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Weyl functio

e Potentials: Q = {q, q is real valued, sup/ g(x)|dx < 00}
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Weyl functions

e Potentials: Q = {q, q is real valued, sup/ g(x)|dx < oo}
o 1D Schrodinger op.: L = L1 = —d?/dx>+q
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Weyl functions

e Potentials: Q = {q, q is real valued, sup/ g(x)|dx < 00}

o 1D Schrodinger op.: L = L1 = —d?/dx>+q
e For VE € C\ R, 3J1f satisfying

Lfi = Efi, s.t. fi S LZ (]Ri), fi 7& 0
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Weyl functions

e Potentials: Q = {q, q is real valued, sup/ q(x)]dx < 00}

o 1D Schrodinger op.: L = L1 = —d?/dx>+q
e For VE € C\ R, 3J1f satisfying

Lfi = Efir s.t. fi e L? (]Ri), fi #0
@ Green function: For x >y

(L — E)_l (xl ]/) gE(x y) V\{;_O(l’fslkli)ifl [,(f—i-,/E) ]
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Weyl functions

e Potentials: Q = {q, q is real valued, sup/ q(x)]dx < 00}

o 1D Schrodinger op.: L = L1 = —d?/dx>+q
e For VE € C\ R, 3J1f satisfying

Lfi = Efir s.t. fi e L? (]Ri), fi #0
@ Green function: For x >y

(L — E)_l ('xl ]/) gE(x y) ‘/\{;_O(l’fslkli)ifl [,(f—i-,/E) ]

@ Weyl functions:

' (0,E "(0,E
f+(0' ), m_ (E):_ff(ol )
f+(01E) f—(O,E)

my (E): Herglotz functions (holomorphic functions on C4 with
positive imaginary parts)

my (E) =
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Random Schrédinger operators

e Dynamical system {Ty}, g on (Q), F,P):

To:Q—Q with  Tepy =TT,
P(TyA) =P (A) for Vx e R,VA € F
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Random Schrédinger operators

e Dynamical system {Ty}, g on (Q), F,P):

To:Q—Q with  Tepy =TT,
P(TyA) =P (A) for Vx e R,VA € F

e Ergodicity: P(TyA© A) =0forVx e R = P(A)=0o0r1
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Random Schrédinger operators

e Dynamical system {Ty}, g on (Q), F,P):

To:Q—Q with  Tepy =TT,
P(TyA) =P (A) for Vx e R,VA € F

e Ergodicity: P(TyA© A) =0forVx e R = P(A)=0o0r1
e Random potential: g% (x) = q(Tyw) forw € QO (9: Q — R)
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Random Schrédinger operators

e Dynamical system {Ty}, g on (Q), F,P):

To:Q—Q with  Tepy =TT,
P(TyA) =P (A) for Vx e R,VA € F

e Ergodicity: P(TyA© A) =0forVx e R = P(A)=0o0r1
e Random potential: g% (x) = q(Tyw) forw € QO (9: Q — R)
e ) =IR/Z periodic
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Random Schrédinger operators

e Dynamical system {Ty}, g on (Q), F,P):

To:Q—Q with  Tepy =TT,
P(TyA) =P (A) for Vx e R,VA € F

e Ergodicity: P(TyA© A) =0forVx e R = P(A)=0o0r1
e Random potential: g% (x) = q(Tyw) forw € QO (9: Q — R)

e ) =IR/Z periodic
e O=RY/7% Tyw = xa + w quasi periodic
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Random Schrédinger operators

e Dynamical system {Ty}, g on (Q), F,P):

To:Q—Q with  Tepy =TT,
P(TyA) =P (A) for Vx e R,VA € F

e Ergodicity: P(TyA© A) =0forVx e R = P(A)=0o0r1
e Random potential: g% (x) = q(Tyw) forw € QO (9: Q — R)

e ) =IR/Z periodic
o O =R%/7Z9, T.w = xa + w quasi periodic
e 0 =C(R — M) Brownian motion on a compact R-manifold
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Random Schrédinger operators

e Dynamical system {Ty}, g on (Q), F,P):

To:Q—Q with  Tepy =TT,
P(TyA) =P (A) for Vx e R,VA € F

Ergodicity: P(TyA© A) =0forVx € R = P(A)=0o0r1
Random potential: g (x) = g (Tyw) forw € Q (g: Q — R)

e ) =IR/Z periodic
o O =R%/7Z9, T.w = xa + w quasi periodic
e 0 =C(R — M) Brownian motion on a compact R-manifold

o Random Schrodinger op.: LY = —d?/dx* + q%, (¢° € Q)
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o C(lassification of spectrum X of L:

Y. = ¥, (absolutely continuous sp.) U Xs(singular sp.)
Ys = Zp(point sp.) U L (singular continuous sp.)
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o C(lassification of spectrum X of L:

Y. = ¥, (absolutely continuous sp.) U Xs(singular sp.)
Ys = Zp(point sp.) U L (singular continuous sp.)

@ For random Schrédinger operator LY:

Y, Xac, Lp, s independent of w  (Pastur)
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o C(lassification of spectrum X of L:

Y. = ¥, (absolutely continuous sp.) U Xs(singular sp.)
Ys = Zp(point sp.) U L (singular continuous sp.)

@ For random Schrédinger operator LY:
Y, Xac, Lp, s independent of w  (Pastur)
o Identity on X,.: For all w € supp P,

m¢ (E+10) = —m® (E 4 i0) for a.e. E € X4

0

Forall x € R, Regf(x,x) =0 forae E € Xy

Especially for periodic potentials, this identity holds on X,., or
equivallently on each interval of stability.
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Potentials with finite bands (classical results)

o If my (E+i0) = —m“ (E+1i0) fora.e. E &I (I: interval), then
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Potentials with finite bands (classical results)

o If my (E+i0) = —m“ (E+1i0) fora.e. E &I (I: interval), then
o = Reg¥(x,x) =0 forae EcI
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Potentials with finite bands (classical results)

o If my (E+i0) = —m“ (E+1i0) fora.e. E &I (I: interval), then

o = Reg¥(x,x) =0 forae EcI
o = g¥(x,x) is analytically continuable to C_ through I
with respect to E.
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Potentials with finite bands (classical results)

o If my (E+i0) = —m“ (E+1i0) fora.e. E &I (I: interval), then

o = Reg¥(x,x) =0 forae EcI

o = g¥(x,x) is analytically continuable to C_ through I
with respect to E.

e = spL1 is purely absolutely continuous on I.
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Potentials with finite bands (classical results)

o If my (E+i0) = —m“ (E+1i0) fora.e. E &I (I: interval), then

o = Reg¥(x,x) =0 forae EcI

o = g¥(x,x) is analytically continuable to C_ through I
with respect to E.

e = spL1 is purely absolutely continuous on I.

n
o If £ =23, = U I (disjoint sum of intervals)
j=1
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Potentials with finite bands (classical results)

o If my (E+i0) = —m“ (E+1i0) fora.e. E &I (I: interval), then

o = Reg¥(x,x) =0 forae EcI

o = g¥(x,x) is analytically continuable to C_ through I
with respect to E.

e = spL1 is purely absolutely continuous on I.

n
o If £ =23, = U I (disjoint sum of intervals)
j=1

o = ¢“(x) is described by using ©®—functions.
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Reflectionless potentials

o If g satisfies / lg(x)| (14 |x|) dx < oo, then
R

e~ ikx as x — —oo

_ 12 ~ H 1
El]_f s.t. Lf — k f/ f(x) { t(lik)eflkx + %elkx as X — &0

and, if the reflection coefficient r(k) vanishes on [0,00), then ¢ is
called reflectionless on [0,c0). In this case
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Reflectionless potentials

o If g satisfies / lg(x)| (14 |x|) dx < oo, then
R

e~ ikx as x — —oo

— 12 ~ ) .
E|1f s.t. Lf—kf/ f(x) { t(lik)efzkx_‘_%elkx s x — oo
and, if the reflection coefficient r(k) vanishes on [0,00), then ¢ is
called reflectionless on [0,c0). In this case

o q(x) = 24 logdet (I + A (x)), A(x) = (777’1;? e*<'7i+'7f>X)
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Reflectionless potentials

o If g satisfies / lg(x)| (14 |x|) dx < oo, then
R

e~ ikx as x — —oo

Jif st. Lf =K*f, f(x)~ { 1 ik g () ik

1K) W@ as X — &

and, if the reflection coefficient r(k) vanishes on [0,00), then ¢ is
called reflectionless on [0,c0). In this case

o q(x) = —2L logdet (1 + A (x (,7+,7 ~ln)x)
° my (E+10) =—m_ (E+10) for a.e. E € [0, 00

S. Kotani (Kwansei-Gakuin University)  KdV flow on the space of generalized reflectic July 16, 2010 7/



Reflectionless potentials

o If g satisfies / lg(x)| (14 |x|) dx < oo, then
R

e~ ikx as x — —oo

_ 12 ~ H 1
El]_f s.t. Lf — k f/ f(x) { t(lik)eflkx + %elkx as X — &0

and, if the reflection coefficient r(k) vanishes on [0,00), then ¢ is
called reflectionless on [0,c0). In this case

o q(x) = 24 logdet (I + A (x)), A(x) = (777’1;? et
o my (E+i0) = —m_ (E+1i0) for a.e. E € [0,00).

e For A € B(R), a potential ¢ € R(A) (reflectionless on A) iff

my (E+i0) = —m_ (E+4i0) for a.e. E € A.
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Reflectionless potentials

o If g satisfies / lg(x)| (14 |x|) dx < oo, then
R

e~ ikx as x — —oo

_ 12 ~ H 1
El]_f s.t. Lf — k f/ f(x) { t(lik)eflkx + %elkx as X — &0

and, if the reflection coefficient r(k) vanishes on [0, 0), then g is
called reflectionless on [0,c0). In this case

o q(x) = 24 logdet (I + A (x)), A(x) = (777’1;? e*<'7i+'7f>x)

o m4 (E+i0) = —m_ (E+1i0) for a.e. E € [0,00).

e For A € B(R), a potential ¢ € R(A) (reflectionless on A) iff
my (E+i0) = —m_ (E+4i0) for a.e. E € A.

@ Random potential g is reflectionless on 2.
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Reflectionless potentials

o If g satisfies / lg(x)| (14 |x|) dx < oo, then
R

e~ ikx as x — —oo

ﬁefikx_‘_%eikx as X — 00

Jif st. Lf =Kf, f(x)~ {

and, if the reflection coefficient r(k) vanishes on [0,00), then ¢ is
called reflectionless on [0,c0). In this case

o q(x) = 24 logdet (I + A (x)), A(x) = (777"_1;? et
o my (E+i0) = —m_ (E+1i0) for a.e. E € [0,00).

e For A € B(R), a potential ¢ € R(A) (reflectionless on A) iff
my (E+i0) = —m_ (E+41i0) forae. E € A.

@ Random potential g is reflectionless on 2.
@ Especially periodic potential is reflectionless on its spectrum.
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@ Space of reflectionless potentials:

{1€Q g€ R(Ry) and £(q) C [-1,00)}
ONLY (R, (1+ |x|)dx)

(@)
ch
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@ Space of reflectionless potentials:

Q = {7€Q g€ R(Ry)and X(q) C [-1,00)}
Qq = ONLY(R,(1+ |x])dx)

@ To parametrize (), define

S = {0’,‘ measure on [—1,1] satisfying / (T(dC)2 < 1}.
[_111] 1 - C
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@ Space of reflectionless potentials:

Q = {7€Q g€ R(Ry)and X(q) C [-1,00)}
Qq = ONLY(R,(1+ |x])dx)

@ To parametrize (), define

S = {0’,‘ measure on [—1,1] satisfying / (T(dC)2 < 1}.
[_111] 1 - C

@ Marchenko
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@ Space of reflectionless potentials:

Q = {7€Q g€ R(Ry)and X(q) C [-1,00)}
Qq = ONLY(R,(1+ |x])dx)

@ To parametrize (), define

S = {0’,‘ measure on [—1,1] satisfying / (T(dC)2 < 1}.
[_111] 1 - C

@ Marchenko

o geQ+—ml (—E?)=-E— [11]j(:7§(d—€)]5 for 3o € S.
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@ Space of reflectionless potentials:

{1€Q g€ R(Ry) and £(q) C [-1,00)}
ONLY (R, (1+ |x|)dx)

(@)
ch

@ To parametrize (), define

S = {0’,‘ measure on [—1,1] satisfying / (T(dC)2 < 1}.
[_111] 1 - C

@ Marchenko

o g€ Q<+ ml (—E?) :_E_/[u]j(:@(d—g)]:" for 3o € S.

o g (€ Q) is holomorphic on {|Imz| < 1} having a bound

lg(z)| <2(1—[Imz|) "> = Q is compact.
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@ Space of reflectionless potentials:
QO = {4€9Q, geR(Ry)and X(g) C [—1,00)}
Qq = ONLY(R,(1+ |x])dx)

@ To parametrize (), define

S = {0’,‘ measure on [—1,1] satisfying /[_1,1] ;T(_d?z < 1}.
@ Marchenko
o(df)

o g (€ Q) is holomorphic on {|Imz| < 1} having a bound
lg(z)| <2(1—[Imz|) "> = Q is compact.

Facts:
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@ Space of reflectionless potentials:
QO = {4€9Q, geR(Ry)and X(g) C [—1,00)}
Qq = ONLY(R,(1+ |x])dx)

@ To parametrize (), define

S = {0’,‘ measure on [—1,1] satisfying /[_1,1] ;T(_d?z < 1}.
@ Marchenko
o(df)

o g (€ Q) is holomorphic on {|Imz| < 1} having a bound
lg(z)| <2(1—[Imz|) "> = Q is compact.

Facts:

o g € Q) <=supp o is a finite set.
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@ Space of reflectionless potentials:
QO = {4€9Q, geR(Ry)and X(g) C [—1,00)}
Qq = ONLY(R,(1+ |x])dx)

@ To parametrize (), define

S = {0’,‘ measure on [—1,1] satisfying (T(dC)2 < 1}.
[_111] 1 - C
@ Marchenko
o(dg
o geQ+—ml (—E?)=-E— /[1,1]ﬂ:C(—)E for 3o € S.

o g (€ Q) is holomorphic on {|Imz| < 1} having a bound
lg(z)| <2(1—[Imz|) "> = Q is compact.

Facts:

o g € Q) <=supp o is a finite set.
o O, {potentials with finite band spectrum} C Q) are dense.
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Sato’s Grassmannian manifold

o Let H=L%(|z| = 1) and introduce

Hi=HnN f: Z fnZn
n>0
(n<-1)

Py, : projections onto Hi. Let Gr(®)(H) be the set of all closed
subspaces W of H satisfying
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Sato’s Grassmannian manifold

o Let H=L%(|z| = 1) and introduce

Hi=HnN f: Z fnZn
n>0
(n<-1)

Py, : projections onto Hi. Let Gr(®)(H) be the set of all closed
subspaces W of H satisfying

o (i) Py_:W — H_ is of trace class.
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Sato’s Grassmannian manifold

o Let H=L%(|z| = 1) and introduce

Hi=HnN f: Z fnZn
n>0
(n<-1)

Py, : projections onto Hi. Let Gr(®)(H) be the set of all closed
subspaces W of H satisfying

o (i) Py_:W — H_ is of trace class.
o (i) fEW —Z2feW.
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Sato’s Grassmannian manifold

o Let H=L%(|z| = 1) and introduce

Hi=HnN f: Z fnZn
n>0
(n<-1)

Py, : projections onto Hi. Let Gr(®)(H) be the set of all closed
subspaces W of H satisfying

o (i) Py_:W — H_ is of trace class.
o (i) fEW —Z2feW.
o (iii) Py, :W — H, bijective
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Quick view of derivation of the equations

o Set gy (z) = ¢ and assume g;W € Gr?(H). Then
Py, (gxW) = Hy implies

J1f (x,-) €W st. ef (x,2) =1+a;(x)z  +ax(x)z 72 + - -

S. Kotani (Kwansei-Gakuin University)  KdV flow on the space of generalized reflectic July 16, 2010 10 / 20



Quick view of derivation of the equations

o Set gy (z) = ¢ and assume g;W € Gr?(H). Then
Py, (gxW) = Hy implies

J1f (x,-) € W sit. e¥f (x,2z) =1 —i—al(x)z*l +ﬂ2(X>272—|— o

o Differentiate w.r.t. x =
e (f" (x,2) — 2°f (x,2) F2m(x)f
= Py, (€8 (f" (x,) — 2*f (x,) +2ay(x
= " (x,z) — 22f (x,z) + 24} (x)f (x,z) = 0 (Pp, is bijective)
= LIf (-,z) = —2%f (-, z) with g(x) = —2a{(x)
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Quick view of derivation of the equations

o Set gy (z) = ¢ and assume g;W € Gr?(H). Then
Py, (gxW) = Hy implies

J1f (x,-) € W sit. e¥f (x,2z) =1 —i—al(x)z*l +ﬂ2(X>272—|— o

o Differentiate w.r.t. x —

e (f" (x,z) — 22f (x,z) + 24} (x)f (x,2)) = Dz~ ! + [z 2
B, (65 (77 (%) — 2 (x,-) + 201(0)f (x,)) = 0
= " (x,z) — 22f (x,z) + 24} (x)f (x,z) = 0 (Pp, is bijective)

S T9f (1 2) = “2F (,2) with q(x) = —2a}(x)
@ Set gyt (z) = >4 and assume etW € Grl )(H) Similarly
e‘xz+4t23f (t,x,2) = 14+ay(t,x)z  +as(t, x)z 24+ -,

and g(t,x) = —2a}(t, x) fulfills KdV eq..
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o Let We Gr®(H). (i) and (iii) imply Ibounded operator A from H,
to H_ s.t.
W={f+Af; feH}.
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o Let We Gr®(H). (i) and (iii) imply Ibounded operator A from H,
to H_ s.t.
W={f+Af; feH}.

o Set
= {g hol. on |z] < 1. g(z),g(z) ! bdd.}.

For W € Gr® (H) and g € T define the T-function introduced by

Sato:
Tw(g) == det(I + gPu, g 'A).
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o Let We Gr®(H). (i) and (iii) imply Ibounded operator A from H,
to H_ s.t.
W={f+Af; feH}.

o Set
= {g hol. on |z] < 1. g(z),g(z) ! bdd.}.

For W € Gr® (H) and g € T define the T-function introduced by
Sato:
Tw(g) == det(I 4¢Py, g ' A).

o Cocyle property

Tw(8182) = w(81)Tp-1y(82) for 81,82 €T
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o Let We Gr®(H). (i) and (iii) imply Ibounded operator A from H,
to H_ s.t.
W={f+Af; feH}.

o Set
= {g hol. on |z] < 1. g(z),g(z) ! bdd.}.

For W € Gr® (H) and g € T define the T-function introduced by
Sato:
Tw(g) == det(I 4¢Py, g ' A).

o Cocyle property
Tw(8182) = w(81)Tp-1y(82) for 81,82 €T

o Note
§7'W e Gr'¥(H) < 1w(g) #0.
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@ For € Csuch that || > 1set q¢(z) =1— Z. Then, for f € H_

and |z| <1 we have

] 1 ) o
(repwns) @ = (1-3) 5 i g; (; W=
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@ For € Csuch that || > 1set q¢(z) =1— Z. Then, for f € H_

and |z| <1 we have

] 1 ) o
(repwns) @ = (1-3) 5 i g; (; W=

o Therefore, if W € Gr(?(H), then

T (4¢) = det (1+qcPru, a7 Aw) = 1+ (Aw1) (§) € W.
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@ For € Csuch that || > 1set q¢(z) =1— Z. Then, for f € H_
and |z| <1 we have

] ) o
(repwns) @ = (1-3) 5 i g; (; W=

o Therefore, if W € Gr(?(H), then
T (4¢) = det (1+qcPru, a7 Aw) = 1+ (Aw1) (§) € W.

@ Replacing W by e W, we have

Tew (7) = € f(x,0) =1+ aléx) T
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@ For € Csuch that || > 1set q¢(z) =1— Z. Then, for f € H_
and |z| <1 we have

] 1 ) o
(repwns) @ = (1-3) 5 i g; (; W=

o Therefore, if W € Gr(?(H), then

T (4¢) = det (1+qcPru, a7 Aw) = 1+ (Aw1) (§) € W.
@ Replacing W by e W, we have

a1 (%)

Toew (97) = e f(x,0) =1+

e a1(x) = llmg(Texw(q€) -1) = 11m§<TW(iq§) 1)

{—00

0
= a log Tw(efx').
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Potentials

o For W € Gr®(H) define g(x) = qw(x) = a = logT (e7*).
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Potentials

o For W € Gr®(H) define g(x) = qw(x) = —2%logrw(e*x').
@ Since T, (e7™) is entire, g is meromorphic on C with pole of order 2
at x = xg when Ty (e ) = 0.
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Potentials

o For W € Gr®(H) define g(x) = qw(x) = —2%logrw(e*x').
@ Since T, (e7™) is entire, g is meromorphic on C with pole of order 2
at x = xg when Ty (e ) = 0.

o For f € H(=L?(|z] = 1)) set f(z) = f(2).
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Potentials

o For W € Gr®(H) define g(x) = qw(x) = —2%logrw(e*x').

@ Since T, (e7™) is entire, g is meromorphic on C with pole of order 2
at x = xg when Ty (e ) = 0.

o For f € H(=L*(|]z| =1)) set f(z) = f (2).

o(iv) IffeW= feW.
If W satisfies (iv), then g takes real values on R.
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Potentials

o For W € Gr®(H) define g(x) = qw(x) = ax2 log T, (e7).

@ Since T, (e7™) is entire, g is meromorphic on C with pole of order 2
at x = xg when Ty (e ) = 0.

o For f € H(=L*(|]z| =1)) set f(z) = f (2).

o (iv) ffeW= feWw.
If W satisfies (iv), then g takes real values on R.

Theorem

For W € Gr® (H), qw € Q (space of generalized reflectionless potentials)
iff

(1) W is real (namely satisfies (iv)).

(2) W satisfies T,,(g) # 0 for any real g € T.

In this case qw is meromorphic on C with poles of degree 2.
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Potentials

o For W € Gr®(H) define g(x) = qw(x) = ax2 log T, (e7).

@ Since T, (e7™) is entire, g is meromorphic on C with pole of order 2
at x = xg when Ty (e ) = 0.

o For f € H(=L*(|]z| =1)) set f(z) = f (2).

o (iv) If fEW= feW.
If W satisfies (iv), then g takes real values on R.

For W € Gr® (H), qw € Q (space of generalized reflectionless potentials)
iff

(1) W is real (namely satisfies (iv)).

(2) W satisfies T,,(g) # 0 for any real g € T.

In this case qw is meromorphic on C with poles of degree 2.

e We denote by Grﬁezﬂ( H) the set of all W satisfying the conditions of
this theorem.
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KdV flow

o For W € Gr®(H), assume g~'W € Gr® (H) (& 1, (g) # 0) for
gerl,

9 . & )

(K(g)q) (x) = —zaTczlong,lw(e )= —2ﬁlog T, (e

X-

8)-
If ¢ is even, then ¢~ 'W = W, hence K(g) = id.
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KdV flow

e For W e Gr(z)(H), assume g*1W = Gr(z)(H) (& T (g) #0) for
geT,
82 02
(K()q) (x) = =255 log T, (¢7) = —25-7 log 7, (e

If ¢ is even, then ¢~ 'W = W, hence K(g) = id.
@ The cocycle property implies

K(g182) = K(g1) K(g2) for 81,82 € T.
This implies that only the odd component of ¢ plays a role.

—x-

g)-
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KdV flow

o For W € Gr®(H), assume g~'W € Gr® (H) (& 1, (g) # 0) for
geT,
82 0?
(K(g)q) (x) = ~255log T, (e7") = ~257 log 7, (e
If ¢ is even, then ¢~ 'W = W, hence K(g) = id.
@ The cocycle property implies

K(g182) = K(81) K(g2) for g1,82 € T.

This implies that only the odd component of ¢ plays a role.
@ Examples

—x-

g)-
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KdV flow

o For W € Gr®(H), assume g~'W € Gr® (H) (& 1, (g) # 0) for
geT,
82 0?
(K(g)q) (x) = ~255log T, (e7") = ~257 log 7, (e
If ¢ is even, then ¢~ 'W = W, hence K(g) = id.
@ The cocycle property implies

K(g182) = K(81) K(g2) for g1,82 € T.

This implies that only the odd component of ¢ plays a role.
@ Examples

QO (Ke™)q) () =q(x+"),

—x-

g)-
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KdV flow

o For W € Gr®(H), assume g~'W € Gr® (H) (& 1, (g) # 0) for
geT,
82 0?
(K()q) (x) = =255 log T, (¢7) = —25-7 log 7, (e
If ¢ is even, then ¢g71W = W, hence K(g) = id.
@ The cocycle property implies

K(g182) = K(g1) K(g2) for 81,82 € T.
This implies that only the odd component of ¢ plays a role.
@ Examples
QO (K(e™)q) () =q(x+-),
Q u(t,x+-) = (K( eItz )q) -) satisfies KdV equation:

—x-

g)-
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Structure of W and potentials

o For W € Grl®(H), there exist unique functions of W such that
ap a by b
WB@(Z):1—i——1—|——§—|—---,‘I’(Z):Z—i——l—i——;—l—---
z oz z oz
From the property (iii) it follows that

{r(z ) z)+q(z ) (z), p,q polynomials}

generates W. Therefore we call them characteristic system of
W € Gr®(H) and denote them by {®w (z), ¥ (z)} . Set
Fw(z)

Dy (2)

Mw(Z) =
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Structure of W and potentials

o For W € Grl®(H), there exist unique functions of W such that
a4 bi b
From the property (iii) it follows that

{r(z ) z)+q(z ) (z), p,q polynomials}

generates W. Therefore we call them characteristic system of
W € Gr®(H) and denote them by {®w (z), ¥ (z)} . Set
Fw(z)

Dy (2)

Mw(Z) =

IFW e Gr?

real

Moreover, for Wy, W, € Gr'?) (H), qw, = qw, (€ Q) iff

(H), then qw € Q and mz. (z) = Fa1 F Mw(£/2).

real

My, (z) = Mwa(z)-
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Properties of KdV flow

Let g € T be such that log g(z) is an odd polynomial. Assume
W € Gr?)(H) satisfies e=*1°88GW € Gr(?) (H) for any x € [0,1]. Then
there exists a unimodular matrix entire function

_(AC-2) B(-2)
w6 = (&5 oo )

(o) )= 7))

I15,(z) satisfies a cocyle property:

such that

T (2) = 115, (2) T 2)
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o For We Grreal(H) m,(E +i0) = —myy, (E 4 i0) <
Mw (VE +i0) = — My (—+VE +i0).
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ro(H), mijy (E 4 10) = —my (E+i0) <

Mw (VE +i0) = — My (—+VE +i0).

e For F C [—1,0], denote the set of all potentials which are
reflectionless on F by R(F ). Then from the identity

C(E) + D(E)Mw(VE)
A(E) + B(E)Mw(VE)

o For W e Gr(z)

My 1w (VE) =
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o For W € Gr'?) (H), mjy(E +i0) = —m;, (E +0) <

Mw(\/ E+ 10) = —Mw(—\/ E+ 10).

e For F C [—1,0], denote the set of all potentials which are
reflectionless on F by R(F ). Then from the identity

C(E) + D(E)Mw(VE)
A(E) + B(E)Mw(VE)

My 1w (VE) =

{K(8)}geg preserves the reflectionless property:

K(g): QONR(F)—QNR(F)
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ro(H), mijy (E 4 10) = —my (E+i0) <

Mw (VE +i0) = — My (—+VE +i0).

e For F C [—1,0], denote the set of all potentials which are
reflectionless on F by R(F ). Then from the identity

C(E) + D(E)Mw(VE)
A(E) + B(E)Mw(VE)

{K(8)}geg preserves the reflectionless property:

o For W e Gr(z)

My 1w (VE) =

K(g): QONR(F)—QNR(F)

V.
Theorem

For any real ¢ € I and q € ()

LK(g)q MY 1 q

A\
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Almost periodicity

o Conjecture:
“If ergodic Schrédinger operators have purely absolutely continuous
spectrum, then potentials are almost periodic”.
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Almost periodicity

o Conjecture:
“If ergodic Schrédinger operators have purely absolutely continuous
spectrum, then potentials are almost periodic”.

@ One approach to this conjecture:
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Almost periodicity

o Conjecture:
“If ergodic Schrédinger operators have purely absolutely continuous
spectrum, then potentials are almost periodic”.

@ One approach to this conjecture:

o If Qg is a closed {K(g)} - invariant subset of () on which
{K(g)}gec acts transitively. Then, for an element g € Qp, its
isotropic group

I'={g € G K(g)qo = qo}
induces a bijective map
G/T — Q).
If we can show the abelian group G/T is compact, this implies the
almost periodicity of elements of ().
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Almost periodicity

o Conjecture:
“If ergodic Schrédinger operators have purely absolutely continuous
spectrum, then potentials are almost periodic”.

@ One approach to this conjecture:

o If Qg is a closed {K(g)} - invariant subset of () on which
{K(8)}4ec acts transitively. Then, for an element go € O, its
isotropic group

I'={g &G K(g)go = q0}
induces a bijective map
G/T — Q).

If we can show the abelian group G/T is compact, this implies the
almost periodicity of elements of ().

e Problem:
“Determine all closed {K(g)}

{K(8)}ge acts transitively.”

geG” invariant subsets of () on which
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A sufficient condition

—+=e€ss

o For a closed set f C [—1,0] s.t. F = F set
QF =QNRF)N{X(q) = F U[0,00)}.

Then O is a {K(g)},cq- invariant closed subset of Q).
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A sufficient condition

—+=e€ss

o For a closed set f C [—1,0] s.t. F = F set
QF =QNRF)N{X(q) = F U[0,00)}.

Then O is a {K(g)},cq- invariant closed subset of Q).

@ Suppose F satisfies the following condition:
For any Herglotz function m satisfying Rem (E +i0) =0 a.e. e € F,
the representing measure ¢ is purely absolutely continuous on F.
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A sufficient condition

—+=e€ss

o For a closed set f C [—1,0] s.t. F = F set
QF =QNRF)N{X(q) = F U[0,00)}.

Then O is a {K(g)},cq- invariant closed subset of Q).

@ Suppose F satisfies the following condition:
For any Herglotz function m satisfying Rem (E +i0) =0 a.e. e € F,
the representing measure ¢ is purely absolutely continuous on F.

@ Sodin-Yuditskii proved that the homogeneity of [ :
36 > 0s.t. for Ve >0and VE € [, |(E—¢€,E+€)NF|> de holds

is sufficient for almost periodicity of g € ()f. Their proof shows that
{K(8)}ge acts transitively on QO and G/T is compact.
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Thank you for your attention

and
see you again !!
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