KdV flow on the space of generalized reflectionless potentials

S. Kotani

Kwansei-Gakuin University

July 16, 2010

S. Kotani (Kwansei-Gakuin University) KdV flow on the space of generalized reflection

Contents

Introduction

- Weyl functions
- Random Schrödinger operators
- Basic facts
- Potentials with finite bands (classical results)
- Reflectionless potentials
- Construction of KdV flow
 - Space of reflectionless potentials
 - Sato's grassmannian manifold
 - Quick view of derivation of the equations
 - Rigorous construction of KdV flow
- Future program
 - Almost periodicity
 - A sufficient condition
 - Conjecture

• Potentials:
$$\mathcal{Q} = \left\{ q; \ q \text{ is real valued, } \sup_n \int_n^{n+1} |q(x)| \, dx < \infty \right\}$$

э.

・ロト ・日下 ・ 日下

æ

- Potentials: $\mathcal{Q} = \left\{ q; \ q \text{ is real valued, } \sup_{n} \int_{n}^{n+1} |q(x)| \, dx < \infty \right\}$
- 1D Schrödinger op.: $L = L^q = -d^2/dx^2 + q$

- Potentials: $\mathcal{Q} = \left\{ q; \ q \text{ is real valued, } \sup_n \int_n^{n+1} |q(x)| \, dx < \infty \right\}$
- 1D Schrödinger op.: $L = L^q = -d^2/dx^2 + q$
- For $\forall E \in \mathbb{C} \smallsetminus \mathbb{R}$, $\exists 1 f_{\pm}$ satisfying

$$Lf_{\pm} = Ef_{\pm}$$
, s.t. $f_{\pm} \in L^{2}(\mathbb{R}_{\pm})$, $f_{\pm} \neq 0$

- Potentials: $\mathcal{Q} = \left\{ q; \ q \text{ is real valued, } \sup_n \int_n^{n+1} |q(x)| \, dx < \infty \right\}$
- 1D Schrödinger op.: $L = L^q = -d^2/dx^2 + q$
- For $\forall E \in \mathbb{C} \smallsetminus \mathbb{R}$, $\exists 1 f_{\pm}$ satisfying

$$Lf_{\pm} = Ef_{\pm}$$
, s.t. $f_{\pm} \in L^{2}(\mathbb{R}_{\pm})$, $f_{\pm} \neq 0$

• Green function: For $x \ge y$

$$(L-E)^{-1}(x,y) = g_E(x,y) = \frac{f_+(x,E)f_-(y,E)}{\text{Wronskian}[f_+,f_-]}$$

- Potentials: $\mathcal{Q} = \left\{ q; \ q \text{ is real valued, } \sup_n \int_n^{n+1} |q(x)| \, dx < \infty \right\}$
- 1D Schrödinger op.: $L = L^q = -d^2/dx^2 + q$
- For $\forall E \in \mathbb{C} \smallsetminus \mathbb{R}$, $\exists 1 f_{\pm}$ satisfying

$$Lf_{\pm} = Ef_{\pm}$$
, s.t. $f_{\pm} \in L^{2}(\mathbb{R}_{\pm})$, $f_{\pm} \neq 0$

• Green function: For $x \ge y$

$$(L-E)^{-1}(x,y) = g_E(x,y) = \frac{f_+(x,E)f_-(y,E)}{\text{Wronskian}[f_+,f_-]}$$

Weyl functions:

$$m_+(E) = rac{f'_+(0,E)}{f_+(0,E)}, \quad m_-(E) = -rac{f'_-(0,E)}{f_-(0,E)}.$$

 $m_{\pm}(E)$: Herglotz functions (holomorphic functions on \mathbb{C}_+ with positive imaginary parts)

$$\left\{\begin{array}{l}T_{x}:\Omega \to \Omega \quad \text{with} \quad T_{x+y} = T_{x}T_{y}\\P\left(T_{x}A\right) = P\left(A\right) \text{ for } \forall x \in \mathbb{R}, \forall A \in \mathcal{F}\end{array}\right.$$

$$\left\{ \begin{array}{ll} T_{x}:\Omega \to \Omega \quad \text{with} \quad T_{x+y} = T_{x}T_{y} \\ P\left(T_{x}A\right) = P\left(A\right) \text{ for } \forall x \in \mathbb{R}, \forall A \in \mathcal{F} \end{array} \right.$$

• Ergodicity: $P(T_xA \ominus A) = 0$ for $\forall x \in \mathbb{R} \Longrightarrow P(A) = 0$ or 1

$$\left\{\begin{array}{l}T_{x}:\Omega \to \Omega \quad \text{with} \quad T_{x+y} = T_{x}T_{y}\\P\left(T_{x}A\right) = P\left(A\right) \text{ for } \forall x \in \mathbb{R}, \forall A \in \mathcal{F}\end{array}\right.$$

- Ergodicity: $P(T_x A \ominus A) = 0$ for $\forall x \in \mathbb{R} \implies P(A) = 0$ or 1
- Random potential: $q^{\omega}(x) = q(T_x\omega)$ for $\omega \in \Omega$ $(q: \Omega \to \mathbb{R})$

$$\left\{\begin{array}{ll}T_{x}:\Omega\to\Omega\quad\text{with}\quad T_{x+y}=T_{x}T_{y}\\P\left(T_{x}A\right)=P\left(A\right)\text{ for }\forall x\in\mathbb{R},\forall A\in\mathcal{F}\end{array}\right.$$

- Ergodicity: $P(T_x A \ominus A) = 0$ for $\forall x \in \mathbb{R} \implies P(A) = 0$ or 1
- Random potential: $q^{\omega}(x) = q(T_x\omega)$ for $\omega \in \Omega$ $(q: \Omega \to \mathbb{R})$
 - $\Omega = \mathbb{R}/\mathbb{Z}$ periodic

$$\left\{ \begin{array}{l} T_{x}:\Omega \to \Omega \quad \text{with} \quad T_{x+y} = T_{x}T_{y} \\ P\left(T_{x}A\right) = P\left(A\right) \text{ for } \forall x \in \mathbb{R}, \forall A \in \mathcal{F} \end{array} \right.$$

- Ergodicity: $P(T_xA \ominus A) = 0$ for $\forall x \in \mathbb{R} \implies P(A) = 0$ or 1
- Random potential: $q^{\omega}(x) = q(T_x\omega)$ for $\omega \in \Omega$ $(q: \Omega \to \mathbb{R})$
 - Ω = ℝ/ℤ periodic
 Ω = ℝ^d/ℤ^d, T_xω = xα + ω quasi periodic

$$\left\{ \begin{array}{l} T_{x}:\Omega \to \Omega \quad \text{with} \quad T_{x+y} = T_{x}T_{y} \\ P\left(T_{x}A\right) = P\left(A\right) \text{ for } \forall x \in \mathbb{R}, \forall A \in \mathcal{F} \end{array} \right.$$

- Ergodicity: $P(T_xA \ominus A) = 0$ for $\forall x \in \mathbb{R} \implies P(A) = 0$ or 1
- Random potential: $q^{\omega}(x) = q(T_x\omega)$ for $\omega \in \Omega$ $(q: \Omega \to \mathbb{R})$
 - $\Omega = \mathbb{R}/\mathbb{Z}$ periodic • $\Omega = \mathbb{R}^d/\mathbb{Z}^d$, $T_x \omega = x\alpha + \omega$ quasi periodic • $\Omega = C (\mathbb{R} \to M)$ Brownian motion on a compact R-manifold

$$\left\{ \begin{array}{l} T_{x}:\Omega \to \Omega \quad \text{with} \quad T_{x+y} = T_{x}T_{y} \\ P\left(T_{x}A\right) = P\left(A\right) \text{ for } \forall x \in \mathbb{R}, \forall A \in \mathcal{F} \end{array} \right.$$

- Ergodicity: $P(T_xA \ominus A) = 0$ for $\forall x \in \mathbb{R} \implies P(A) = 0$ or 1
- Random potential: $q^{\omega}(x) = q(T_x\omega)$ for $\omega \in \Omega$ $(q: \Omega \to \mathbb{R})$
 - Ω = ℝ/ℤ periodic
 Ω = ℝ^d/ℤ^d, T_xω = xα + ω quasi periodic
 Ω = C (ℝ → M) Brownian motion on a compact R-manifold

• Random Schrödinger op.: $L^{\omega} = -d^2/dx^2 + q^{\omega}$, $(q^{\omega} \in Q)$

Basic facts

• Classification of spectrum Σ of L:

$$\left\{ \begin{array}{l} \Sigma = \Sigma_{ac}(\text{absolutely continuous sp.}) \cup \Sigma_{s}(\text{singular sp.}) \\ \Sigma_{s} = \Sigma_{p}(\text{point sp.}) \cup \Sigma_{sc}(\text{singular continuous sp.}) \end{array} \right.$$

- 一司

Basic facts

• Classification of spectrum Σ of L:

 $\left\{ \begin{array}{l} \Sigma = \Sigma_{ac}(\text{absolutely continuous sp.}) \cup \Sigma_{s}(\text{singular sp.}) \\ \Sigma_{s} = \Sigma_{p}(\text{point sp.}) \cup \Sigma_{sc}(\text{singular continuous sp.}) \end{array} \right.$

• For random Schrödinger operator L^{ω} :

 Σ , Σ_{ac} , Σ_{p} , Σ_{sc} independent of ω (Pastur)

Basic facts

• Classification of spectrum Σ of L:

 $\left\{ \begin{array}{l} \Sigma = \Sigma_{ac}(\text{absolutely continuous sp.}) \cup \Sigma_{s}(\text{singular sp.}) \\ \Sigma_{s} = \Sigma_{p}(\text{point sp.}) \cup \Sigma_{sc}(\text{singular continuous sp.}) \end{array} \right.$

• For random Schrödinger operator L^{ω} :

 Σ , Σ_{ac} , Σ_{p} , Σ_{sc} independent of ω (Pastur)

• Identity on Σ_{ac} : For all $\omega \in supp P$,

Especially for periodic potentials, this identity holds on Σ_{ac} , or equivallently on each interval of stability.

Potentials with finite bands (classical results)

• If $m^{\omega}_+(E+i0) = -\overline{m^{\omega}_-(E+i0)}$ for a.e. $E \in I$ (I : interval), then

Potentials with finite bands (classical results)

• If $m^{\omega}_{+}(E+i0) = -\overline{m^{\omega}_{-}(E+i0)}$ for a.e. $E \in I$ (I: interval), then • $\Longrightarrow \operatorname{Re} g^{\omega}_{E}(x,x) = 0$ for a.e. $E \in I$

Potentials with finite bands (classical results)

• If $m^{\omega}_+(E+i0) = -\overline{m^{\omega}_-(E+i0)}$ for a.e. $E \in I$ (I : interval), then

•
$$\Longrightarrow \operatorname{Re} g^{\omega}_{E}(x,x) = 0$$
 for a.e. $E \in I$

• $\Longrightarrow g_E^{\omega}(\bar{x}, x)$ is analytically continuable to \mathbb{C}_- through I with respect to E.

• If $m^{\omega}_+(E+i0) = -\overline{m^{\omega}_-(E+i0)}$ for a.e. $E \in I$ (I : interval), then

•
$$\Longrightarrow$$
 $\operatorname{Re} g^{\omega}_{E}(x,x) = 0$ for a.e. $E \in I$

- $\implies g_E^{\omega}(\bar{x}, x)$ is analytically continuable to \mathbb{C}_- through I with respect to E.
- \implies spL^q is purely absolutely continuous on I.

• If $m^{\omega}_+(E+i0) = -\overline{m^{\omega}_-(E+i0)}$ for a.e. $E \in I$ (I : interval), then

•
$$\Longrightarrow \operatorname{Re} g^{\omega}_{E}(x,x) = 0$$
 for a.e. $E \in I$

- $\Longrightarrow g_E^{\omega}(x, x)$ is analytically continuable to \mathbb{C}_- through I with respect to E.
- \implies spL^q is purely absolutely continuous on I.

• If
$$\Sigma = \Sigma_{ac} = igcup_{j=1}^n I_j$$
 (disjoint sum of intervals)

• If $m^{\omega}_+(E+i0) = -\overline{m^{\omega}_-(E+i0)}$ for a.e. $E \in I$ (I : interval), then

•
$$\Longrightarrow \operatorname{Re} g^{\omega}_{E}(x,x) = 0$$
 for a.e. $E \in I$

- $\Longrightarrow g_E^{\omega}(x, x)$ is analytically continuable to \mathbb{C}_- through I with respect to E.
- \implies spL^q is purely absolutely continuous on I.

• If
$$\Sigma = \Sigma_{ac} = igcup_{j=1}^n I_j$$
 (disjoint sum of intervals)

• $\implies q^{\omega}(x)$ is described by using Θ -functions.

• If
$$q$$
 satisfies $\int_{\mathbb{R}} \left| q(x) \right| \left(1 + |x|
ight) dx < \infty$, then

$$\exists 1f \text{ s.t. } Lf = k^2 f, \ f(x) \sim \begin{cases} e^{-ikx} & \text{as } x \to -\infty \\ \frac{1}{t(k)}e^{-ikx} + \frac{r(k)}{t(k)}e^{ikx} & \text{as } x \to \infty \end{cases}$$

and, if the reflection coefficient r(k) vanishes on $[0,\infty)$, then q is called **reflectionless** on $[0,\infty)$. In this case

• If
$$q$$
 satisfies $\int_{\mathbb{R}} \left| q(x) \right| \left(1 + |x|
ight) dx < \infty$, then

$$\exists 1f \text{ s.t. } Lf = k^2 f, \ f(x) \sim \begin{cases} e^{-ikx} & \text{as } x \to -\infty \\ \frac{1}{t(k)}e^{-ikx} + \frac{r(k)}{t(k)}e^{ikx} & \text{as } x \to \infty \end{cases}$$

and, if the reflection coefficient r(k) vanishes on $[0,\infty)$, then q is called **reflectionless** on $[0,\infty)$. In this case

•
$$q(x) = -2\frac{d^2}{dx^2}\log\det(I + A(x)), A(x) = \left(\frac{\sqrt{m_i m_j}}{\eta_i + \eta_j}e^{-(\eta_i + \eta_j)x}\right)$$

• If
$$q$$
 satisfies $\int_{\mathbb{R}} \left| q(x) \right| \left(1 + |x|
ight) dx < \infty$, then

$$\exists 1f \text{ s.t. } Lf = k^2 f, \ f(x) \sim \begin{cases} e^{-ikx} & \text{as } x \to -\infty \\ \frac{1}{t(k)}e^{-ikx} + \frac{r(k)}{t(k)}e^{ikx} & \text{as } x \to \infty \end{cases}$$

and, if the reflection coefficient r(k) vanishes on $[0,\infty)$, then q is called **reflectionless** on $[0,\infty)$. In this case

•
$$q(x) = -2\frac{d^2}{dx^2}\log\det(I + A(x)), A(x) = \left(\frac{\sqrt{m_im_j}}{\eta_i + \eta_j}e^{-(\eta_i + \eta_j)x}\right)$$

• $m_+(E + i0) = -\overline{m_-(E + i0)}$ for a.e. $E \in [0, \infty)$.

c

• If
$$q$$
 satisfies $\int_{\mathbb{R}} |q(x)| \left(1+|x|\right) dx < \infty$, then

$$\exists 1f \text{ s.t. } Lf = k^2 f, \ f(x) \sim \begin{cases} e^{-ikx} & \text{as } x \to -\infty \\ \frac{1}{t(k)}e^{-ikx} + \frac{r(k)}{t(k)}e^{ikx} & \text{as } x \to \infty \end{cases}$$

and, if the reflection coefficient r(k) vanishes on $[0,\infty)$, then q is called **reflectionless** on $[0,\infty)$. In this case

•
$$q(x) = -2\frac{d^2}{dx^2}\log\det(I + A(x)), A(x) = \left(\frac{\sqrt{m_im_j}}{\eta_i + \eta_j}e^{-(\eta_i + \eta_j)x}\right)$$

• $m_+(E + i0) = -\overline{m_-(E + i0)}$ for a.e. $E \in [0, \infty)$.

• For $A \in \mathcal{B}(\mathbb{R})$, a potential $q \in \mathcal{R}(A)$ (reflectionless on A) iff

$$m_+\left(E+i0
ight)=-\overline{m_-\left(E+i0
ight)}~~{
m for}~{
m a.e.}~~E\in A.$$

• If
$$q$$
 satisfies $\int_{\mathbb{R}} \left| q(x) \right| \left(1 + |x|
ight) dx < \infty$, then

$$\exists 1f \text{ s.t. } Lf = k^2 f, \ f(x) \sim \begin{cases} e^{-ikx} & \text{as } x \to -\infty \\ \frac{1}{t(k)}e^{-ikx} + \frac{r(k)}{t(k)}e^{ikx} & \text{as } x \to \infty \end{cases}$$

and, if the reflection coefficient r(k) vanishes on $[0,\infty)$, then q is called **reflectionless** on $[0,\infty)$. In this case

•
$$q(x) = -2\frac{d^2}{dx^2}\log\det(I + A(x)), A(x) = \left(\frac{\sqrt{m_im_j}}{\eta_i + \eta_j}e^{-(\eta_i + \eta_j)x}\right)$$

• $m_+(E + i0) = -\overline{m_-(E + i0)}$ for a.e. $E \in [0, \infty)$.

• For $A \in \mathcal{B}\left(\mathbb{R}\right)$, a potential $q \in \mathcal{R}(A)$ (reflectionless on A) iff

$$m_+(E+i0)=-\overline{m_-(E+i0)}$$
 for a.e. $E\in A.$

• Random potential q^{ω} is reflectionless on Σ_{ac} .

• If
$$q$$
 satisfies $\int_{\mathbb{R}} |q(x)| \left(1+|x|
ight) dx < \infty$, then

$$\exists 1f \text{ s.t. } Lf = k^2 f, \ f(x) \sim \begin{cases} e^{-ikx} & \text{as } x \to -\infty \\ \frac{1}{t(k)}e^{-ikx} + \frac{r(k)}{t(k)}e^{ikx} & \text{as } x \to \infty \end{cases}$$

and, if the reflection coefficient r(k) vanishes on $[0,\infty)$, then q is called **reflectionless** on $[0,\infty)$. In this case

•
$$q(x) = -2\frac{d^2}{dx^2}\log\det(I + A(x)), A(x) = \left(\frac{\sqrt{m_i m_j}}{\eta_i + \eta_j}e^{-(\eta_i + \eta_j)x}\right)$$

• $m_+(E + i0) = -\overline{m_-(E + i0)}$ for a.e. $E \in [0, \infty)$.

• For $A \in \mathcal{B}\left(\mathbb{R}\right)$, a potential $q \in \mathcal{R}(A)$ (reflectionless on A) iff

$$m_+\left(E+i0
ight)=-\overline{m_-\left(E+i0
ight)}~~{
m for}~{
m a.e.}~~E\in A.$$

- Random potential q^{ω} is reflectionless on Σ_{ac} .
- Especially periodic potential is reflectionless on its spectrum.

$$\begin{array}{lll} \Omega & = & \{q \in \mathcal{Q}; \; q \in \mathcal{R}(\mathbb{R}_+) \; \text{and} \; \Sigma\left(q\right) \subset [-1,\infty) \} \\ \Omega_{cl} & = & \Omega \cap L^1\left(\mathbb{R}, \left(1+|x|\right) dx\right) \end{array}$$

- ∢ ⊢⊒ →

3

$$\begin{aligned} \Omega &= \{q \in \mathcal{Q}; \ q \in \mathcal{R}(\mathbb{R}_+) \text{ and } \Sigma(q) \subset [-1,\infty) \} \\ \Omega_{cl} &= \Omega \cap L^1\left(\mathbb{R}, (1+|x|) \, dx\right) \end{aligned}$$

• To parametrize Ω, define

$$\mathcal{S} = \left\{ \sigma; ext{measure on } [-1,1] ext{ satisfying } \int_{[-1,1]} rac{\sigma(d\zeta)}{1-\zeta^2} \leq 1
ight\}.$$

$$\begin{array}{lll} \Omega & = & \{q \in \mathcal{Q}; \; q \in \mathcal{R}(\mathbb{R}_+) \; \text{and} \; \Sigma\left(q\right) \subset [-1,\infty) \} \\ \Omega_{cl} & = & \Omega \cap L^1\left(\mathbb{R}, \left(1+|x|\right) dx\right) \end{array}$$

• To parametrize Ω , define

$$\mathcal{S} = \left\{\sigma; ext{measure on } [-1,1] ext{ satisfying } \int_{[-1,1]} rac{\sigma(d\zeta)}{1-\zeta^2} \leq 1
ight\}.$$

Marchenko

$$\begin{aligned} \Omega &= \{q \in \mathcal{Q}; \ q \in \mathcal{R}(\mathbb{R}_+) \text{ and } \Sigma(q) \subset [-1,\infty) \} \\ \Omega_{cl} &= \Omega \cap L^1(\mathbb{R}, (1+|x|) \, dx) \end{aligned}$$

• To parametrize Ω , define

$$\mathcal{S} = \left\{ \sigma; ext{measure on } [-1,1] ext{ satisfying } \int_{[-1,1]} rac{\sigma(d\zeta)}{1-\zeta^2} \leq 1
ight\}.$$

Marchenko

•
$$q \in \Omega \iff m_{\pm}^q (-E^2) = -E - \int_{[-1,1]} \frac{\sigma(d\zeta)}{\pm \zeta - E}$$
 for $\exists \sigma \in S$.

$$\begin{aligned} \Omega &= \{q \in \mathcal{Q}; \ q \in \mathcal{R}(\mathbb{R}_+) \text{ and } \Sigma(q) \subset [-1,\infty) \} \\ \Omega_{cl} &= \Omega \cap L^1(\mathbb{R}, (1+|x|) \, dx) \end{aligned}$$

• To parametrize Ω , define

$$\mathcal{S} = \left\{ \sigma; ext{measure on } [-1,1] ext{ satisfying } \int_{[-1,1]} rac{\sigma(d\zeta)}{1-\zeta^2} \leq 1
ight\}.$$

Marchenko

•
$$q \in \Omega \iff m_{\pm}^{q}(-E^{2}) = -E - \int_{[-1,1]} \frac{\sigma(d\zeta)}{\pm \zeta - E}$$
 for $\exists \sigma \in S$.
• $q (\in \Omega)$ is holomorphic on $\{|\operatorname{Im} z| < 1\}$ having a bound

$$|q(z)| \leq 2 \left(1 - |\operatorname{Im} z|\right)^{-2} \Longrightarrow \Omega$$
 is compact.

$$\begin{aligned} \Omega &= \{q \in \mathcal{Q}; \ q \in \mathcal{R}(\mathbb{R}_+) \text{ and } \Sigma(q) \subset [-1,\infty) \} \\ \Omega_{cl} &= \Omega \cap L^1\left(\mathbb{R}, (1+|x|) \, dx\right) \end{aligned}$$

• To parametrize Ω , define

$$\mathcal{S} = \left\{ \sigma; ext{measure on } [-1,1] ext{ satisfying } \int_{[-1,1]} rac{\sigma(d\zeta)}{1-\zeta^2} \leq 1
ight\}.$$

Marchenko

•
$$q \in \Omega \iff m_{\pm}^{q}(-E^{2}) = -E - \int_{[-1,1]} \frac{\sigma(d\zeta)}{\pm \zeta - E}$$
 for $\exists \sigma \in S$.
• $q (\in \Omega)$ is holomorphic on $\{|\operatorname{Im} z| < 1\}$ having a bound

$$|q(z)| \leq 2 \left(1 - |\operatorname{Im} z|\right)^{-2} \Longrightarrow \Omega$$
 is compact.

• Facts:

$$\begin{aligned} \Omega &= \{q \in \mathcal{Q}; \ q \in \mathcal{R}(\mathbb{R}_+) \text{ and } \Sigma(q) \subset [-1,\infty) \} \\ \Omega_{cl} &= \Omega \cap L^1\left(\mathbb{R}, (1+|x|) \, dx\right) \end{aligned}$$

• To parametrize Ω , define

$$\mathcal{S} = \left\{ \sigma; ext{measure on } [-1,1] ext{ satisfying } \int_{[-1,1]} rac{\sigma(d\zeta)}{1-\zeta^2} \leq 1
ight\}.$$

Marchenko

•
$$q \in \Omega \iff m_{\pm}^{q}(-E^{2}) = -E - \int_{[-1,1]} \frac{\sigma(d\zeta)}{\pm \zeta - E}$$
 for $\exists \sigma \in S$.
• $q (\in \Omega)$ is holomorphic on $\{|\operatorname{Im} z| < 1\}$ having a bound

$$|q(z)| \leq 2 \left(1 - |\operatorname{Im} z|\right)^{-2} \Longrightarrow \Omega$$
 is compact.

• Facts:

•
$$q \in \Omega_{cl} \iff \operatorname{supp} \sigma$$
 is a finite set.

• Space of reflectionless potentials:

$$\begin{aligned} \Omega &= \{q \in \mathcal{Q}; \; q \in \mathcal{R}(\mathbb{R}_+) \text{ and } \Sigma(q) \subset [-1,\infty) \} \\ \Omega_{cl} &= \Omega \cap L^1\left(\mathbb{R}, (1+|x|) \, dx\right) \end{aligned}$$

• To parametrize Ω, define

$$\mathcal{S} = \left\{ \sigma; ext{measure on } [-1,1] ext{ satisfying } \int_{[-1,1]} rac{\sigma(d\zeta)}{1-\zeta^2} \leq 1
ight\}$$

Marchenko

•
$$q \in \Omega \iff m_{\pm}^{q} (-E^{2}) = -E - \int_{[-1,1]} \frac{\sigma(d\zeta)}{\pm \zeta - E}$$
 for $\exists \sigma \in S$.

• $q \ (\in \Omega)$ is holomorphic on $\{|\operatorname{Im} z| < 1\}$ having a bound

$$|q(z)| \leq 2 \left(1 - |\operatorname{Im} z|\right)^{-2} \Longrightarrow \Omega$$
 is compact.

Facts:

- $q \in \Omega_{cl} \iff \text{supp } \sigma \text{ is a finite set.}$
- Ω_{cl} ,{potentials with finite band spectrum} $\subset \Omega$ are dense.

$$H_{\pm} = H \cap \left\{ f = \sum_{\substack{n \ge 0 \\ (n \le -1)}} f_n z^n \right\}$$

•

 $P_{H_{\pm}}$: projections onto $H_{\pm}.$ Let $Gr^{(2)}(H)$ be the set of all closed subspaces W of H satisfying

$$H_{\pm} = H \cap \left\{ f = \sum_{\substack{n \ge 0 \\ (n \le -1)}} f_n z^n \right\}$$

•

 $P_{H_{\pm}}$: projections onto H_{\pm} . Let $Gr^{(2)}(H)$ be the set of all closed subspaces W of H satisfying

• (i) $P_{H_-}: W \longrightarrow H_-$ is of trace class.

$$H_{\pm} = H \cap \left\{ f = \sum_{\substack{n \ge 0 \\ (n \le -1)}} f_n z^n \right\}$$

•

 $P_{H_{\pm}}$: projections onto H_{\pm} . Let $Gr^{(2)}(H)$ be the set of all closed subspaces W of H satisfying

• (i)
$$P_{H_-}: W \longrightarrow H_-$$
 is of trace class.

• (ii)
$$f \in W \longrightarrow z^2 f \in W$$
.

$$H_{\pm} = H \cap \left\{ f = \sum_{\substack{n \ge 0 \\ (n \le -1)}} f_n z^n \right\}$$

•

 $P_{H_{\pm}}$: projections onto H_{\pm} . Let $Gr^{(2)}(H)$ be the set of all closed subspaces W of H satisfying

• (i) $P_{H_-}: W \longrightarrow H_-$ is of trace class.

• (ii)
$$f \in W \longrightarrow z^2 f \in W$$

• (iii) $P_{H_+}: W \to H_+$ bijective

Quick view of derivation of the equations

• Set $g_x(z) = e^{xz}$ and assume $g_x W \in Gr^{(2)}(H)$. Then $P_{H_+}(g_x W) = H_+$ implies

 $\exists 1 f(x, \cdot) \in W$ s.t. $e^{xz} f(x, z) = 1 + a_1(x)z^{-1} + a_2(x)z^{-2} + \cdots$

Quick view of derivation of the equations

• Set $g_x(z) = e^{xz}$ and assume $g_x W \in Gr^{(2)}(H)$. Then $P_{H_+}(g_x W) = H_+$ implies

$$\exists 1 f(x, \cdot) \in W \text{ s.t. } e^{xz} f(x, z) = 1 + a_1(x)z^{-1} + a_2(x)z^{-2} + \cdots$$

• Differentiate w.r.t. $x \Longrightarrow$ $e^{xz} \left(f''(x,z) - z^2 f(x,z) + 2a'_1(x)f(x,z) \right) = \boxdot z^{-1} + \boxdot z^{-2} + \cdots$ $\Rightarrow P_{H_+} \left(e^{g_x} \left(f''(x,\cdot) - z^2 f(x,\cdot) + 2a'_1(x)f(x,\cdot) \right) \right) = 0$ $\Rightarrow f''(x,z) - z^2 f(x,z) + 2a'_1(x)f(x,z) = 0 \ (P_{H_+} \text{ is bijective})$ $\Rightarrow L^q f(\cdot,z) = -z^2 f(\cdot,z) \text{ with } q(x) = -2a'_1(x)$

Quick view of derivation of the equations

• Set $g_x(z) = e^{xz}$ and assume $g_x W \in Gr^{(2)}(H)$. Then $P_{H_+}(g_x W) = H_+$ implies

$$\exists 1 f(x, \cdot) \in W \text{ s.t. } e^{xz} f(x, z) = 1 + a_1(x)z^{-1} + a_2(x)z^{-2} + \cdots$$

• Differentiate w.r.t. $x \implies e^{xz} (f''(x,z) - z^2 f(x,z) + 2a'_1(x)f(x,z)) = \boxdot z^{-1} + \boxdot z^{-2} + \cdots \Rightarrow P_{H_+} (e^{g_x} (f''(x, \cdot) - z^2 f(x, \cdot) + 2a'_1(x)f(x, \cdot))) = 0 \Rightarrow f''(x,z) - z^2 f(x,z) + 2a'_1(x)f(x,z) = 0 (P_{H_+} \text{ is bijective}) \Rightarrow L^q f(\cdot,z) = -z^2 f(\cdot,z) \text{ with } q(x) = -2a'_1(x)$ • Set $g_{x,t}(z) = e^{xz - 4tz^3}$ and assume $g_{x,t}W \in Gr^{(2)}(H)$. Similarly $e^{-xz + 4tz^3} f(t,x,z) = 1 + a_1(t,x)z^{-1} + a_2(t,x)z^{-2} + \cdots$, and $q(t,x) = -2a'_1(t,x)$ fulfills KdV eq..

Let W∈ Gr⁽²⁾(H). (i) and (iii) imply ∃bounded operator A from H₊ to H₋ s.t.

$$W = \{f + Af; f \in H_+\}.$$

Let W∈ Gr⁽²⁾(H). (i) and (iii) imply ∃bounded operator A from H₊ to H₋ s.t.

$$W = \{f + Af; f \in H_+\}.$$

Set

$$\Gamma = \left\{g \, \, {
m hol.} \, \, {
m on} \, \, |z| < 1. \, g(z), g(z)^{-1} \, {
m bdd.}
ight\}.$$

For $W \in Gr^{(2)}(H)$ and $g \in \Gamma$ define the <u> τ -function</u> introduced by Sato:

$$\tau_{\mathrm{W}}(g) == \det(I + gP_{H_+}g^{-1}A).$$

Let W∈ Gr⁽²⁾(H). (i) and (iii) imply ∃bounded operator A from H₊ to H₋ s.t.

$$W = \{f + Af; f \in H_+\}.$$

Set

$$\Gamma = \left\{g ext{ hol. on } |z| < 1. \ g(z), g(z)^{-1} ext{ bdd.}
ight\}.$$

For $W \in Gr^{(2)}(H)$ and $g \in \Gamma$ define the <u> τ -function</u> introduced by Sato:

$$\tau_{\mathrm{W}}(g) == \det(I + gP_{H_+}g^{-1}A).$$

Cocyle property

$$au_W(g_1g_2)= au_W(g_1) au_{g_1^{-1}W}(g_2) \quad ext{for} \quad g_1,g_2\in \Gamma$$

Let W∈ Gr⁽²⁾(H). (i) and (iii) imply ∃bounded operator A from H₊ to H₋ s.t.

$$W = \{f + Af; f \in H_+\}.$$

Set

$$\Gamma = \left\{g ext{ hol. on } |z| < 1. \ g(z), g(z)^{-1} ext{ bdd.}
ight\}.$$

For $W \in Gr^{(2)}(H)$ and $g \in \Gamma$ define the <u> τ -function</u> introduced by Sato:

$$\tau_{\mathrm{W}}(g) == \det(I + gP_{H_+}g^{-1}A).$$

Cocyle property

$$au_W(g_1g_2)= au_W(g_1) au_{g_1^{-1}W}(g_2) \quad ext{for} \quad g_1,g_2\in \Gamma$$

Note

$$g^{-1}W \in Gr^{(2)}(H) \iff \tau_W(g) \neq 0.$$

• For $\zeta \in \mathbb{C}$ such that $|\zeta| > 1$ set $q_{\zeta}(z) = 1 - \frac{z}{\zeta}$. Then, for $f \in H_-$ and |z| < 1 we have

$$\left(q_{\zeta}P_{H_{+}}q_{\zeta}^{-1}f\right)(z) = \left(1 - \frac{z}{\zeta}\right)\frac{1}{2\pi i}\int_{|\zeta'|=1}\frac{f(\zeta')}{\left(1 - \frac{\zeta'}{\zeta}\right)(\zeta'-z)}d\zeta' = f(\zeta).$$

- 一司

• For $\zeta \in \mathbb{C}$ such that $|\zeta| > 1$ set $q_{\zeta}(z) = 1 - \frac{z}{\zeta}$. Then, for $f \in H_-$ and |z| < 1 we have

$$\left(q_{\zeta}P_{H_{+}}q_{\zeta}^{-1}f\right)(z) = \left(1 - \frac{z}{\zeta}\right)\frac{1}{2\pi i}\int_{|\zeta'|=1}\frac{f(\zeta')}{\left(1 - \frac{\zeta'}{\zeta}\right)(\zeta'-z)}d\zeta' = f(\zeta).$$

• Therefore, if $W \in Gr^{(2)}(H)$, then

$$\tau_{W}\left(q_{\zeta}\right) = \det\left(I + q_{\zeta}P_{H_{+}}q_{\zeta}^{-1}A_{W}\right) = 1 + \left(A_{W}1\right)\left(\zeta\right) \in W.$$

• For $\zeta \in \mathbb{C}$ such that $|\zeta| > 1$ set $q_{\zeta}(z) = 1 - \frac{z}{\zeta}$. Then, for $f \in H_$ and |z| < 1 we have

$$\left(q_{\zeta}P_{H_{+}}q_{\zeta}^{-1}f\right)(z) = \left(1 - \frac{z}{\zeta}\right)\frac{1}{2\pi i}\int_{|\zeta'|=1}\frac{f(\zeta')}{\left(1 - \frac{\zeta'}{\zeta}\right)(\zeta'-z)}d\zeta' = f(\zeta).$$

• Therefore, if $W \in Gr^{(2)}(H)$, then

$$\tau_{W}\left(q_{\zeta}\right) = \det\left(I + q_{\zeta}P_{H_{+}}q_{\zeta}^{-1}A_{W}\right) = 1 + \left(A_{W}1\right)\left(\zeta\right) \in W.$$

Replacing W by e^x·W, we have

$$au_{e^{x}\cdot W}\left(q_{\zeta}\right)=e^{x\zeta}f(x,\zeta)=1+rac{a_{1}(x)}{\zeta}+\cdots$$

• For $\zeta \in \mathbb{C}$ such that $|\zeta| > 1$ set $q_{\zeta}(z) = 1 - \frac{z}{\zeta}$. Then, for $f \in H_$ and |z| < 1 we have

$$\left(q_{\zeta}P_{H_{+}}q_{\zeta}^{-1}f\right)(z) = \left(1 - \frac{z}{\zeta}\right)\frac{1}{2\pi i}\int_{|\zeta'|=1}\frac{f(\zeta')}{\left(1 - \frac{\zeta'}{\zeta}\right)(\zeta'-z)}d\zeta' = f(\zeta).$$

• Therefore, if $W \in Gr^{(2)}(H)$, then

$$\tau_{W}\left(q_{\zeta}\right) = \det\left(I + q_{\zeta}P_{H_{+}}q_{\zeta}^{-1}A_{W}\right) = 1 + \left(A_{W}1\right)\left(\zeta\right) \in W.$$

Replacing W by e^x·W, we have

$$au_{e^{x}\cdot W}\left(q_{\zeta}\right)=e^{x\zeta}f(x,\zeta)=1+rac{a_{1}(x)}{\zeta}+\cdots$$

•
$$a_1(x) = \lim_{\zeta \to \infty} \zeta \left(\tau_{e^{x} \cdot W} \left(q_{\zeta} \right) - 1 \right) = \lim_{\zeta \to \infty} \zeta \left(\frac{\tau_W \left(e^{-x \cdot q_{\zeta}} \right)}{\tau_W \left(e^{-x \cdot} \right)} - 1 \right)$$

= $\frac{\partial}{\partial x} \log \tau_W (e^{-x \cdot}).$

• For $W \in Gr^{(2)}(H)$ define $q(x) = q_W(x) = -2\frac{\partial^2}{\partial x^2}\log \tau_w(e^{-x})$.

イロト 人間ト イヨト イヨト

- For $W \in Gr^{(2)}(H)$ define $q(x) = q_W(x) = -2\frac{\partial^2}{\partial x^2}\log \tau_w(e^{-x\cdot}).$
- Since $\tau_w(e^{-x})$ is entire, q is meromorphic on \mathbb{C} with pole of order 2 at $x = x_0$ when $\tau_W(e^{-x_0}) = 0$.

- For $W \in Gr^{(2)}(H)$ define $q(x) = q_W(x) = -2\frac{\partial^2}{\partial x^2}\log \tau_w(e^{-x\cdot}).$
- Since $\tau_{W}(e^{-x})$ is entire, q is meromorphic on \mathbb{C} with pole of order 2 at $x = x_0$ when $\tau_{W}(e^{-x_0}) = 0$.
- For $f \in H\left(=L^2(|z|=1)\right)$ set $\overline{f}(z) = \overline{f(\overline{z})}$.

- For $W \in Gr^{(2)}(H)$ define $q(x) = q_W(x) = -2\frac{\partial^2}{\partial x^2}\log \tau_w(e^{-x\cdot}).$
- Since $\tau_w(e^{-x})$ is entire, q is meromorphic on \mathbb{C} with pole of order 2 at $x = x_0$ when $\tau_W(e^{-x_0}) = 0$.
- For $f \in H\left(=L^2(|z|=1)\right)$ set $\overline{f}(z) = \overline{f(\overline{z})}$.
- (iv) If $f \in W \Rightarrow \overline{f} \in W$. If W satisfies (iv), then q takes real values on \mathbb{R} .

- For $W \in Gr^{(2)}(H)$ define $q(x) = q_W(x) = -2\frac{\partial^2}{\partial x^2}\log \tau_w(e^{-x \cdot}).$
- Since $\tau_{W}(e^{-x})$ is entire, q is meromorphic on \mathbb{C} with pole of order 2 at $x = x_0$ when $\tau_{W}(e^{-x_0}) = 0$.
- For $f \in H\left(=L^2(|z|=1)\right)$ set $\overline{f}(z) = \overline{f(\overline{z})}$.

• (iv) If
$$f \in W \Rightarrow \overline{f} \in W$$
.
If W satisfies (iv), then q takes real values on \mathbb{R} .

Theorem

For $W \in Gr^{(2)}(H)$, $q_W \in \Omega$ (space of generalized reflectionless potentials) iff

(1) W is real (namely satisfies (iv)).

(2) W satisfies $\tau_{W}(g) \neq 0$ for any real $g \in \Gamma$.

In this case q_W is meromorphic on \mathbb{C} with poles of degree 2.

一回 ト イヨ ト イヨ ト ニヨ

- For $W \in Gr^{(2)}(H)$ define $q(x) = q_W(x) = -2\frac{\partial^2}{\partial x^2}\log \tau_w(e^{-x\cdot}).$
- Since $\tau_w(e^{-x})$ is entire, q is meromorphic on \mathbb{C} with pole of order 2 at $x = x_0$ when $\tau_W(e^{-x_0}) = 0$.
- For $f \in H\left(=L^2(|z|=1)\right)$ set $\overline{f}(z) = \overline{f(\overline{z})}$.

• (iv) If
$$f \in W \Rightarrow \overline{f} \in W$$
.
If W satisfies (iv), then q takes real values on \mathbb{R} .

Theorem

For $W \in Gr^{(2)}(H)$, $q_W \in \Omega$ (space of generalized reflectionless potentials) iff

- (1) W is real (namely satisfies (iv)).
- (2) W satisfies $\tau_{_{\mathrm{W}}}(g) \neq 0$ for any real $g \in \Gamma$.

In this case q_W is meromorphic on \mathbb{C} with poles of degree 2.

• We denote by $Gr_{real}^{(2)}(H)$ the set of all W satisfying the conditions of this theorem.

• For $W \in Gr^{(2)}(H)$, assume $g^{-1}W \in Gr^{(2)}(H)$ ($\Leftrightarrow \tau_w(g) \neq 0$) for $g \in \Gamma$,

$$(K(g)q)(x) = -2\frac{\partial^2}{\partial x^2}\log\tau_{g^{-1}W}(e^{-x}) = -2\frac{\partial^2}{\partial x^2}\log\tau_W(e^{-x}g).$$

If g is even, then $g^{-1}W = W$, hence K(g) = id.

• For $W \in Gr^{(2)}(H)$, assume $g^{-1}W \in Gr^{(2)}(H)$ ($\Leftrightarrow \tau_w(g) \neq 0$) for $g \in \Gamma$,

$$(K(g)q)(x) = -2\frac{\partial^2}{\partial x^2}\log\tau_{g^{-1}W}(e^{-x}) = -2\frac{\partial^2}{\partial x^2}\log\tau_W(e^{-x}g).$$

If g is even, then $g^{-1}W = W$, hence K(g) = id. • The cocycle property implies

$$K(g_1g_2) = K(g_1) K(g_2) \text{ for } g_1, g_2 \in \Gamma.$$

This implies that only the odd component of g plays a role.

• For $W \in Gr^{(2)}(H)$, assume $g^{-1}W \in Gr^{(2)}(H)$ ($\Leftrightarrow \tau_w(g) \neq 0$) for $g \in \Gamma$,

$$(K(g)q)(x) = -2\frac{\partial^2}{\partial x^2}\log\tau_{g^{-1}W}(e^{-x}) = -2\frac{\partial^2}{\partial x^2}\log\tau_W(e^{-x}g).$$

If g is even, then $g^{-1}W = W$, hence K(g) = id.

The cocycle property implies

$$K(g_1g_2) = K(g_1) K(g_2) \text{ for } g_1, g_2 \in \Gamma.$$

This implies that only the odd component of g plays a role. • Examples

• For $W \in Gr^{(2)}(H)$, assume $g^{-1}W \in Gr^{(2)}(H)$ ($\Leftrightarrow \tau_w(g) \neq 0$) for $g \in \Gamma$,

$$(K(g)q)(x) = -2\frac{\partial^2}{\partial x^2}\log\tau_{g^{-1}W}(e^{-x}) = -2\frac{\partial^2}{\partial x^2}\log\tau_W(e^{-x}g).$$

If g is even, then $g^{-1}W = W$, hence K(g) = id. • The cocycle property implies

$$K(g_1g_2) = K(g_1) K(g_2) \text{ for } g_1, g_2 \in \Gamma.$$

This implies that only the odd component of g plays a role.

Examples

1
$$(K(e^{-xz})q)(\cdot) = q(x+\cdot),$$

• For $W \in Gr^{(2)}(H)$, assume $g^{-1}W \in Gr^{(2)}(H)$ ($\Leftrightarrow \tau_w(g) \neq 0$) for $g \in \Gamma$,

$$(K(g)q)(x) = -2\frac{\partial^2}{\partial x^2}\log\tau_{g^{-1}W}(e^{-x}) = -2\frac{\partial^2}{\partial x^2}\log\tau_W(e^{-x}g).$$

If g is even, then $g^{-1}W = W$, hence K(g) = id. • The cocycle property implies

$$K(g_1g_2) = K(g_1) K(g_2) \text{ for } g_1, g_2 \in \Gamma.$$

This implies that only the odd component of g plays a role.

Examples

 $(K(e^{-xz})q)(\cdot) = q(x+\cdot),$ $u(t,x+\cdot) = (K(e^{-xz+4tz^3})q)(\cdot) \text{ satisfies KdV equation:}$

$$\frac{\partial u}{\partial t} = -\frac{\partial^3 u}{\partial x^3} + 6u\frac{\partial u}{\partial x}.$$

Structure of W and potentials

• For $W \in Gr^{(2)}(H)$, there exist unique functions of W such that

$$W \ni \Phi(z) = 1 + \frac{a_1}{z} + \frac{a_2}{z^2} + \cdots, \Psi(z) = z + \frac{b_1}{z} + \frac{b_2}{z^2} + \cdots$$

From the property (iii) it follows that

$$\left\{ p\left(z^{2}\right) \Phi \left(z\right) +q\left(z^{2}\right) \Psi \left(z\right) \text{, }p\text{,}q\text{ polynomials}\right\}$$

generates W. Therefore we call them **characteristic system** of $W \in Gr^{(2)}(H)$ and denote them by $\{\Phi_W(z), \Psi_W(z)\}$. Set

$$M_W(z) = rac{\Psi_W(z)}{\Phi_W(z)}.$$

Structure of W and potentials

• For $W \in Gr^{(2)}(H)$, there exist unique functions of W such that

$$W \ni \Phi(z) = 1 + \frac{a_1}{z} + \frac{a_2}{z^2} + \cdots, \Psi(z) = z + \frac{b_1}{z} + \frac{b_2}{z^2} + \cdots$$

From the property (iii) it follows that

$$\left\{ p\left(z^{2}\right) \Phi\left(z\right) + q\left(z^{2}\right) \Psi\left(z\right) \text{, } p, q \text{ polynomials} \right\}$$

generates W. Therefore we call them **characteristic system** of $W \in Gr^{(2)}(H)$ and denote them by $\{\Phi_W(z), \Psi_W(z)\}$. Set $M_W(z) = \frac{\Psi_W(z)}{\Phi_W(z)}$.

Theorem

If
$$W \in Gr_{real}^{(2)}(H)$$
, then $q_W \in \Omega$ and $m_{q_W}^{\pm}(z) = \mp a_1 \mp M_W(\pm \sqrt{z})$.
Moreover, for $W_1, W_2 \in Gr_{real}^{(2)}(H)$, $q_{W_1} = q_{W_2} \ (\in \Omega)$ iff $M_{W_1}(z) = M_{W_2}(z)$.

Theorem

Let $g \in \Gamma$ be such that $\log g(z)$ is an odd polynomial. Assume $W \in Gr^{(2)}(H)$ satisfies $e^{-x \log g(z)} W \in Gr^{(2)}(H)$ for any $x \in [0, 1]$. Then there exists a unimodular matrix entire function

$$\Pi^g_W(z) = \left(egin{array}{cc} A(-z^2) & B(-z^2) \ C(-z^2) & D(-z^2) \end{array}
ight)$$

such that

$$\left(egin{array}{c} \Phi_{g^{-1}W}(z) \ \Psi_{g^{-1}W}(z) \end{array}
ight) = \Pi^g_W(z) \left(egin{array}{c} \Phi_W(z) \ \Psi_W(z) \end{array}
ight).$$

 $\Pi^g_W(z)$ satisfies a cocyle property:

$$\Pi_{W}^{g_{1}g_{2}}(z) = \Pi_{g_{1}^{-1}W}^{g_{2}}(z) \Pi_{W}^{g_{1}}(z).$$

• For
$$W \in Gr_{real}^{(2)}(H)$$
, $m_W^+(E+i0) = -\overline{m_W^-(E+i0)} \Leftrightarrow M_W(\sqrt{E+i0}) = -\overline{M_W(-\sqrt{E+i0})}$.

э.

イロト イヨト イヨト イヨト

• For
$$W \in Gr_{real}^{(2)}(H)$$
, $m_W^+(E+i0) = -\overline{m_W^-(E+i0)} \Leftrightarrow M_W(\sqrt{E+i0}) = -\overline{M_W(-\sqrt{E+i0})}$.

For F ⊂ [-1,0], denote the set of all potentials which are reflectionless on F by R(F). Then from the identity

$$M_{g^{-1}W}(\sqrt{E}) = \frac{C(E) + D(E)M_W(\sqrt{E})}{A(E) + B(E)M_W(\sqrt{E})}$$

• For
$$W \in Gr_{real}^{(2)}(H)$$
, $m_W^+(E+i0) = -\overline{m_W^-(E+i0)} \Leftrightarrow M_W(\sqrt{E+i0}) = -\overline{M_W(-\sqrt{E+i0})}$.

For F ⊂ [-1,0], denote the set of all potentials which are reflectionless on F by R(F). Then from the identity

$$M_{g^{-1}W}(\sqrt{E}) = \frac{C(E) + D(E)M_W(\sqrt{E})}{A(E) + B(E)M_W(\sqrt{E})}$$

Theorem

 ${K(g)}_{g \in G}$ preserves the reflectionless property:

$$K(g): \Omega \cap \mathcal{R}(F) \to \Omega \cap \mathcal{R}(F)$$

• For
$$W \in Gr_{real}^{(2)}(H)$$
, $m_W^+(E+i0) = -\overline{m_W^-(E+i0)} \Leftrightarrow M_W(\sqrt{E+i0}) = -\overline{M_W(-\sqrt{E+i0})}$.

For F ⊂ [-1,0], denote the set of all potentials which are reflectionless on F by R(F). Then from the identity

$$M_{g^{-1}W}(\sqrt{E}) = \frac{C(E) + D(E)M_W(\sqrt{E})}{A(E) + B(E)M_W(\sqrt{E})}$$

Theorem

 ${K(g)}_{g \in G}$ preserves the reflectionless property:

$$K(g): \ \Omega \cap \mathcal{R}(F) \to \Omega \cap \mathcal{R}(F)$$

Theorem

```
For any real g \in \Gamma and q \in \Omega
```

$$L^{K(g)q} \overset{unitary}{\sim} L^q.$$

S. Kotani (Kwansei-Gakuin University) KdV flow on the space of generalized reflectic

• Conjecture:

"If ergodic Schrödinger operators have purely absolutely continuous spectrum, then potentials are almost periodic".

• Conjecture:

"If ergodic Schrödinger operators have purely absolutely continuous spectrum, then potentials are almost periodic".

• One approach to this conjecture:

• Conjecture:

"If ergodic Schrödinger operators have purely absolutely continuous spectrum, then potentials are almost periodic".

- One approach to this conjecture:
- If Ω_0 is a closed $\{K(g)\}_{g\in G}$ invariant subset of Ω on which $\{K(g)\}_{g\in G}$ acts transitively. Then, for an element $q_0 \in \Omega_0$, its isotropic group

$$\Gamma = \{g \in G; K(g)q_0 = q_0\}$$

induces a bijective map

$$G/\Gamma \longrightarrow \Omega_0.$$

If we can show the abelian group G/Γ is compact, this implies the almost periodicity of elements of Ω_0 .

• Conjecture:

"If ergodic Schrödinger operators have purely absolutely continuous spectrum, then potentials are almost periodic".

- One approach to this conjecture:
- If Ω_0 is a closed $\{K(g)\}_{g\in G}$ invariant subset of Ω on which $\{K(g)\}_{g\in G}$ acts transitively. Then, for an element $q_0 \in \Omega_0$, its isotropic group

$$\Gamma = \{g \in G; K(g)q_0 = q_0\}$$

induces a bijective map

$$G/\Gamma \longrightarrow \Omega_0.$$

If we can show the abelian group G/Γ is compact, this implies the almost periodicity of elements of Ω_0 .

Problem:

"Determine all closed $\{K(g)\}_{g\in G}$ - invariant subsets of Ω on which $\{K(g)\}_{g\in G}$ acts transitively."

July 16, 2010

18 / 20

A sufficient condition

• For a closed set $F \subset [-1,0]$ s.t. $F = \overline{F}^{ess}$ set

$$\Omega_{\mathcal{F}} = \Omega \cap \mathcal{R}(\mathcal{F}) \cap \{\Sigma(q) = \mathcal{F} \cup [0, \infty)\}.$$

Then Ω_F is a $\{K(g)\}_{g\in G}$ - invariant closed subset of Ω .

A sufficient condition

• For a closed set $F \subset [-1,0]$ s.t. $F = \overline{F}^{ess}$ set

$$\Omega_{\mathcal{F}} = \Omega \cap \mathcal{R}(\mathcal{F}) \cap \{\Sigma(q) = \mathcal{F} \cup [0, \infty)\}.$$

Then Ω_F is a $\{K(g)\}_{g\in G}$ - invariant closed subset of Ω .

• Suppose F satisfies the following condition: For any Herglotz function m satisfying $\operatorname{Re} m (E + i0) = 0$ a.e. $e \in F$, the representing measure σ is purely absolutely continuous on F.

A sufficient condition

• For a closed set $F \subset [-1,0]$ s.t. $F = \overline{F}^{ess}$ set

$$\Omega_{\mathcal{F}} = \Omega \cap \mathcal{R}(\mathcal{F}) \cap \left\{ \Sigma\left(q\right) = \mathcal{F} \cup \left[0, \infty\right) \right\}.$$

Then Ω_F is a $\{K(g)\}_{g\in G}$ - invariant closed subset of Ω .

- Suppose F satisfies the following condition: For any Herglotz function m satisfying $\operatorname{Re} m (E + i0) = 0$ a.e. $e \in F$, the representing measure σ is purely absolutely continuous on F.
- Sodin-Yuditskii proved that the homogeneity of F :

 $\exists \delta > 0 \text{ s.t. for } \forall \epsilon > 0 \text{ and } \forall E \in F, \ |(E - \epsilon, E + \epsilon) \cap F| \geq \delta \epsilon \text{ holds}$

is sufficient for almost periodicity of $q \in \Omega_F$. Their proof shows that $\{K(g)\}_{g \in G}$ acts transitively on Ω_F and G/Γ is compact.

Thank you for your attention and see you again !!

S. Kotani (Kwansei-Gakuin University) KdV flow on the space of generalized reflection