and $\partial \mathscr{Q} \neq \emptyset$ and $\partial \mathscr{P} \cap \partial \mathscr{Q} = \emptyset$.

For $\mathscr{A} \subset \Lambda_L$ we define $\mathscr{A} + 1 = \{p+1; p \in \mathscr{A}\}$ to be the shift by one of \mathscr{A} .

One clearly has $(\partial \mathscr{P} + 1) \subset \mathscr{Q}$ and $(\partial \mathscr{Q} + 1) \subset \mathscr{P}$.

Hence, $(\partial \mathscr{P} + 1) \cap \partial \mathscr{P} = \emptyset$ and $(\partial \mathscr{Q} + 1) \cap \partial \mathscr{Q} = \emptyset$.

Consider the set $\mathscr{C} := \partial \mathscr{P} \cup \partial \mathscr{Q}$.

Partition it into its "connected components" i.e. \mathscr{C} can be written a a disjoint union of intervals of integers, say $\mathscr{C} = \bigcup_{l=1}^{l_0} \mathscr{C}_l^c$.

Then, for $l \neq l'$,

$$\mathscr{C}_l^c \cap \mathscr{C}_{l'}^c = \mathscr{C}_l^c \cap (\mathscr{C}_{l'}^c + 1) = \emptyset.$$

Define $\mathscr{C}_l = \mathscr{C}_l^c \cup (\mathscr{C}_l^c + 1)$. One has, for $l \neq l', \mathscr{C}_l \cap \mathscr{C}_{l'} = \emptyset$.

Note that one may have $\cup_{l=1}^{l_0} \mathscr{C}_l = \Lambda_L$.

$$-P\Delta Q - Q\Delta P = \sum_{\gamma \in \partial \mathscr{P}} (|\gamma + 1\rangle \langle \gamma| + |\gamma\rangle \langle \gamma + 1|) + \sum_{\gamma \in \partial \mathscr{Q}} (|\gamma + 1\rangle \langle \gamma| + |\gamma\rangle \langle \gamma + 1|)$$

where $\partial \mathscr{P} = \{\gamma \in \mathscr{P}; \ \gamma + 1 \in \mathscr{Q}\} \subset \mathscr{P} \text{ and } \partial \mathscr{Q} = \{\gamma \in \mathscr{Q}; \ \gamma + 1 \in \mathscr{P}\} \subset \mathscr{Q}.$ One checks $\partial \mathscr{P} \neq \emptyset$, and $\partial \mathscr{Q} \neq \emptyset$ and $\partial \mathscr{P} \cap \partial \mathscr{Q} = \emptyset$.

For $\mathscr{A} \subset \Lambda_L$ we define $\mathscr{A} + 1 = \{p+1; p \in \mathscr{A}\}$ to be the shift by one of \mathscr{A} .

One clearly has $(\partial \mathscr{P} + 1) \subset \mathscr{Q}$ and $(\partial \mathscr{Q} + 1) \subset \mathscr{P}$.

Hence, $(\partial \mathscr{P} + 1) \cap \partial \mathscr{P} = \emptyset$ and $(\partial \mathscr{Q} + 1) \cap \partial \mathscr{Q} = \emptyset$.

Consider the set $\mathscr{C} := \partial \mathscr{P} \cup \partial \mathscr{Q}$.

Partition it into its "connected components" i.e. \mathscr{C} can be written a a disjoint union of intervals of integers, say $\mathscr{C} = \bigcup_{l=1}^{l_0} \mathscr{C}_l^c$.

Then, for $l \neq l'$,

$$\mathscr{C}_l^c \cap \mathscr{C}_{l'}^c = \mathscr{C}_l^c \cap (\mathscr{C}_{l'}^c + 1) = \emptyset.$$

Define $\mathscr{C}_l = \mathscr{C}_l^c \cup (\mathscr{C}_l^c + 1)$. One has, for $l \neq l', \, \mathscr{C}_l \cap \mathscr{C}_{l'} = \emptyset$.

Note that one may have $\cup_{l=1}^{l_0} \mathscr{C}_l = \Lambda_L$.

$$-P\Delta Q - Q\Delta P = \sum_{\gamma \in \partial \mathscr{P}} (|\gamma + 1\rangle \langle \gamma| + |\gamma\rangle \langle \gamma + 1|) + \sum_{\gamma \in \partial \mathscr{Q}} (|\gamma + 1\rangle \langle \gamma| + |\gamma\rangle \langle \gamma + 1|)$$

where $\partial \mathscr{P} = \{\gamma \in \mathscr{P}; \ \gamma + 1 \in \mathscr{Q}\} \subset \mathscr{P} \text{ and } \partial \mathscr{Q} = \{\gamma \in \mathscr{Q}; \ \gamma + 1 \in \mathscr{P}\} \subset \mathscr{Q}.$ One checks $\partial \mathscr{P} \neq \emptyset$, and $\partial \mathscr{Q} \neq \emptyset$ and $\partial \mathscr{P} \cap \partial \mathscr{Q} = \emptyset$.

For $\mathscr{A} \subset \Lambda_L$ we define $\mathscr{A} + 1 = \{p+1; p \in \mathscr{A}\}$ to be the shift by one of \mathscr{A} .

One clearly has $(\partial \mathscr{P} + 1) \subset \mathscr{Q}$ and $(\partial \mathscr{Q} + 1) \subset \mathscr{P}$.

Hence, $(\partial \mathscr{P} + 1) \cap \partial \mathscr{P} = \emptyset$ and $(\partial \mathscr{Q} + 1) \cap \partial \mathscr{Q} = \emptyset$.

Consider the set $\mathscr{C} := \partial \mathscr{P} \cup \partial \mathscr{Q}$.

Partition it into its "connected components" i.e. \mathscr{C} can be written a a disjoint union of intervals of integers, say $\mathscr{C} = \bigcup_{l=1}^{l_0} \mathscr{C}_l^c$.

Then, for $l \neq l'$,

$$\mathscr{C}_l^c \cap \mathscr{C}_{l'}^c = \mathscr{C}_l^c \cap (\mathscr{C}_{l'}^c + 1) = \emptyset.$$

Define $\mathscr{C}_{l} = \mathscr{C}_{l}^{c} \cup (\mathscr{C}_{l}^{c} + 1)$. One has, for $l \neq l', \mathscr{C}_{l} \cap \mathscr{C}_{l'} = \emptyset$. Note that one may have $\cup_{l=1}^{l_{0}} \mathscr{C}_{l} = \Lambda_{L}$.

$$-P\Delta Q - Q\Delta P = -\sum_{l=1}^{l_0} C_l \Delta C_l$$

where C_l is the projector $C_l = \sum_{\gamma \in \mathscr{C}_j} |\gamma\rangle \langle \gamma|$.

The projectors C_l and $C_{l'}$ are orthogonal to each other for $l \neq l'$.

So the spectrum of $-P\Delta Q - Q\Delta P$ is given by the union of the spectra of $(C_l\Delta C_l)_{1\leq j\leq J}$.

Each of these operators : Dirichlet Laplacian on interval of length, the length of C_l .

Its spectral decomposition can be computed explicitly: for segment of length *n*,

- the eigenvalues are simple and are given by $(2\cos(k\pi/(n+1)))_{1 \le k \le n}$;
- for k ∈ {1,...,n}, the eigenspace associated to 2 cos(kπ/(n+1)) is generated by the vector (sin(kjπ/(n+1))_{1≤j≤n}.

Let
$$\Delta \mathscr{E}_L^c = \bigcup_{n=0}^L \sigma(-C_n \Delta C_n) + [-L^{-\nu}, L^{-\nu}]$$
 then $|\cap_{n\geq 1} \bigcup_{L\geq n} \Delta \mathscr{E}_L^c| = 0.$

 $\Delta \mathscr{E} = {}^{c} (\cap_{n} \cup_{L \ge n} \Delta \mathscr{E}_{L}^{c})$ is of total measure.

This completes the proof.

$$-P\Delta Q - Q\Delta P = -\sum_{l=1}^{l_0} C_l \Delta C_l$$

where C_l is the projector $C_l = \sum_{\gamma \in \mathscr{C}_j} |\gamma\rangle \langle \gamma|$.

The projectors C_l and $C_{l'}$ are orthogonal to each other for $l \neq l'$.

So the spectrum of $-P\Delta Q - Q\Delta P$ is given by the union of the spectra of $(C_l\Delta C_l)_{1\leq j\leq J}$. Each of these operators : Dirichlet Laplacian on interval of length, the length of C_l . Its spectral decomposition can be computed explicitly: for segment of length *n*,

- the eigenvalues are simple and are given by $(2\cos(k\pi/(n+1)))_{1 \le k \le n}$;
- for k ∈ {1,...,n}, the eigenspace associated to 2 cos(kπ/(n+1)) is generated by the vector (sin(kjπ/(n+1))_{1≤j≤n}.

Let
$$\Delta \mathscr{E}_L^c = \bigcup_{n=0}^L \sigma(-C_n \Delta C_n) + [-L^{-\nu}, L^{-\nu}]$$
 then $|\cap_{n\geq 1} \bigcup_{L\geq n} \Delta \mathscr{E}_L^c| = 0.$

 $\Delta \mathscr{E} = {}^{c} (\cap_{n} \cup_{L \ge n} \Delta \mathscr{E}_{L}^{c}) \text{ is of total measure.}$

This completes the proof.

$$-P\Delta Q - Q\Delta P = -\sum_{l=1}^{l_0} C_l \Delta C_l$$

where C_l is the projector $C_l = \sum_{\gamma \in \mathscr{C}_j} |\gamma\rangle \langle \gamma|$.

The projectors C_l and $C_{l'}$ are orthogonal to each other for $l \neq l'$.

So the spectrum of $-P\Delta Q - Q\Delta P$ is given by the union of the spectra of $(C_l\Delta C_l)_{1\leq j\leq J}$.

Each of these operators : Dirichlet Laplacian on interval of length, the length of C_l .

Its spectral decomposition can be computed explicitly: for segment of length n,

- the eigenvalues are simple and are given by $(2\cos(k\pi/(n+1)))_{1 \le k \le n}$;
- for k ∈ {1,...,n}, the eigenspace associated to 2 cos(kπ/(n+1)) is generated by the vector (sin(kjπ/(n+1))_{1≤j≤n}.

Let
$$\Delta \mathscr{E}_L^c = \bigcup_{n=0}^L \sigma(-C_n \Delta C_n) + [-L^{-\nu}, L^{-\nu}]$$
 then $|\cap_{n\geq 1} \bigcup_{L\geq n} \Delta \mathscr{E}_L^c| = 0.$

 $\Delta \mathscr{E} = {}^{c} (\cap_{n} \cup_{L \ge n} \Delta \mathscr{E}_{L}^{c}) \text{ is of total measure.}$

This completes the proof.

$$-P\Delta Q - Q\Delta P = -\sum_{l=1}^{l_0} C_l \Delta C_l$$

where C_l is the projector $C_l = \sum_{\gamma \in \mathscr{C}_j} |\gamma\rangle \langle \gamma|$.

The projectors C_l and $C_{l'}$ are orthogonal to each other for $l \neq l'$.

So the spectrum of $-P\Delta Q - Q\Delta P$ is given by the union of the spectra of $(C_l\Delta C_l)_{1\leq j\leq J}$.

Each of these operators : Dirichlet Laplacian on interval of length, the length of C_l .

Its spectral decomposition can be computed explicitly: for segment of length n,

- the eigenvalues are simple and are given by $(2\cos(k\pi/(n+1)))_{1 \le k \le n}$;
- for k ∈ {1,...,n}, the eigenspace associated to 2 cos(kπ/(n+1)) is generated by the vector (sin(kjπ/(n+1))_{1≤j≤n}.

Let
$$\Delta \mathscr{E}_L^c = \bigcup_{n=0}^L \sigma(-C_n \Delta C_n) + [-L^{-\nu}, L^{-\nu}]$$
 then $|\cap_{n\geq 1} \bigcup_{L\geq n} \Delta \mathscr{E}_L^c| = 0.$

 $\Delta \mathscr{E} = {}^{c} (\cap_{n} \cup_{L \ge n} \Delta \mathscr{E}_{L}^{c}) \text{ is of total measure.}$

This completes the proof.

イロン イボン イヨン イヨン

$$-P\Delta Q - Q\Delta P = -\sum_{l=1}^{l_0} C_l \Delta C_l$$

where C_l is the projector $C_l = \sum_{\gamma \in \mathscr{C}_j} |\gamma\rangle \langle \gamma|$.

The projectors C_l and $C_{l'}$ are orthogonal to each other for $l \neq l'$.

So the spectrum of $-P\Delta Q - Q\Delta P$ is given by the union of the spectra of $(C_l\Delta C_l)_{1\leq j\leq J}$. Each of these operators : Dirichlet Laplacian on interval of length, the length of C_l . Its spectral decomposition can be computed explicitly: for segment of length *n*,

• the eigenvalues are simple and are given by $(2\cos(k\pi/(n+1)))_{1 \le k \le n}$;

 for k ∈ {1,...,n}, the eigenspace associated to 2 cos(kπ/(n+1)) is generated by the vector (sin(kjπ/(n+1))_{1≤j≤n}.

Let
$$\Delta \mathscr{E}_L^c = \bigcup_{n=0}^L \sigma(-C_n \Delta C_n) + [-L^{-\nu}, L^{-\nu}]$$
 then $|\cap_{n\geq 1} \bigcup_{L\geq n} \Delta \mathscr{E}_L^c| = 0.$

 $\Delta \mathscr{E} = {}^{c} (\cap_{n} \cup_{L \ge n} \Delta \mathscr{E}_{L}^{c})$ is of total measure.

This completes the proof.

$$-P\Delta Q - Q\Delta P = -\sum_{l=1}^{l_0} C_l \Delta C_l$$

where C_l is the projector $C_l = \sum_{\gamma \in \mathscr{C}_j} |\gamma\rangle \langle \gamma|$.

The projectors C_l and $C_{l'}$ are orthogonal to each other for $l \neq l'$.

So the spectrum of $-P\Delta Q - Q\Delta P$ is given by the union of the spectra of $(C_l\Delta C_l)_{1\leq j\leq J}$. Each of these operators : Dirichlet Laplacian on interval of length, the length of C_l . Its spectral decomposition can be computed explicitly: for segment of length *n*,

- the eigenvalues are simple and are given by $(2\cos(k\pi/(n+1)))_{1 \le k \le n}$;
- for k ∈ {1,...,n}, the eigenspace associated to 2 cos(kπ/(n+1)) is generated by the vector (sin(kjπ/(n+1))_{1≤j≤n}.

Let
$$\Delta \mathscr{E}_L^c = \bigcup_{n=0}^L \sigma(-C_n \Delta C_n) + [-L^{-\nu}, L^{-\nu}]$$
 then $|\cap_{n\geq 1} \bigcup_{L\geq n} \Delta \mathscr{E}_L^c| = 0.$

 $\Delta \mathscr{E} = {}^{c} (\cap_{n} \cup_{L \ge n} \Delta \mathscr{E}_{L}^{c}) \text{ is of total measure.}$

< ロ > < 回 > < 回 > < 回 > < 回</p>

This completes the proof.

$$-P\Delta Q - Q\Delta P = -\sum_{l=1}^{l_0} C_l \Delta C_l$$

where C_l is the projector $C_l = \sum_{\gamma \in \mathscr{C}_j} |\gamma\rangle \langle \gamma|$.

The projectors C_l and $C_{l'}$ are orthogonal to each other for $l \neq l'$.

So the spectrum of $-P\Delta Q - Q\Delta P$ is given by the union of the spectra of $(C_l\Delta C_l)_{1\leq j\leq J}$. Each of these operators : Dirichlet Laplacian on interval of length, the length of C_l . Its spectral decomposition can be computed explicitly: for segment of length *n*,

- the eigenvalues are simple and are given by $(2\cos(k\pi/(n+1)))_{1 \le k \le n}$;
- for k ∈ {1,...,n}, the eigenspace associated to 2cos(kπ/(n+1)) is generated by the vector (sin(kjπ/(n+1))_{1≤j≤n}.

Let $\Delta \mathscr{E}_L^c = \bigcup_{n=0}^L \sigma(-C_n \Delta C_n) + [-L^{-\nu}, L^{-\nu}]$ then $|\cap_{n \ge 1} \bigcup_{L \ge n} \Delta \mathscr{E}_L^c| = 0$. $\Delta \mathscr{E} = {}^c (\cap_n \bigcup_{L \ge n} \Delta \mathscr{E}_L^c)$ is of total measure.

This completes the proof.

$$-P\Delta Q - Q\Delta P = -\sum_{l=1}^{l_0} C_l \Delta C_l$$

where C_l is the projector $C_l = \sum_{\gamma \in \mathscr{C}_j} |\gamma\rangle \langle \gamma|$.

The projectors C_l and $C_{l'}$ are orthogonal to each other for $l \neq l'$.

So the spectrum of $-P\Delta Q - Q\Delta P$ is given by the union of the spectra of $(C_l\Delta C_l)_{1\leq j\leq J}$. Each of these operators : Dirichlet Laplacian on interval of length, the length of C_l . Its spectral decomposition can be computed explicitly: for segment of length *n*,

- the eigenvalues are simple and are given by $(2\cos(k\pi/(n+1)))_{1 \le k \le n}$;
- for k ∈ {1,...,n}, the eigenspace associated to 2cos(kπ/(n+1)) is generated by the vector (sin(kjπ/(n+1))_{1≤j≤n}.

Let
$$\Delta \mathscr{E}_L^c = \bigcup_{n=0}^L \sigma(-C_n \Delta C_n) + [-L^{-\nu}, L^{-\nu}]$$
 then $|\cap_{n\geq 1} \bigcup_{L\geq n} \Delta \mathscr{E}_L^c| = 0.$

 $\Delta \mathscr{E} = {}^{c} (\cap_{n} \cup_{L \ge n} \Delta \mathscr{E}_{L}^{c})$ is of total measure.

This completes the proof.

$$-P\Delta Q - Q\Delta P = -\sum_{l=1}^{l_0} C_l \Delta C_l$$

where C_l is the projector $C_l = \sum_{\gamma \in \mathscr{C}_j} |\gamma\rangle \langle \gamma|$.

The projectors C_l and $C_{l'}$ are orthogonal to each other for $l \neq l'$.

So the spectrum of $-P\Delta Q - Q\Delta P$ is given by the union of the spectra of $(C_l\Delta C_l)_{1\leq j\leq J}$. Each of these operators : Dirichlet Laplacian on interval of length, the length of C_l . Its spectral decomposition can be computed explicitly: for segment of length *n*,

- the eigenvalues are simple and are given by $(2\cos(k\pi/(n+1)))_{1 \le k \le n}$;
- for k ∈ {1,...,n}, the eigenspace associated to 2cos(kπ/(n+1)) is generated by the vector (sin(kjπ/(n+1))_{1≤j≤n}.

Let
$$\Delta \mathscr{E}_L^c = \bigcup_{n=0}^L \sigma(-C_n \Delta C_n) + [-L^{-\nu}, L^{-\nu}]$$
 then $|\cap_{n\geq 1} \bigcup_{L\geq n} \Delta \mathscr{E}_L^c| = 0.$

 $\Delta \mathscr{E} = {}^{c} (\cap_{n} \cup_{L \ge n} \Delta \mathscr{E}_{L}^{c})$ is of total measure.

This completes the proof.

$$-P\Delta Q - Q\Delta P = -\sum_{l=1}^{l_0} C_l \Delta C_l$$

where C_l is the projector $C_l = \sum_{\gamma \in \mathscr{C}_j} |\gamma\rangle \langle \gamma|$.

The projectors C_l and $C_{l'}$ are orthogonal to each other for $l \neq l'$.

So the spectrum of $-P\Delta Q - Q\Delta P$ is given by the union of the spectra of $(C_l\Delta C_l)_{1\leq j\leq J}$. Each of these operators : Dirichlet Laplacian on interval of length, the length of C_l . Its spectral decomposition can be computed explicitly: for segment of length *n*,

- the eigenvalues are simple and are given by $(2\cos(k\pi/(n+1)))_{1 \le k \le n}$;
- for k ∈ {1,...,n}, the eigenspace associated to 2cos(kπ/(n+1)) is generated by the vector (sin(kjπ/(n+1))_{1≤j≤n}.

Let
$$\Delta \mathscr{E}_L^c = \bigcup_{n=0}^L \sigma(-C_n \Delta C_n) + [-L^{-\nu}, L^{-\nu}]$$
 then $|\cap_{n\geq 1} \bigcup_{L\geq n} \Delta \mathscr{E}_L^c| = 0.$

 $\Delta \mathscr{E} = {}^{c} (\cap_{n} \cup_{L \ge n} \Delta \mathscr{E}_{L}^{c})$ is of total measure.

This completes the proof.

$$-P\Delta Q - Q\Delta P = -\sum_{l=1}^{l_0} C_l \Delta C_l$$

where C_l is the projector $C_l = \sum_{\gamma \in \mathscr{C}_j} |\gamma\rangle \langle \gamma|$.

The projectors C_l and $C_{l'}$ are orthogonal to each other for $l \neq l'$.

So the spectrum of $-P\Delta Q - Q\Delta P$ is given by the union of the spectra of $(C_l\Delta C_l)_{1\leq j\leq J}$. Each of these operators : Dirichlet Laplacian on interval of length, the length of C_l . Its spectral decomposition can be computed explicitly: for segment of length *n*,

- the eigenvalues are simple and are given by $(2\cos(k\pi/(n+1)))_{1 \le k \le n}$;
- for k ∈ {1,...,n}, the eigenspace associated to 2cos(kπ/(n+1)) is generated by the vector (sin(kjπ/(n+1))_{1≤j≤n}.

Let
$$\Delta \mathscr{E}_L^c = \bigcup_{n=0}^L \sigma(-C_n \Delta C_n) + [-L^{-\nu}, L^{-\nu}]$$
 then $|\cap_{n\geq 1} \bigcup_{L\geq n} \Delta \mathscr{E}_L^c| = 0.$

 $\Delta \mathscr{E} = {}^{c} (\cap_{n} \cup_{L \ge n} \Delta \mathscr{E}_{L}^{c})$ is of total measure.

This completes the proof.