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Weyl functions

Potentials: Q =
�

q; q is real valued, sup
n

Z n+1

n
jq(x)j dx < ∞

�

1D Schrödinger op.: L = Lq = �d2/dx2 + q
For 8E 2 CrR, 91 f� satisfying

L f� = E f�, s.t. f� 2 L2 (R�) , f� 6= 0

Green function: For x � y

(L� E)�1 (x, y) = gE(x, y) =
f+(x, E) f�(y, E)

Wronskian [ f+, f�]

Weyl functions:

m+ (E) =
f 0+(0, E)
f+(0, E)

, m� (E) = �
f 0�(0, E)
f�(0, E)

.

m� (E): Herglotz functions (holomorphic functions on C+ with
positive imaginary parts)
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Random Schrödinger operators

Dynamical system fTxgx2R on (Ω,F , P):�
Tx : Ω ! Ω with Tx+y = TxTy
P (Tx A) = P (A) for 8x 2 R, 8A 2 F

Ergodicity: P (Tx A	 A) = 0 for 8x 2 R =) P(A) = 0 or 1
Random potential: qω (x) = q (Txω) for ω 2 Ω (q : Ω ! R)

Ω = R/Z periodic
Ω = Rd/Zd, Txω = xα+ω quasi periodic
Ω = C (R ! M) Brownian motion on a compact R-manifold

Random Schrödinger op.: Lω = �d2/dx2 + qω, (qω 2 Q)
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Basic facts

Classi�cation of spectrum Σ of L:�
Σ = Σac(absolutely continuous sp.) [ Σs(singular sp.)
Σs = Σp(point sp.) [ Σsc(singular continuous sp.)

For random Schrödinger operator Lω:

Σ, Σac, Σp, Σsc independent of ω (Pastur)

Identity on Σac: For all ω 2 supp P,

mω
+ (E+ i0) = �mω

� (E+ i0) for a.e. E 2 Σac

m
For all x 2 R, Re gω

E (x, x) = 0 for a.e. E 2 Σac

Especially for periodic potentials, this identity holds on Σac, or
equivallently on each interval of stability.
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Potentials with �nite bands (classical results)

If mω
+ (E+ i0) = �mω

� (E+ i0) for a.e. E 2 I (I : interval), then

=) Re gω
E (x, x) = 0 for a.e. E 2 I

=) gω
E (x, x) is analytically continuable to C� through I

with respect to E.
=) spLq is purely absolutely continuous on I.

If Σ = Σac =
nS

j=1
Ij (disjoint sum of intervals)

=) qω(x) is described by using Θ�functions.
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Re�ectionless potentials

If q satis�es
Z

R
jq(x)j (1+ jxj) dx < ∞, then

91 f s.t. L f = k2 f , f (x) �
(

e�ikx as x ! �∞
1

t(k) e
�ikx + r(k)

t(k) e
ikx as x ! ∞

and, if the re�ection coe¢ cient r(k) vanishes on [0, ∞), then q is
called re�ectionless on [0, ∞). In this case

q(x) = �2 d2

dx2 log det (I + A (x)) , A(x) =
�pmimj

ηi+ηj
e�(ηi+ηj)x

�
m+ (E+ i0) = �m� (E+ i0) for a.e. E 2 [0, ∞).

For A 2 B (R) , a potential q 2 R(A) (re�ectionless on A) i¤

m+ (E+ i0) = �m� (E+ i0) for a.e. E 2 A.

Random potential qω is re�ectionless on Σac.
Especially periodic potential is re�ectionless on its spectrum.
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Space of re�ectionless potentials:

Ω = fq 2 Q; q 2 R(R+) and Σ (q) � [�1, ∞)g
Ωcl = Ω \ L1 (R, (1+ jxj) dx)

To parametrize Ω, de�ne

S =
�

σ;measure on [�1, 1] satisfying
Z
[�1,1]

σ(dζ)

1� ζ2 � 1
�

.

Marchenko

q 2 Ω () mq
�
�
�E2� = �E�

Z
[�1,1]

σ(dζ)

�ζ � E
for 9σ 2 S .

q (2 Ω) is holomorphic on fjIm zj < 1g having a bound

jq(z)j � 2 (1� jIm zj)�2 =) Ω is compact.

Facts:

q 2 Ωcl ()supp σ is a �nite set.
Ωcl,fpotentials with �nite band spectrumg � Ω are dense.
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Sato�s Grassmannian manifold

Let H = L2(jzj = 1) and introduce

H� = H \

8>><>>: f = ∑
n�0

(n��1)

fnzn

9>>=>>; .

PH� : projections onto H�. Let Gr(2)(H) be the set of all closed
subspaces W of H satisfying

(i) PH� : W �! H� is of trace class.
(ii) f 2 W �! z2 f 2 W.
(iii) PH+ : W ! H+ bijective
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Quick view of derivation of the equations

Set gx (z) = exz and assume gxW 2 Gr(2)(H). Then
PH+ (gxW) = H+ implies

91 f (x, �) 2 W s.t. exz f (x, z) = 1+ a1(x)z�1 + a2(x)z�2 + � � �

Di¤erentiate w.r.t. x =)
exz � f 00 (x, z)� z2 f (x, z) + 2a01(x) f (x, z)

�
= �z�1 +�z�2 + � � �

) PH+
�
egx
�

f 00 (x, �)� z2 f (x, �) + 2a01(x) f (x, �)
��
= 0

) f 00 (x, z)� z2 f (x, z) + 2a01(x) f (x, z) = 0 (PH+ is bijective)
) Lq f (�, z) = �z2 f (�, z) with q(x) = �2a01(x)

Set gx,t (z) = exz�4tz3
and assume gx,tW 2 Gr(2)(H). Similarly

e�xz+4tz3
f (t, x, z) = 1+ a1(t, x)z�1 + a2(t, x)z�2 + � � � ,

and q(t, x) = �2a01(t, x) ful�lls KdV eq..
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tau-function

Let W2 Gr(2)(H). (i) and (iii) imply 9bounded operator A from H+
to H� s.t.

W = f f + A f ; f 2 H+g .

Set
Γ =

n
g hol. on jzj < 1. g(z), g(z)�1 bdd.

o
.

For W 2 Gr(2)(H) and g 2 Γ de�ne the τ-function introduced by
Sato:

τW(g) == det(I + gPH+g�1A).

Cocyle property

τW(g1g2) = τW(g1)τg�1
1 W(g2) for g1, g2 2 Γ

Note
g�1W 2 Gr(2)(H)() τW(g) 6= 0.
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For ζ 2 C such that jζj > 1 set qζ(z) = 1� z
ζ . Then, for f 2 H�

and jzj < 1 we have�
qζ PH+q�1

ζ f
�
(z) =

�
1� z

ζ

�
1

2πi

Z
jζ 0j=1

f (ζ 0)�
1� ζ 0

ζ

�
(ζ 0 � z)

dζ 0 = f (ζ).

Therefore, if W 2 Gr(2)(H), then

τW
�
qζ

�
= det

�
I + qζ PH+q�1

ζ AW

�
= 1+ (AW1) (ζ) 2 W.

Replacing W by ex�W, we have

τex�W
�
qζ

�
= exζ f (x, ζ) = 1+

a1(x)
ζ

+ � � �

a1(x) = lim
ζ!∞

ζ
�
τex�W

�
qζ

�
� 1

�
= lim

ζ!∞
ζ

�
τW(e�x�qζ)

τW(e�x�) � 1
�

=
∂

∂x
log τW(e�x�).
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Potentials

For W 2 Gr(2)(H) de�ne q(x) = qW(x) = �2 ∂2

∂x2 log τW (e
�x�).

Since τW (e
�x�) is entire, q is meromorphic on C with pole of order 2

at x = x0 when τW(e�x0�) = 0.
For f 2 H

�
= L2(jzj = 1)

�
set f (z) = f (z).

(iv) If f 2 W ) f 2 W.
If W satis�es (iv), then q takes real values on R.

Theorem

For W 2 Gr(2)(H), qW 2 Ω (space of generalized re�ectionless potentials)
i¤
(1) W is real (namely satis�es (iv)).
(2) W satis�es τW (g) 6= 0 for any real g 2 Γ.
In this case qW is meromorphic on C with poles of degree 2.

We denote by Gr(2)real(H) the set of all W satisfying the conditions of
this theorem.
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KdV �ow

For W 2 Gr(2)(H), assume g�1W 2 Gr(2)(H) (, τw (g) 6= 0) for
g 2 Γ,

(K(g)q) (x) = �2
∂2

∂x2 log τ
g�1W

(e�x�) = �2
∂2

∂x2 log τW (e
�x�g).

If g is even, then g�1W = W, hence K(g) = id.

The cocycle property implies

K(g1g2) = K (g1)K(g2) for g1, g2 2 Γ.

This implies that only the odd component of g plays a role.
Examples

1 (K (e�xz) q) (�) = q (x+ �) ,
2 u(t, x+ �) =

�
K
�

e�xz+4tz3
�

q
�
(�) satis�es KdV equation:

∂u
∂t
= �∂3u

∂x3 + 6u
∂u
∂x

.
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Structure of W and potentials

For W 2 Gr(2)(H), there exist unique functions of W such that

W 3 Φ (z) = 1+
a1

z
+

a2

z2 + � � � , Ψ (z) = z+
b1

z
+

b2

z2 + � � � .

From the property (iii) it follows that�
p
�
z2�Φ (z) + q

�
z2�Ψ (z) , p, q polynomials

	
generates W. Therefore we call them characteristic system of
W 2 Gr(2)(H) and denote them by fΦW (z) , ΨW (z)g . Set

MW(z) =
ΨW (z)
ΦW (z)

.

Theorem

If W 2 Gr(2)real(H), then qW 2 Ω and m�
qW
(z) = �a1 � MW(�

p
z).

Moreover, for W1, W2 2 Gr(2)real(H), qW1 = qW2 (2 Ω) i¤
MW1(z) = MW2(z).
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Properties of KdV �ow

Theorem
Let g 2 Γ be such that log g(z) is an odd polynomial. Assume
W 2 Gr(2)(H) satis�es e�x log g(z)W 2 Gr(2)(H) for any x 2 [0, 1]. Then
there exists a unimodular matrix entire function

Πg
W(z) =

�
A(�z2) B(�z2)
C(�z2) D(�z2)

�
such that �

Φg�1W(z)
Ψg�1W(z)

�
= Πg

W(z)
�

ΦW(z)
ΨW(z)

�
.

Πg
W(z) satis�es a cocyle property:

Πg1g2
W (z) = Πg2

g�1
1 W

(z)Πg1
W(z).
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For W 2 Gr(2)real(H), m+
W(E+ i0) = �m�

W(E+ i0),
MW(

p
E+ i0) = �MW(�

p
E+ i0).

For z � [�1, 0], denote the set of all potentials which are
re�ectionless on z by R(z). Then from the identity

Mg�1W(
p

E) =
C(E) + D(E)MW(

p
E)

A(E) + B(E)MW(
p

E)

Theorem
fK(g)gg2G preserves the re�ectionless property:

K(g) : Ω \R(z)! Ω \R(z)

Theorem
For any real g 2 Γ and q 2 Ω

LK(g)q unitary� Lq.
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Almost periodicity

Conjecture:
�If ergodic Schrödinger operators have purely absolutely continuous
spectrum, then potentials are almost periodic�.

One approach to this conjecture:

If Ω0 is a closed fK(g)gg2G- invariant subset of Ω on which
fK(g)gg2G acts transitively. Then, for an element q0 2 Ω0, its
isotropic group

Γ = fg 2 G; K(g)q0 = q0g
induces a bijective map

G/Γ �! Ω0.

If we can show the abelian group G/Γ is compact, this implies the
almost periodicity of elements of Ω0.
Problem:
�Determine all closed fK(g)gg2G- invariant subsets of Ω on which
fK(g)gg2G acts transitively.�
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A su¢ cient condition

For a closed set z � [�1, 0] s.t. z = zessset

Ωz = Ω \R(z) \ fΣ (q) = z[ [0, ∞)g .

Then Ωz is a fK(g)gg2G- invariant closed subset of Ω.

Suppose F satis�es the following condition:
For any Herglotz function m satisfying Re m (E+ i0) = 0 a.e. e 2 F,
the representing measure σ is purely absolutely continuous on F.
Sodin-Yuditskii proved that the homogeneity of z :

9δ > 0 s.t. for 8ε > 0 and 8E 2 z, j(E� ε, E+ ε) \zj � δε holds

is su¢ cient for almost periodicity of q 2 Ωz. Their proof shows that
fK(g)gg2G acts transitively on Ωz and G/Γ is compact.
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Thank you

Thank you for your attention
and

see you again !!
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