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We will discuss the following problem in the spirit of the classical
Cwikel-Lieb-Rozenblum estimates (CLR) for the negative spectrum of
multidimensional Schrödinger operators. Let

H0 = −∆ + hV (x, ω), x ∈ Rd, ω ∈ (Ω, F, P ) (1)

be the Anderson Hamiltonian on L2(Rd). The random potential we consider
has the simplest Bernoulli structure: consider the partition of Rd into unit
cubes



Qn

Qn = {x : ||x− n||∞ ≤ 1
2
}, n = (n1, ...nd) ∈ Zd.

Then
V (x, ω) =

∑

n∈Zd

εnIQn(x).

Here εn are i.i.d. Bernoulli r.v., namely

P{εn = 1} = p > 0, P{εn = 0} = q = 1− p > 0

on the probability space (Ω, F, P ).

We call a domain D ∈ Rd a clearing if V = 0 when x ∈ D. Since
P -a.s. realizations of the potential V contain cubic clearings of arbitrary
size l À 1, we have Sp(H0) = [0,∞).
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Consider a perturbation of H0 by a non-random continuous potential:

H = −∆ + hV (x, ω)− v(x), v(x) ≥ 0, v → 0 as |x| → ∞. (2)

The operator H is bounded from below, and its negative spectrum {λi} is
discrete. Put N0(v, ω) = #{λi ≤ 0}. The following theorem presents the
main result.
Theorem 1. . There are two constants c1 < c2 which depend only on d
and independent of h and p, such that

a) the condition

v(x) ≤ c1

ln
2
d |x| ln 1/q

, |x| → ∞, implies N0(v, ω) < ∞ P − a.s.,

b) the condition

v(x) ≥ c2

ln
2
d |x| ln 1/q

, |x| → ∞, implies N0(v, ω) = ∞ P − a.s.,
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Remark 1. Similar result is valid for the lattice Anderson model with
the Bernoulli potential. Consider L2(Zd), d ≥ 1, and the lattice Laplacian

−∆ψ(x) = −
∑

x′:|x′−x|=1

[ψ(x′)− ψ(x)], Sp(−∆) = [0, 4d].

Put

H0 = −∆ψ + hε(x, ω), x ∈ Zd,

where ε(x) are i.i.d.r.v.; P{ε(x) = 1} = p > 0, P{ε(x) = 0} = q = 1−p >
0. Consider the perturbation

H = −∆ + hε(x, ω)− v(x), v(x) ≥ 0, v → 0, |x| → ∞.

The lattice version of Theorem 1 has the same form (with different values
of c1, c2).
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It looks natural to try to prove Theorem 1 using Cwikel-Lieb-Rozenblum
(CLR) estimates together with the Donsker-Varadan estimate. I am going
to describe difficulties which did not allow us to use this approach. But first
let me mention that CLR approach usually leads to a power decay of the
potential as a borderline between N0 < ∞ and N0 = ∞.

Our proof is based on percolation theory and Dirichlet-Neumann
bracketing. The percolation theory allows us to describe sets in Rd where
V = 1.

FURTHER PLAN OF MY TALK

1. Difficulties with CLR-estimates.

2. Scheme of our proof.

3. 1-D case, where a stronger results are obtained (together with J.
Holt)
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CLR-estimates and large deviations. The classical approach to the
study of the discrete negative spectrum of Schrödinger type operators is
based on Cwikel-Lieb-Rozenblum estimates. Important generalizations and
references can be found in

[1] Rozenblum, G., Solomyak, M., ”St. Petersburg Math. J.”, 9, no. 6,
pp1195-1211 (1998).

[2] Rozenblum, G., Solomyak, M., Sobolev Spaces in Mathematics. II.
Applications in Analysis and Parrtial Differential Equations, International
Mathematical Series, 8, Springer and T. Rozhkovskaya Publishers, pp329-
354 (2008).

[3] Molchanov S., Vainberg B., in Around the research of Vladimir
Maz’ya, Editor A. Laptev, Springer, 2009, pp 201-246.
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In our particular case the CLR estimate can be presented in the
following form. Let p0(t, x, y) be the fundamental solution for the parabolic
Schrödinger problem

∂p0

∂t
= ∆xp0 − V (x)p0, p0(0, x, y) = δy(x), d ≥ 3.

Here V ≥ 0 and it is not essential that it is random. Consider the operator

H = −∆ + V (x)− v(x), v ≥ 0, v(x) → 0, |x| → ∞.

Let N0(v) = #{λj ≤ 0} be the number of negative eigenvalues of H. Then

N0(v) ≤ 1
g(1)

∫ ∞

0

∫

Rd

p0(t, x, x)
t

G(tv)dxdt, , d ≥ 3

where G is a rather general function and g(1) =
∫∞
0

z−1G(z)e−zdz.
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Usually, it is enough to consider G(z) = (z − σ)+, σ > 0, which leads
to

N0(v) ≤ 1
c(σ)

∫

Rd
dxv(x)

∫
σ

v(x)

p0(t, x, x)dt, , d ≥ 3 (3)

where

c(σ) =
∫ ∞

0

z

z + σ
ez+σdz.

The convergence of the integral (3) determines whether N0(v) is finite
or infinite. This convergence connects the decay of v(x) at infinity with
asymptotics of p(t, x, x) as t → ∞. Usually p = O(tγ), t → ∞, which
leads to the borderline decay of the perturbation v(x) (which separates
cases of N0(v) < ∞ and N0(v) = ∞) which is defined by a power function.
There are several examples in [3] when p decays exponentially as t → ∞
(Lobachevski plane, operators on some groups). This leads to much slower
borderline decay of v. In those examples a fast decay of p is a corollary of
an exponential growth of the phase space.
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In order to apply the estimate

N0(v) ≤ 1
c(σ)

∫

Rd
dxv(x)

∫
σ

v(x)

p0(t, x, x)dt, , d ≥ 3 (4)

to the operator with the Bernoulli piece-wise potential, one needs to have
a good estimate for p0(t, x, x). A rough estimate of integral (4) (through
the maximum of the integrand) leads to the following result. The presence
of arbitrarily large clearings implies that P -a.s.

π(t) ≡ sup
x

p0(t, x, x) =
1

(4πt)d/2
.

which provides the standard CLR-estimate:

N0(v) ≤ c(d)
∫

Rd
vd/2(x)dx, d ≥ 3.

This estimate ignores the presence of the random potential V and therefore
is very weak for the Hamiltonian H0 = H + V .
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Another possibility is to take the expectation (over the distribution of
V (x, ω)). This leads to

〈N0(v)〉 ≤ 1
c(σ)

∫

Rd
v(x)

∫
σ

v(x)

〈p0(t, x, x)〉dtdx.

The following Donsker-Varadan estimate (75) of 〈p0(t, x, x)〉 is one of the
widely known results in the theory of random operators (it is related to the
concept of Lifshitz tails for the integral density of states N(λ)):

ln〈p0(t, x, x)〉 = ln〈p0(t, 0, 0)〉 ∼ −c(d)t
d

d+2, t →∞,

i.e., for any ε > 0,

〈p0(t, x, x)〉 ≤ e−(c1(d)−ε)td/d+2
, t ≥ t0(ε).

This estimate and the inequality above for 〈N0〉 lead to the following result
Theorem 2. . If v(x) ≤ c

lnσ(2+|x|), c > 0, σ > 1 + 2
d, then 〈N0(v)〉 < ∞

(which implies, of course, that N0(v) < ∞, P -a.s.)

This theorem requires a stronger decay of v (·) than Theorem 1.
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Asymptotics of mean values of random variables are known as annealed
(or moment) asymptotics. Alternatively, one can use P -a.s, or quenched,
asymptotics. The latter usually provides a stronger result. A quenched
behavior of the kernel p0(t, x, x, ω) was obtained by Sznitman (98). He
proved that when x is fixed the following relation holds P -a.s.

ln p0(t, x, x, ω) ∼ c1(d, p)
t

ln2/d t
. (5)

Unfortunately, the asymptotics in (5) is highly non-uniform in x. Besides,
the field p0(t, x, x, ω), x ∈ Rd, has the correlation length of order t. As a
result, formula (5) can not be combined with the standard CLR-estimate

N0(v) ≤ 1
c(σ)

∫

Rd
dxv(x)

∫
σ

v(x)

p0(t, x, x)dt, d ≥ 3,

at least directly, though the presence of the factor ln2/d t indicates that (5)
reflects the essence of the problem.
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PERCOLATION LEMMAS

We’ll prove below several results on the geometric structure of the set
X1 ⊂ Rd where the potential

V (x, ω) =
∑

n∈Zd

εnIQn(x)

is equal to one. Here εn are i.i.d. Bernoulli r.v., and

P{εn = 1} = p > 0, P{εn = 0} = q = 1− p > 0.

I will focus mostly on statement a) of Theorem 1 (condition for N0 < ∞),
where estimates of the Hamiltonian H from below are needed. Thus, our
goal here will be to show that set X1 is rich enough (for any p, q). When
the proof of statement b) (N0 = ∞) is discussed, we will need estimates of
operator H from above, and existence of large clearings where V (x, ω) = 0
has to be shown there.
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Let us say that a cube Qn is brown if εn = 1, and white if εn = 0. Let
us introduce the concept of connectivity for sets of cubes Qn. Two cubes
are called 1-neighbors if they have a common (d− 1)-dimensional face, i.e.,
the distance between their centers is equal to one. Two cubes are called√

d-neighbors if they have at least one common point (a vertex or an edge
of the dimension k ≤ d − 1, i.e., the distance between their centers does
not exceed

√
d. A set of cubes is called 1-connected (or

√
d-connected) if

any two cubes in the set can be connected by a sequence of 1-neighbors
(
√

d-neighbors, respectively.)

(a) (b)

Figure 1: 1-connected and
√

2-connected sets
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An infinite (maximal) 1-connected component of brown cubes (V = 1)
will be called a “continent”. A well known result by M. Aizenman, H.
Kesten, C. M. Newman (87) states that P -a.s. there is at most one
continent in Rd (even if 1-connectivity in the definition of the continent
is replaced by

√
d-connectivity). It is also known that such a continent

exists P -a.s. if q < qcr. The continent can include
√

d-connected “lakes”
where εn = 0, the lakes can include “islands”, i.e., bounded 1-connected
components where εn = 1, and so forth.

V=1

V=0

Figure 2: One continent with 3 lakes and one island
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Main percolation lemma

Let

q <
1

3d − 2
(6)

Then P -a.s. there exists a unique continent and there exists a non-
random constant a = a(d, q) such that P -a.s. the following estimate
holds for all lakes L (

√
d-connected sets of cubes where V = 0) located

far enough from the origin:

|L| = #{Qn ⊂ L} < a ln r, r = min
x:x∈L

|x|, r > r0(ω).

This main lemma follows from the Borel-Contelli lemma and the following
statement.
Lemma 1. (exponential tails). If (6) holds and L0 is a lake containing
the origin, then there exists a constant c0 = c0(d, q) such that

P{|L0| ≥ s} ≤ c0e
−γs, γ = ln

1
q(3d − 2)

> 0.
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Proof. Consider all possible
√

d-connected sets S =
⋃

Qn of the cubes
Qn which have volume s (each of them consists of s cubes Qn) and contain
the cube Q0 (we do not pay attention to the color of cubes in S). Grimmett
called sets S “

√
d-animals”. Let us estimate the number νs of all animals

of volume s from above. There is only one animal of volume 1 (it consists
of Q0), and therefore, ν1 = 1. The

√
d-neighbors of Q0 together with Q0

fill out the cube of edge length 3, i.e., ν2 = 3d − 1. Each animal of volume
s can be obtained by adding a new cube to some animal of volume s − 1.
Each cube in that smaller animal has exactly 3d − 1 neighbors and at least
one of them belongs to the animal. Thus, νs ≤ νs−1(3d − 2), s > 2, and
therefore,

νs ≤ (3d − 1)(3d − 2)s−2, s ≥ 2.

The probability that any fixed animal of volume s has only white cubes is
qs, i.e,

P{|Cw(0,
√

d)| = s} ≤ qs(3d − 1)(3d − 2)s−2 ≤ c1e
−γs, s ≥ 2.

15



Proof of statement a) of theorem (N0 < ∞ if w(x) ≤ c1

ln
2
d |x| ln 1/q

)

in the case of small q < 1
3d−2

.

Lake
V=0

V=1
V=1

Consider the set of all lakes {Li}. Let ∂Li be the shoreline of Li (set
of cubes Qn which do not belong to Li, but have a common point with at
least one cube from Li). Obviously, |∂Li| ≤ c(d)|Li|. Let Si be C2-surfaces
surrounding Li which have the following properties:

Si ⊂ ∂Li,
1
4

< dist(Si, Li) <
1
2
,

and the main curvatures of the surfaces Si are bounded by a constant
k < ∞ which does not depend on i or a point on Si.
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Let N0,N be the number of negative eigenvalues of the operator HN in
L2(Rd) defined by −∆ + hV (x , ω) − v(x) with the Neumann boundary
condition (ψν = 0) imposed on all surfaces Si, i = 1, 2, . . .. Then

N0 (v) ≤ N0,N (v) .

Thus, it is enough to show that N0,N < ∞ P -a.s..

Since V = 1 on the continent and v → 0 at infinity, the continent
provides a finite number of negative eigenvalues. Each domain Ωi with a
lake Li and ∂Ωi = Si is bounded and also provides a finite number of the
eigenvalues. It remains to show that the Neumann problem

[−∆ + hV (x, ω)− v(x)]u = λu, x ∈ Ωi, uν|Si
= 0

does not have negative eigenvalues when i >> 1. The latter is a
consequence of the following lemma
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Lemma 2. Consider the operator

Lu = (−∆ + hV (x))u, x ∈ Ω;
∂u

∂ν
= 0, x ∈ ∂Ω,

in a bounded domain Ω with a C2 boundary, |Ω| À 1 and the main
curvatures of ∂Ω being bounded by a constant k < ∞ independent off Ω.
Let V = 1 if dist(x, ∂Ω) < 1, V = 0 if dist(x, ∂Ω > 1 Then there is a
constant c0 = c0(k, l, h, d) such that the following estimate is valid for
the minimal eigenvalue λ0 of operator L:

λ0 ≥ c0

|Ω|2/d
, |Ω| ≥ 1.
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Proof of statement a) of theorem (N0 < ∞ if w(x) ≤ c1

ln
2
d |x| ln 1/q

)

if q ≥ 1
3d−2

. The following trick is used in this case. Consider the

partition of Rd into bigger cubes Q(l, nl) of edge length l centered at point
nl : Rd =

⋃
n∈Zd

Q(l, nl), l À 1 is integer. Consider an individual cube Q.

The realization of V (x) inside Q includes ld Bernoulli r.v. εs, s = 1, 2, · · · ld.
Let’s fix a number 0 < p∗ < p, for example, p∗ = p/2. We will call cube Q
gray if #{s : εs = 1} ≥ p∗ld and we will continue to call the cube Q white
in the opposite case. Thus, Q is gray if V (x) = 1 on some part of this cube
of at least p∗ portion of its volume.

The following fact is well-known in the theory of Bernoulli experiments.
It follows from the exponential Chebyshev inequality:

For each p > 0 there exists l = l(p) ≥ 1 such that the majority of big
cubes Q(l, nl) will be gray, i.e.

P {Q is yellow} ≤ e−c(p)ld <
1

3d − 2
.

At the same time at least p/2 portion of the volume of each gray cube is
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covered by brown sub-cubes of edge length one where V (x) = 1.

After that, one can apply our previous arguments to the systems of
yellow and gray cubes Q(l, nl) instead of white and black cubes Qn

1-D case

Exact constants.

Let H0 be a 1-D Hamiltonian with a Bernoulli potential V (x, ω)

H = − d2

(dx)2
+ hV (x, ω)− v(x).

Theorem 3. For any p > 0 and h > 0,

a) If 0 ≤ v(x) ≤ c1/ ln2(|x| + 1) with c1 < ln2
1/p π2 then N0(v) < ∞,

P-a.s.;

b) If v(x) > c1/ ln2(|x| + 1) with c1 > ln2
1/p π2 then N0(v) = ∞,

P-a.s..

More general (Kronig-Penney) potentials.
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We consider L2(R+), Dirichlet or other b.c. at x = 0, and

Vω(x) =
{

1 if xi(ω) ≤ x ≤ yi(ω)
0 if yi(ω) < x < xi+1(ω)

where xi and yi are random variables on a probability space with xi < yi <
xi+1. Let, for simplicity, yi−xi = l. We assume that the distances between
the bumps Li = xi − yi−1 are i.i.d.r.v., and for all a > 0, P{Li > a} > 0
and E[Li] = µ < ∞ with µ > 0.

Results depend on the distribution of tails.
Theorem 4. Let {Lk} be i.i.d.r.v. with exponential tails, that is,

P{Lk > x} ∼ e−ηx, η > 0

. If v(x) ≤ c0/ ln2 x for all large x and c0 < η2π2, then N0 < ∞ P -a.s..
If v(x) ≥ c0/ ln2 x for all large x and c0 > η2π2, then N0(ω) = ∞ P -a.s.

Example of heavy tails Suppose

P (Lk ≥ x) ∼ c0

xα
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for some c0, α > 0.

a) if v(x) < 1
xγ , γ > 2, x →∞, then N0(v) < ∞ P− a.s.

b) If v(x) > 1
xγ , γ < 2, x →∞ then N0 = ∞ P− a.s..
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