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Semiclassical asymptotics. I

In many physical problems it is necessary to calculate
semiclassical asymptotics for solutions of the Schrödinger
equation

− ε2 d2

dx2 ψ(x) + v(x)ψ(x) = λψ(x) , x ∈ R , (1)

with respect to a small parameter ε.
While the potential v(x) is smooth enough we can use the
standard WKB method to find an asymptotical behavior of
solution ψ(x). The graph of the potential splits our phase plane
(x , λ) into two regions. In the region above the potential
(λ > v(x)) there are two oscillating exponents. In the region
below the potential (λ < v(x)) there is one growing and one
decaying exponent. In the vicinity of simple turning point
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Semiclassical asymptotics. II

(λ ≈ v(x), v ′(x) 6= 0) the solutions are described in terms of
Airy functions. In the vicinity of double turning point (λ ≈ v(x),
v ′(x) = 0, v ′′(x) 6= 0) the solutions are described in terms of
parabolic cylinder functions.
But what if the potential v(x) has singularity, for example
v ′(x0) = ∞? How can we describe an asymptotical behavior of
solution ψ(x , λ) in the vicinity of point (x0, v(x0)) on the phase
plane? If we could fix variable x and write down the differential
equation with respect to the spectral parameter λ for solution
ψ(x , λ) then we could expect that this new differential equation
will have no problems and WKB method can be applied.
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Conjecture

(V. Buslaev)
Consider the Schrödinger operator in L2(R)

Lψ = −ψ′′ + v(x)ψ = k2 ψ , (2)

v(x) ∈ R ,

∞
∫

0

(1 + x2)|v(x)|dx <∞ (3)

Let us assume that the discrete spectrum of the operator L is
absent and k = 0 is not a virtual level. Then

1 One can write down the differential equation with respect
to k for eigenfunctions of continuous spectrum;

2 There exists a nonlinear relation connecting the operator L
and the kernel of its spectral measure.
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Orthogonal polynomials on the real line I

Let us consider a system of polynomials pn(λ) = αn λ
n + ...,

that are orthogonal on the axis R with respect to weight
function w = exp (−q), where q = q(λ) - some positive
continuously differentiable function, that tends to infinity when
|λ| → ∞ as a power of λ:

∫

R

pn(λ)pm(λ)w(λ)dλ = δnm. (4)

The corresponding Jacobi matrix acts on complex-valued
sequences ~x = {xn}

∞
n=0 by the rule:

(J~x)n = rnxn−1 + rn+1xn+1, n > 0 , (J~x)0 = r1x1 .
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Orthogonal polynomials on the real line II
Here rn = αn−1/αn. Vectors ~p(λ), (~p(λ))n = pn(λ) are
generalized eigenvectors for matrix J: J~p(λ) = λ~p(λ). They
form a basis in the space l2(N),N = {0, ...}.
The spectrum of matrix J is simple continuous and coincides
with axis R. We have also completeness relation for these
eigenvectors:

∑

n≥0 pn(λ)pn(µ)w(µ) = δ(λ− µ). There are two
remarkable relations for these orthogonal polynomials:

d
dλ

pn(λ) = rn Bn,n pn−1(λ) − rn Bn,n−1 pn(λ) , (5)

rn(W (J))n,n−1 = n , Freud’s equations . (6)

where

B(λ) = W (J) · (J − λ− i0)−1, W = −
d

dλ
ln w(λ) .
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History I

The conjecture for the Schrödinger operator in L2(R) is not
proved yet, but we have the following results:

1 The conjecture for the scalar Schrödinger operator in
L2(R+) with Dirichlet boundary condition was proved in our
joint work [V. S. Buslaev, V. Yu. Strazdin, One-dimensional
Schrödinger operator on the half-line: The differential
equation for eigenfunctions with respect to the spectral
parameter and an analog of the Freud equation. Functional
Analysis and Its Applications, (2007), 41(3), 237-240.]

2 We have considered several sample potentials for which
spectral measure can be calculated explicitly. We have
shown that both differential equation and nonlinear relation
are valid.
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History II

3 We have reduced our assumptions about the potential
v(x). Actually, we do not need decaying potential at least in
the case of the scalar Schrödinger operator in L2(R+) with
Dirichlet boundary condition. These reduced assumptions
were formulated in terms of spectral measure.

4 The conjecture for the matrix Schrödinger operators in
L2(R+) with Dirichlet and Neumann boundary conditions
was proved in [V. Yu. Strazdin, Matrix Schrödinger operator
on the half-line: The differential equation for generalized
eigenfunctions of continuous spectrum with respect to the
spectral parameter and an analog of the Freud equation.
Vestnik of St.Petersburg State University, Series 4, (2009),
Number 4, 49-61 (in Russian)]
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Definitions

Consider the matrix Schrödinger equation on the half-line

− Ψ′′(x , k) + V (x)Ψ(x , k) = k2Ψ(x , k) , x > 0 , (7)

where V = {vαβ}
N
α,β=1 is a Hermitian matrix such that

∞
∫

0

(1 + x2) · |V (x)| dx < ∞ , |V | ≡ max
α

N
∑

β=1

|vαβ | . (8)

The solutions Φ1(x , k), Φ2(x , k), and E(x , k) of equation (7) are
uniquely determined by the following conditions:

Φ1(0, k) = 0, Φ′
1(0, k) = 1 , Φ2(0, k) = 1, Φ′

2(0, k) = 0 ,

(9)

lim
x→∞

e−ikx E(x , k) = 1 .

Here 0 ,1 are the zero matrix and the identity matrix.
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Eigenfunctions of continuous spectrum

Let us denote by L1 (L2) corresponding matrix Schrödinger
operators with Dirichlet (Neumann) boundary conditions. We
have assumed that eigenvalues are absent. The continuous
spectrum of the operator Lj has multiplicity N and coincides
with half-line R

+. The columns of the matrix Φj(x , k) are
eigenfunctions of continuous spectrum for the operator Lj ,
j = 1,2. They satisfy the following orthonormality and
completeness conditions:

∞
∫

0

σj(l)Φ
∗
j (y , l)Φj(y , k)dy = δ(λ− µ) · 1 , j = 1,2 , (10)

∞
∫

0

Φj(x , k)σj(k)Φ∗
j (y , k)dλ = δ(x − y) · 1 , j = 1,2 , (11)
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The kernel of the operator W (Lj)

where

σ1(k) =
k
π

[E(0, k)E∗(0, k)]−1 , σ2(k) =
k
π

[

E ′(0, k)E∗′(0, k)
]−1

.

The kernel Wj(x , y) of the operator W (Lj) is given by:

Wj(x , y) =

∞
∫

0

Φj(x , l)W (µ) · σj(l)Φ
∗
j (y , l)dµ , µ = l2 .

Most of these facts about solutions to the matrix Schrödinger
equation were known long time ago. See, for example, book
[Z. S. Agranovich, V. A. Marchenko, The inverse problem of
scattering theory. Gordon and Breach, New York 1963.] But
some of them we had to establish ourselves.
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Theorem

If the potential matrix V satisfies (8) and the operator Lj

satisfies the assumption of Conjecture then

∂

∂λ

(

Φj(x , k)
Φ′

j(x , k)

)

= Uj(x , λ)

(

Φj(x , k)
Φ′

j(x , k)

)

, (12)

− 2
d
dx

Wj(x , x) = 1 , j = 1,2 , (13)

where

Uj(x , λ) =

(

−(Mj)y (x , y , λ)|y=x Mj(x , x , λ)
Wj(x , x) − (Mj)xy (x , y , λ)|y=x (Mj)x(x , y , λ)|y=x

)

Mj(Lj) = Wj(Lj) · (Lj − λ− i0)−1 , Wj(µ) = −
∂

∂µ

(

lnσj(l)
)

.
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Remark

We can write the Schrödinger equation (7) in the following form:

∂

∂x

(

Φj(x , k)
Φ′

j(x , k)

)

= V(x , λ)

(

Φj(x , k)
Φ′

j(x , k)

)

, (14)

where

V(x , λ) =

(

0 1
V (x) − λ · 1 0

)

.

An analogue of Freud’s equation was obtained as compatibility
condition of two differential equations (12) and (14).
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Applications

As soon as we prove Conjecture for scalar Schrödinger
operator in L2(R) we can use it to investigate the initial value
problem for the Korteweg-de Vries equation

ut − 6uux + ε2uxxx = 0 , u(x ,0) = v(x) , (15)

in the small dispersion limit ε→ 0.
Although many remarkable results have been obtained for this
problem, see [P. Deift, S. Venakides and X. Zhou, An extension
of the steepest descent method for Riemann-Hilbert problems:
The small dispersion limit of the Korteweg-de Vries (KdV)
equation, PNAS, 95, (1998), 450-454], there still remain several
open questions. For example, what is happening with solution
at the breaking time?
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