Estimates for non-elliptic operators

Estimates for non-elliptic operators

Fabian Portmann, KTH Stockholm

July 14, 2010

-Outline

Introduction

Recent Improvements

Results for Sub-elliptic operators

- Introduction

This is joint work with A. Laptev.

LT Inequalities vs. Sobolev Inequalities

Well known Lieb-Thirring inequalities for a Schrödinger operator

$$-\Delta - V$$
,

 $V \in L^{\gamma+d/2}(\mathbb{R}^d)$, state that for the γ - moments of its negative eigenvalues $\{-\lambda_k\}$ the estimate

$$\sum_{k} \lambda_{k}^{\gamma} \leq L_{\gamma,d} \int_{\mathbb{R}^{d}} V_{+}^{\gamma+d/2}(x) \, dx \tag{2.1}$$

holds, where $V_+ = (|V| + V)/2$ is the positive part of V. The constants $L_{\gamma,d}$ in this inequality are finite if $\gamma \ge 1/2$ (d = 1), $\gamma > 0$ (d = 2) and $\gamma \ge 0$ ($d \ge 3$).

Estimates for non-elliptic operators

LT Inequalities vs. Sobolev Inequalities

If $\gamma = 1$, E.H. Lieb and W. Thirring proved that (2.1) is equivalent to a so-called generalised Sobolev inequality for an orthonormal system of functions $\{\varphi_k\}_{k=1}^N$ in $L^2(\mathbb{R}^d)$,

$$\int_{\mathbb{R}^d} [\rho_N(x)]^{(2+d)/d} dx \le C_d \sum_{k=1}^N \int_{\mathbb{R}^d} |\nabla \varphi_k(x)| dx, \qquad (2.2)$$

where $\rho_N(x) = \sum_{k=1}^{N} |\varphi_k(x)|^2$. With the help of the Fourier transform (2.2) can be rewritten as

$$\int_{\mathbb{R}^d} (\rho_N(x))^{\frac{d+2}{d}} dx \leq C_d (2\pi)^d \sum_{k=1}^N \int_{\mathbb{R}^d} |\xi|^2 |\hat{\varphi}_k(\xi)|^2 d\xi, \quad x, \xi \in \mathbb{R}^d.$$

Barsegyan's Results

Recently, D.S. Barsegyan has obtained L-T type inequalities in \mathbb{R}^2 , where the Laplace operator (whose symbol equals $|\xi|^2$) has been substituted by the product $|D_x D_y|$, $D_x = -i\partial_x$. In this case the latter inequality takes the form

$$\int_{\mathbb{R}^2} (\rho_N(x,y))^2 \, dx dy \le C \, (\log N+1) \sum_{k=1}^N \int_{\mathbb{R}^2} |\xi\eta| |\hat{\varphi}_k(\xi,\eta)|^2 \, d\xi d\eta,$$
(3.1)

where the constant C is independent of N.

Reformulation in Terms of an Operator

This inequality could be rewritten as an inequality for the negative eigenvalues $\{-\lambda_k\}$ of the operator

$$|D_x D_y| - V \tag{3.2}$$

acting in $L^2(\mathbb{R}^2)$. Let $-\lambda_1 \leq -\lambda_2 \leq \cdots \leq -\lambda_N \leq \ldots$ be the sequence of negative eigenvalues, then (3.1) implies that for any N,

$$\sum_{k=1}^{N} \lambda_k \leq C(\log N + 1) \int_{\mathbb{R}^2} V_+^2(x, y) \, dx dy. \tag{3.3}$$

Estimates for non-elliptic operators

-Recent Improvements

Proof.

Indeed, if $\{\varphi_k\}$ is an orthonormal system of eigenfunctions of the operator (3.2), then by (3.1) and the Cauchy-Schwartz inequality we have

$$\begin{split} -\sum_{k=1}^{N} \lambda_{k} &= \int_{\mathbb{R}^{2}} |\xi\eta| \sum_{k=1}^{N} |\hat{\varphi}_{k}(\xi,\eta)|^{2} \, d\xi d\eta - \int_{\mathbb{R}^{2}} V \sum_{k=1}^{N} |\varphi_{k}(x,y)|^{2} \, dx dy \\ &\geq C (\log N + 1)^{-1} \, \int_{\mathbb{R}^{2}} [\rho_{N}(x,y)]^{2} \, dx dy \\ &- \left(\int_{\mathbb{R}^{2}} V^{2} \, dx dy \right)^{1/2} \left(\int_{\mathbb{R}^{2}} [\rho_{N}(x,y)]^{2} \, dx dy \right)^{1/2}. \end{split}$$

(3.3) follows when minimizing the right hand side with respect to

$$X = \left(\int_{\mathbb{R}^2} [\rho_N(x, y)]^2 \, dx dy\right)^{1/2}$$

-Recent Improvements

Incompleteness

Although the inequality (3.1) is sharp, it does not give a satisfactory inequality for the sum of all negative eigenvalues, because the right hand side of (3.3) depends on log N + 1. When d = 2, estimates for the number of negative eigenvalues even for Schrödinger operators is a delicate problem. Necessary and sufficient conditions for the finiteness of the negative spectrum are so far not known.

Results for Sub-elliptic operators

Main Result

We consider a related problem and obtain spectral inequalities for the operator

$$D_x^2 D_y^2 u - V u = -\lambda u, \quad u(x,0) = u(0,y) = 0.$$
 (4.1)

in $L^2(\mathbb{R}^2_{++})$, where $\mathbb{R}^2_{++} = \mathbb{R}_+ \times \mathbb{R}_+$.

Theorem

Let $\gamma \ge 1/2$. Then for the negative eigenvalues $\{-\lambda_k\}$ of the operator (4.1) we have

$$\sum_{k} \lambda_{k}^{\gamma} \leq \frac{(R_{\gamma,1})^{2}}{4^{\gamma}(2\pi)^{2}} \mathcal{B}(1/2,\gamma+1) \int_{\mathbb{R}^{2}_{++}} V_{+}^{1/2+\gamma} \log(1+4xy\sqrt{V_{+}}) \, dxdy.$$
(4.2)

- Results for Sub-elliptic operators

Important Remarks

For both (3.2) and (4.1) the phase volume type estimates do not exist, because the classical phase volume is infinite. Differential parts of these operators are highly non-elliptic. Some examples of operators with infinite classical phase volume were previously considered by B. Simon, M.Z. Solomyak and M.Z. Solomyak & I.L. Vulis.

-Results for Sub-elliptic operators

Sharpness of the Result

The sharpness of the inequality (4.2) in terms of large potentials could be confirmed by the following argument. Simon showed that for the number $N(\lambda)$ of the eigenvalues $\{\lambda_k\}$ below λ of the operator $D_x^2 + D_y^2 + x^2y^2$ there is the following asymptotic formula

$$N(\lambda) = \pi^{-1} \lambda^{3/2} \log \lambda + o(\lambda^{3/2} \log \lambda), \quad \lambda \to \infty.$$

This formula immediately implies that

$$\sum_k (\lambda - \lambda_k)^\gamma_+ = rac{1}{(\gamma + 3/2)\pi} \, \lambda^{\gamma + 3/2} \log \lambda + o(\lambda^{\gamma + 3/2} \log \lambda), \quad \lambda o \infty.$$

-Results for Sub-elliptic operators

Sharpness of the Result

Using the duality of the Fourier transform it is equivalent to study the spectrum below λ of the operator $D_x^2 D_y^2 + x^2 + y^2$. We now reduce this problem to studying of the negative spectrum of the operator $D_x^2 D_y^2 - (\lambda - x^2 - y^2)_{-}$. By Theorem 4.1 we find that for $\gamma \geq 1/2$

$$\sum_k (\lambda - \lambda_k)_+^\gamma \leq rac{1}{4\gamma} (2\pi)^{-2} (R_{\gamma,1})^2 \, \mathcal{B}(1/2,\gamma+1) imes$$
 $imes \int_{\mathbb{R}^2_{++}} (\lambda - x^2 - y^2)_+^{1/2+\gamma} \log(1 + 4xy\sqrt{(\lambda - x^2 - y^2)_+}) \, dxdy$
 $\leq C \lambda^{\gamma+3/2} \left(1 + \log(\lambda + 1)\right),$

where *C* is independent of λ .