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We will discuss the following problem in the spirit of the classical
Cwikel-Lieb-Rozenblum estimates (CLR) for the negative spectrum of
multidimensional Schrodinger operators. Let

Hy=—-A+hV(z,w), x € R*, we (Q,F,P) (1)

be the Anderson Hamiltonian on L?(R%). The random potential we consider
has the simplest Bernoulli structure: consider the partition of R? into unit
cubes



1
Qn=1{x: ||lr —nlle < 5}, n = (ny,..nq) € 74
Then
Vizg,w)= Y enlg,(x)
neZd

Here ¢,, are i.i.d. Bernoulli r.v., namely
Ple,=1}=p>0, Ple,=0}=q=1-—p>0

on the probability space (€, F, P).

We call a domain D € R? a clearing if V = 0 when 2 € D. Since
P-a.s. realizations of the potential V' contain cubic clearings of arbitrary
size [ > 1, we have Sp(Hp) = [0, 00).



Consider a perturbation of Hy by a non-random continuous potential:
H=-A+hV(z,w)—v(x), v(ir) >0, v—0as|z]—o00 (2

The operator H is bounded from below, and its negative spectrum {\;} is

discrete. Put Ny(v,w) = #{\; < 0}. The following theorem presents the
main result.

Theorem 1. . There are two constants ¢ < co which depend only on d
and independent of h and p, such that

a) the condition

v(z) < — o , x| = 00, implies No(v,w) < oo P —a.s.,
Ind |z|In1/q

b) the condition

v(z) > —5 = , x| = 00, implies No(v,w) =00 P —a.s.,
Ind |z|In1/q




Remark 1. Similar result is valid for the lattice Anderson model with
the Bernoulli potential. Consider L?(Z?), d > 1, and the lattice Laplacian

—Ap(x)=— > (') —p(x)], Sp(-A)=0,4d].

! |x!—x|=1

Put

Hy = —A¢ + he(z,w), =€ Z¢

where g(x) areiid.rv.; Ple(x) =1} =p >0, Ple(x) =0} =q=1—p >
0. Consider the perturbation

H=—-A+he(z,w) —v(x), v(z)>0, v—20, |z|] — oo.

The lattice version of Theorem 1 has the same form (with different values
of C1, 62).



It looks natural to try to prove Theorem 1 using Cwikel-Lieb-Rozenblum
(CLR) estimates together with the Donsker-Varadan estimate. | am going
to describe difficulties which did not allow us to use this approach. But first
let me mention that CLR approach usually leads to a power decay of the
potential as a borderline between Ny < oo and Ny = oc.

Our proof is based on percolation theory and Dirichlet-Neumann

bracketing. The percolation theory allows us to describe sets in R where
V=1.

FURTHER PLAN OF MY TALK
1. Difficulties with CLR-estimates.
2. Scheme of our proof.

3. 1-D case, where a stronger results are obtained (together with J.
Holt)
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In our particular case the CLR estimate can be presented in the
following form. Let po(t, x,y) be the fundamental solution for the parabolic
Schrodinger problem

o0
% = Aupo — V(z)po, po(0,z,y) =46,(x), d>3.

Here V' > 0 and it is not essential that it is random. Consider the operator

H=-A+V(x)—v(z), v>0, v(z)—0, || = oo.

Let No(v) = #{\; < 0} be the number of negative eigenvalues of H. Then

Noy(v) < ﬁ/ / po(t’tx’x)G(tv)dazdt,, d>3
0 JRd

where G is a rather general function and g(1) = [~ 27 'G(z)e *dz.



Usually, it is enough to consider G(z) = (2 — o)1, o > 0, which leads
to

1
No(v) < @/Rd dzxv(x) /Lpo(t,x,a:)dt,, d>3 (3)

where

c(o) Z/ 2 _etogs,
0

z+ 0

The convergence of the integral (3) determines whether Ny(v) is finite
or infinite. This convergence connects the decay of v(x) at infinity with
asymptotics of p(t,z,x) as t — oo. Usually p = O(t7), t — oo, which
leads to the borderline decay of the perturbation v(x) (which separates
cases of Ny(v) < oo and Ny(v) = oo) which is defined by a power function.
There are several examples in [3] when p decays exponentially as t — o
(Lobachevski plane, operators on some groups). This leads to much slower
borderline decay of v. In those examples a fast decay of p is a corollary of
an exponential growth of the phase space.



In order to apply the estimate

1
No(v) < @»/Rd daxv(x) /U(Ux) po(t,x,x)dt,, d>3 (4)

to the operator with the Bernoulli piece-wise potential, one needs to have
a good estimate for po(t,x,x). A rough estimate of integral (4) (through
the maximum of the integrand) leads to the following result. The presence
of arbitrarily large clearings implies that P-a.s.

1
ﬂ-(t) = Suppo(t,x,:v) — (47Tt)d/2‘

which provides the standard CLR-estimate:

No(v) < ¢e(d) /Rd v¥?(z)dx, d> 3.

This estimate ignores the presence of the random potential V' and therefore
is very weak for the Hamiltonian Hy = H 4+ V.



Another possibility is to take the expectation (over the distribution of
V(z,w)). This leads to

(No(v)) < —— /R o) /L<p0(t,x,:1:)>dtda:.

c(o) o

The following Donsker-Varadan estimate (75) of (po(¢,x,x)) is one of the
widely known results in the theory of random operators (it is related to the
concept of Lifshitz tails for the integral density of states N(\)):

_d_

In{po(t,z,z)) = In{pg(t,0,0)) ~ —c(d)td+2, t — oo,
l.e., for any € > 0,
(polt, @, @)) < e~ @D > 4y (e

This estimate and the inequality above for (V) lead to the following result
Theorem 2. . Ifv(x) < iy ¢ 0 o>1 + 2, then (Np(v)) < oc
(which implies, of course, that Ny(v) < oo, P-a.s.)

This theorem requires a stronger decay of v (-) than Theorem 1.



Asymptotics of mean values of random variables are known as annealed
(or moment) asymptotics. Alternatively, one can use P-a.s, or quenched,
asymptotics. The latter usually provides a stronger result. A quenched
behavior of the kernel po(t,x,x,w) was obtained by Sznitman (98). He
proved that when x is fixed the following relation holds P-a.s.

t
oy ®

lnp()(t? £Z, T, W) ~ Cl(dap)l
11

Unfortunately, the asymptotics in (5) is highly non-uniform in x. Besides,
the field po(t, x,z,w), x € RY, has the correlation length of order t. As a
result, formula (5) can not be combined with the standard CLR-estimate

1
No(v) < —/ da:v(x)/ po(t,z,z)dt, d> 3,
C(O’) Rd ﬁ

at least directly, though the presence of the factor In>/?¢ indicates that (5)
reflects the essence of the problem.

10



PERCOLATION LEMMAS

WEe'll prove below several results on the geometric structure of the set
X1 C R?% where the potential

Vizg,w)= Y enlg,(x)

neZd

is equal to one. Here ¢,, are i.i.d. Bernoulli r.v., and
Ple,=1}=p>0, P{e,=0}=q=1—p>0.

| will focus mostly on statement a) of Theorem 1 (condition for Ny < 00),
where estimates of the Hamiltonian H from below are needed. Thus, our
goal here will be to show that set X; is rich enough (for any p,q). When
the proof of statement b) (INg = 00) is discussed, we will need estimates of
operator H from above, and existence of large clearings where V (z,w) =0
has to be shown there.
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Let us say that a cube @), is brown if €, = 1, and white if £,, = 0. Let
us introduce the concept of connectivity for sets of cubes (J,,. Two cubes
are called 1-neighbors if they have a common (d — 1)-dimensional face, i.e.,
the distance between their centers is equal to one. Two cubes are called
V/d-neighbors if they have at least one common point (a vertex or an edge
of the dimension k£ < d — 1, i.e., the distance between their centers does
not exceed v/d. A set of cubes is called 1-connected (or v/d-connected) if
any two cubes in the set can be connected by a sequence of 1-neighbors
(\/E—neighbors, respectively.)

(@) (b)

Figure 1. 1-connected and V/2-connected sets
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An infinite (maximal) 1-connected component of brown cubes (V = 1)
will be called a “continent”. A well known result by M. Aizenman, H.
Kesten, C. M. Newman (87) states that P-a.s. there is at most one
continent in R? (even if 1-connectivity in the definition of the continent
is replaced by \/g—connectivity). It is also known that such a continent
exists P-a.s. if ¢ < q... The continent can include v/d-connected “lakes”
where ¢,, = 0, the lakes can include “islands’, i.e., bounded 1-connected
components where £,, = 1, and so forth.

Figure 2: One continent with 3 lakes and one island

13



Main percolation lemma

Let ]
1< 375 (6)

Then P-a.s. there exists a unique continent and there exists a non-
random constant a = a(d,q) such that P-a.s. the following estimate

holds for all lakes L (vd-connected sets of cubes where V. = 0) located

far enough from the origin:

Ll =#{Q, C L} <alnr, r= minL x|, 7> ro(w).
Tr:re

This main lemma follows from the Borel-Contelli lemma and the following

statement.
Lemma 1. (exponential tails). If (6) holds and Lg is a lake containing

the origin, then there exists a constant co = co(d, q) such that

P{Lol > 8} Sce™, 7=l

14



Proof. Consider all possible v/d-connected sets S = L @, of the cubes
Q) which have volume s (each of them consists of s cubes (),,) and contain
the cube @)y (we do not pay attention to the color of cubes in S). Grimmett
called sets S “v/d-animals’. Let us estimate the number v, of all animals
of volume s from above. There is only one animal of volume 1 (it consists
of Qo), and therefore, v; = 1. The v d-neighbors of Qq together with Q
fill out the cube of edge length 3, i.e., o = 3¢ — 1. Each animal of volume
s can be obtained by adding a new cube to some animal of volume s — 1.
Each cube in that smaller animal has exactly 3¢ — 1 neighbors and at least
one of them belongs to the animal. Thus, v, < ys_l(?)d —2), s> 2, and
therefore,

v, < (39— 1)(3% - 2)°72 s> 2.

The probability that any fixed animal of volume s has only white cubes is

q°, l.e,

P{|Cw(0,Vd)| = s} < (3" = 1)(3" =2)* ? < ™, 52> 2.

15



€1

Proof of statement a) of theorem (Ny < oo if w(z) < —
Ind |z|In1/q

in the case of small ¢ < ——.

3d_9

Consider the set of all lakes {L;}. Let OL; be the shoreline of L; (set
of cubes (,, which do not belong to L;, but have a common point with at
least one cube from L;). Obviously, |0L;| < c(d)|L;|. Let S; be C*-surfaces
surrounding L; which have the following properties:

1 1
S; C 8Lz, Z < dlSt(Sz,Lz) < 5,

and the main curvatures of the surfaces S; are bounded by a constant
k < oo which does not depend on ¢ or a point on S;.

16



Let Ny n be the number of negative eigenvalues of the operator Hy in
L?(R%) defined by —A + hV (z,w) — v(z) with the Neumann boundary
condition (7, = 0) imposed on all surfaces S;, i =1,2,.... Then

NO (’U) S NQ’N (’U) .

Thus, it is enough to show that Ny y < oo P-as..

Since V' = 1 on the continent and v — 0 at infinity, the continent
provides a finite number of negative eigenvalues. Each domain {2; with a
lake L; and 0€2; = S; is bounded and also provides a finite number of the
eigenvalues. It remains to show that the Neumann problem

—A+hV(z,w) —v(z)]u=Au, €l uls, =0
does not have negative eigenvalues when ¢ >> 1. The latter is a

consequence of the following lemma

17



Lemma 2. Consider the operator

Lu=(—A+hV(x))u, z=e€; g—u =0, z € 01,
%

in a bounded domain Q with a C? boundary, |2 > 1 and the main
curvatures of 02 being bounded by a constant k < oo independent off €.
Let V =1 if dist(z,00) < 1, V. = 0 if dist(x,000 > 1 Then there is a
constant co = co(k,l, h,d) such that the following estimate is valid for
the minimal eigenvalue Ay of operator L:

Co

> 1.

18



c1
ln%|x|h11/q
if ¢ > 3d1_2. The following trick is used in this case. Consider the
partition of R% into bigger cubes (I, nl) of edge length [ centered at point

nl : R'= |J Q(l,nl), I > 1is integer. Consider an individual cube Q.
nezd

The realization of V (z) inside ) includes (¢ Bernoullir.v. g, s = 1,2,---1%.

Let's fix a number 0 < p* < p, for example, p* = p/2. We will call cube @

gray if #{s: e, = 1} > p*I¢ and we will continue to call the cube Q white

in the opposite case. Thus, @ is gray if V' (x) = 1 on some part of this cube

of at least p* portion of its volume.

Proof of statement a) of theorem (N < oo if w(x) <

The following fact is well-known in the theory of Bernoulli experiments.
It follows from the exponential Chebyshev inequality:

For each p > 0 there exists [ = [(p) > 1 such that the majority of big
cubes Q(I,nl) will be gray, i.e.

1

P{Q is yellow} < e < 34 o

At the same time at least p/2 portion of the volume of each gray cube is

19



covered by brown sub-cubes of edge length one where V(x) = 1.

After that, one can apply our previous arguments to the systems of
yellow and gray cubes Q(I,nl) instead of white and black cubes @,

1-D case
Exact constants.
Let Hy be a 1-D Hamiltonian with a Bernoulli potential V' (z,w)

d2
(dz)?

H=— + hV (z,w) — v(x).

Theorem 3. For any p > 0 and h > 0,

, a) If 0 < v(z) < e/ In®(|z| + 1) with ¢1 < lnf/p 72 then No(v) < oo,
-a.8.;

. b) If v(x) > ¢/ In?(|z| + 1) with ¢; > ln%/pﬂz then No(v) = oo,
-Q.S..

More general (Kronig-Penney) potentials.
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We consider LQ(R+), Dirichlet or other b.c. at x = 0, and

1 i z(w) <2 <yi(w)
Vo(z) = { 0 if yilw)<zx< Clyfz'+1(w)

where x; and y; are random variables on a probability space with z; < y; <
x;11. Let, for simplicity, y; —x; = [. We assume that the distances between
the bumps L; = z; — y;_1 are i.i.d.r.v., and for all @ > 0, P{L; > a} > 0
and E[L;] = p < oo with p > 0.

Results depend on the distribution of tails.
Theorem 4. Let {L;} be i.i.d.r.v. with exponential tails, that is,

P{Lp>x}~e " n>0

. Ifv(z) < co/In’z for all large x and co < 0w, then Ny < oo P-a.s..
If v(z) > co/In*x for all large x and co > n*w2, then No(w) = oo P-a.s.

Example of heavy tails Suppose

P(Ly > ) ~ 2

xOé
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for some cg, a0 > 0.
a) if v(z) < 5,7 >2, z— oo, then Ny(v) < oo P— as.

b) If v(x) > %,7 <2, x — oothen Ng =00 P— as..
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