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Suppose a continuous random field X(t), t ∈ [0, 1]d, d ≥ 1, with finite
second moment can observed in a finite number of randomly chosen points.
We want to approximate ∫

[0,1]d
X(t)dt

by a quadrature formula based on these observations.



Stratified Monte Carlo quadrature

Let D := [0, 1]d be partitioned into N stratas D1, . . . ,DN by a rectangular
grid. Let |Di| denote the volume of the hyperrectangle Di, i = 1, . . . , N .
For a random field X ∈ C(D), define a stratified Monte Carlo quadrature
(sMCq)

IN (X) :=

N∑
i=1

X(ηi)|Di|,

where η1, . . . ,ηN are uniformly distributed in the strata D1, . . . ,DN ,
respectively.







Sampling grid distribution

� Interdimensional grid distribution

� Withindimensional grid distribution



Interdimensional grid distribution

The interdimensional distribution of N strata is determined by a vector
function π∗ : N→ Nd:

(n∗1, n
∗
2, . . . , n

∗
d) =: (π∗1(N), π∗2(N), . . . , π∗d(N)) =: π∗(N),

where limN→∞ π
∗
j (N) =∞, j = 1, 2, . . . , d, and the condition

d∏
j=1

π∗j (N) = N

is satisfied.



Withindimensional grid distribution

We consider cross regular sequences of designs
TN := {ti = (t1,i1 , . . . , td,id) : i = (i1, . . . , id), 0 ≤ ik ≤ n∗k, k = 1, . . . , d}
defined by the one-dimensional grids∫ tj,i

0

h∗j (v)dv =
i

n∗j
, i = 0, 1, . . . , n∗j , j = 1, . . . , d,

where h∗j (s), s ∈ [0, 1], j = 1, . . . , d, are positive and continuous density
functions.



Approximation Accuracy Measure



Mean Squared Error

The accuracy of the approximation is measured by the mean squared error,
i.e.,

e2
N = E(I(X)− IN (X))2 = || I(X)− IN (X) ||2 .



Fields of interest



Component division

For k ≤ d, let l = (l1, . . . , lk) be a vector of positive integers such that∑k
j=1 lj = d, and let Li :=

∑i
j=1 lj , i = 0, . . . k, L0 = 0, be the sequence of

its cumulative sums.

Then the vector l defines the l-decomposition of D into D1 ×D2 × . . .Dk,
with the lj-cube Dj = [0, 1]lj , j = 1, . . . , k.

For any s ∈ D, we denote the coordinates vector corresponding to the j-th
component of the decomposition by sj , i.e.,

sj = sj(l) := (sLj−1+1, . . . , sLj ) ∈ Dj , j = 1, . . . , k.

Example Let D = [0, 1]3 and l = (1, 2). Then for any s = (s1, s2, s3) ∈ D,
s1 = s1 and s2 = (s2, s3).
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α-norm

For a vector α = (α1, . . . , αk), 0 < αj < 2, j = 1, . . . , k, and the
decomposition vector l = (l1, . . . , lk), we define

|| s ||α :=

k∑
j=1

∣∣∣∣∣∣ sj ∣∣∣∣∣∣αj

for all s ∈ D

with the Euclidean norms ||sj ||, j = 1, . . . , k.



Hölder fields

For a random field X ∈ C([0, 1]d), we say that X ∈ Cαl ([0, 1]d, C) if for some
α, l, and a positive constant C, the random field X satisfies the Hölder
condition, i.e.,

||X(t + s)−X(t) ||2 ≤ C || s ||α for all t, t + s ∈ [0, 1]d.



Locally stationary fields

For a random field X ∈ C([0, 1]d), we say that X ∈ Bα
l ([0, 1]d, c(·)) if for

some α, l, and a vector function c(t) = (c1(t), . . . , ck(t)), t ∈ [0, 1]d, the
random field X is locally stationary, i.e.,

||X(t + s)−X(t) ||2∑k
j=1 ck(t) || sj ||αj

→ 1 as s→ 0 uniformly in t ∈ [0, 1]d,

with positive and continuous functions c1(·), . . . , ck(·).

We assume additionally that for j = 1, . . . , k, the function cj(·) is invariant
with respect to coordinates permutation within the j-th component.



For the partition generated by a vector l = (l1, . . . , lk), we consider cross
regular designs TN , defined by functions h = (h1, . . . , hk) and
π(N) = (n1(N), . . . , nk(N)), in the following way:

h∗i (·) ≡ hj(·), n∗i = nj , i = Lj−1 + 1, . . . , Lj , j = 1, . . . , k.

We call functions h1(·), . . . , hk(·) and π(N) withincomponent densities
and intercomponent grid distribution, respectively. The corresponding
property of a design TN is denoted by: TN is cRS(h, π, l).



Main Results



For any u ∈ Rm+ , we denote

bβ,m(u) =
1

2

∫
[0,1]m

∫
[0,1]m

||u ∗ (t− v) ||β dtdv

where ′∗′ denotes coordinate-wise multiplication, i.e., if x = (x1, x2, . . . , xd)
′

and y = (y1, y2, . . . , yd) then x ∗ y = (x1y1, x2y2, . . . , xdyd).

For sequences of real numbers un and vn, we write un ∼ vn if
limn→∞ un/vn = 1 and un . vn if limn→∞ un/vn ≤ 1.



Theorem

Let X ∈ Bα
l (D, c(·)) be a random field and let I(X) be approximated by

sMCq IN (X,TN ), where TN is cRS(h, π, l). Then

e2
N ∼

1

N

k∑
j=1

vj

n
αj

j

as N →∞,

where

vj =

∫
D
cj(t)bαj ,lj (Dj(t

j))

d∏
m=1

h∗m(tm)
−1
dt,

and Dj(t
j) = (1/hj(tLj−1+1), . . . , 1/hj(tLj )).



Intercomponent optimality

Denote by

ρ :=

(
k∑
i=1

li
αi

)−1

, κ :=
k∏
j=1

v
lj/αj

j .

Proposition

Let X ∈ Bα
l (D, c(·)) be a random field and let I(X) be approximated by

sMCq IN (X,TN ), where TN is cRS(h, π, l). Then

|| I(X)− IN (X,TN ) ||2 & k
κρ

N1+ρ
as N →∞.

Moreover, for the asymptotically optimal intercomponent grid allocation,

nj,opt ∼
v

1/αj

j

κρ/αj
Nρ/αj , j = 1, . . . , k as N →∞,

the equality is attained asymptotically.
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Stochastic processes

For 0 < β < 2, let

aβ :=
1

(1 + β)(2 + β)
.

Corollary

Let X ∈ Bα1 ([0, 1], c(·)) be a random process and let I(X) be approximated
by sMCq IN (X,TN ), where TN is RS(h). Then

lim
N→∞

N1+α || I(X)− IN (X,TN ) ||2 = aα

∫ 1

0

c(t)h(t)−(1+α)dt.

The density minimizing the asymptotic constant is given by

hopt(t) =
c(t)γ∫ 1

0
c(τ)γdτ

, t ∈ [0, 1],

where γ := 1/(2 + α). Furthermore, for such density, we get

lim
N→∞

N1+α || I(X)− IN (X,TN ) ||2 = aα

(∫ 1

0

c(t)γdt

)1/γ

.
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Hölder class

Proposition

Let X ∈ Cαl (D, C) be a random field and let I(X) be approximated by sMCq
IN (X,TN ), where TN is cRS(h, π, l). Then

|| I(X)− IN (X,TN ) ||2 ≤ C

N

k∑
j=1

dj
nαj

for positive constants d1, . . . , dk. Moreover if nj ∼ Nρ/αj , j = 1, . . . , k, then

|| I(X)− IN (X,TN ) ||2 = O
(
N−(ρ+1)

)
.



Point Singularity at the origin



We focus on the random fields consisting of one component, i.e., k = 1,
l = d and α = α, and denote the classes of corresponding Hölder and
locally stationary random functions by Cαd and Bαd , respectively.



Let a random function X(t), t ∈ [0, 1]d, satisfy the Hölder condition with
β ∈ (0, 2) for t ∈ [0, 1]d. Let, additionally, X be locally stationary with
parameter α > β, for all points t ∈ (0, 1]d. We construct sequences of grid
designs with an asymptotic approximation rate N−(1+α/d).



The definition of cRS for k = 1 gives that nj = N1/d and h∗j (·) = h(·),
j = 1, . . . , d, for a positive and continuous density h(t), t ∈ [0, 1]. For the
density h(·), we define the related distribution functions

H(t) :=

∫ t

0

h(u)du, G(t) := H−1(t) =

∫ t

0

g(v)dv, t ∈ [0, 1],

i.e., G(·) is a quantile function for the distribution H. Moreover, by

g(t) := G′(t) = 1/h(G(t)), t ∈ [0, 1],

we denote the quantile density function.



Local Hölder Class

For a random function X ∈ C([0, 1]d), we say that:

� X ∈ Cαd (A, V (·)) if X ∈ C(A) and X is locally Hölder continuous, i.e., if
for all t, t + s,∈ A,

||X(t + s)−X(t) ||2 ≤ V (t̄) || s ||α , 0 < α < 2,

for a positive continuous function V (t), t ∈ A, and some
t̄ ∈ {t̄ : t̄ = t + s ∗ u,u ∈ [0, 1]d};

� X ∈ CBαd ((0, 1]d, c(·), V (·)) if there exist 0 < α < 2, and positive
continuous functions c(t), V (t), t ∈ (0, 1]d such that
X ∈ Cαd (A, V (·)) ∩ Bαd (A, c(·)) for any closed A ⊂ (0, 1]d.



Shifting Condition

We say that a positive function f(t), t ∈ Rd satisfies a shifting condition if
there exist positive constants C and a such that

f(s) ≤ Cf(v)

for all s,v such that 1√
3+d
≤ || s ||
||v || ≤

√
3 + d, s,v ∈ [0, a]d\0d.



Let X ∈ Cβd ([0, 1]d,M) ∩ CBαd ((0, 1]d, c(·), V (·)), 0 < β < α < 2.

For β > α− d, we prove that under some condition on local Hölder function
V (·), the cross regular sequences attain the optimal approximation rate
N−(1+α/d).

Observe that β > α− d holds for all α, β ∈ (0, 2) if d ≥ 2 and for d = 1 if
β > α− 1.



Let H(t) := (H(t1), . . . , H(td)) ,t ∈ [0, 1]d, and G(t) =: (G(t1), . . . , G(td)),
t ∈ [0, 1]d. We formulate the following condition:

(C) Let V (G(·)) be bounded from above by a function R(·) satisfying
shifting condition and such that R(H(·)) ∈ L1[0, b]d, for some b > 0.



Results

Theorem

Let X ∈ Cβd ([0, 1]d,M) ∩ CBαd ((0, 1]d, c(·), V (·)), α− d < β < α, be a random
field and let I(X) be approximated by sMCQ IN (X,TN ), where TN is
cRS(h, π, d). If the local Hölder function V (·) satisfies the condition (C),
then

|| I(X)− IN (X,TN ) ||2 ∼ 1

N1+α/d

∫
D
c(t)bα,d(D(t))

d∏
m=1

h(tm)−1dt

as N →∞, where D(t) = (1/h(t1), . . . , 1/h(td)).



quasi RS for random processes

Now we consider the case d = 1 and 0 < β ≤ α− 1, which is not included in
the above theorem.

We consider quasi regular sequences (qRS) of sampling designs TN = TN (h),
which are a simple modification of the regular sequences.

We assume that h(t) is continuous for t ∈ (0, 1], and allow it to be
unbounded in t = 0. If h(t) is unbounded in t = 0, then h(t)→ +∞ as
t→ 0+. We denote this property of TN by: TN is qRS(h). The
corresponding quantile density function g(t) is assumed to be continuous
for t ∈ [0, 1] with the convention that g(0) = 0 if h(t)→ +∞ as t→ 0+.



Let X ∈ Cβ1 ([0, 1],M)∩ CBα1 ((0, 1], c(·), V (·)), 0 < β ≤ α− 1. We modify the
condition (C) and formulate the following condition for a local Hölder
function V (·) and a grid generating density h(·):

(C′) Let V (G(·)) and g(·) be bounded from above by functions R(·) and
r(·), respectively, where R(·) and r(·) satisfy the shifting condition.
Moreover, let R(H(t))r(H(t))−(1+α) ∈ L1[0, b], for some b > 0, and

G(s) = o
(
s(1+α)/(2+β)

)
as s→ 0.



Results

Theorem

Let X ∈ Cβ1 ([0, 1],M) ∩ CBα1 ((0, 1], c(·), V (·)), 0 < β ≤ α− 1, be a random
process and let I(X) be approximated by sMCQ IN (X,TN ), where TN is
qRS(h). Let for the density h(·) and local Hölder function V (·), the
condition (C′) hold. Then

lim
N→∞

N1+α || I(X)− IN (X,TN ) ||2 = aβ

∫ 1

0

c(t)h(t)−(1+α)dt.



Numerical Experiments



We use huni to denote a density that results uniform distribution of knots
in each direction, i.e., huni(t) ≡ 1, t ∈ D, and πuni(N) to denote the
uniform distribution of knots between the components.



Example 1

Let D = [0, 1]3 and X(t) be a fractional Brownian field with covariance
function

Cov(X(t), X(s)) =
1

2

(
|| t ||α + || s ||α − || t− s ||α

)
, s, t ∈ [0, 1]3,

where α = (3/2, 1/2) and l = (2, 1).
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The plots correspond to the following asymptotic behavior:

e2
N (πuni) ∼ C1 N

−7/6 + C2 N
−3/2 ∼ C1 N

−7/6,

e2
N (πopt) ∼ C3 N

−13/10 as N →∞,

where C1 ' 0.26, C2 ' 0.20, and C3 ' 0.48.



Example 2

Let Y (t), t ∈ [0, 1] be a stochastic process with covariance function
Cov(X(t), X(s)) = exp(−|s− t|) and consider process

X(t) =
1

t+ 0.1
Y (t), t ∈ [0, 1].

Then X ∈ Bα1 ([0, 1], c(·)) with α = 1 and c(t) = 2/(t+ 0.1)2, t ∈ [0, 1].
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The plots correspond to the following asymptotic behavior:

e2
N (huni) ∼ C1 N

−2,
e2
N (hopt) ∼ C2 N

−2 as N →∞

with C1 ' 3.03 and C2 ' 0.86.



Example 3

Let Xλ(t) = B3/2(tλ), t ∈ [0, 1], 0 < λ < 1, where Bm,β , 0 < β < 2, is a
fractional Brownian field. Then

Xλ ∈ C3/2λ
1 ([0, 1],M) ∩ BC3/2

1 ((0, 1], c(·), V (·))

with M = 1 and c(t) = V (t) = λ3/2t3/2(λ−1), t ∈ [0, 1]. We consider the
behavior of the mean squared errors for λ1 = 1/10, λ2 = 1/2, and
λ3 = 9/10.
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These plots correspond to the following asymptotic behavior:

e2
N (Xλ1 , huni) ∼ C1 N

−2.15,
e2
N (Xλ2 , huni) ∼ C2 N

−2.5,
e2
N (Xλ3 , huni) ∼ C3 N

−2.5 as N →∞

with C1 ' 0.64, C2 = 3.69, and C3 ' 2.86.



Consider now the case λ1 = 1/10. Using quasi regular sequences of designs
we regain the optimal convergence rate.
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