Stratified Monte Carlo quadrature for continuous random functions

Konrad Abramowicz

Department of Mathematics and Mathematical Statistics Umeå university

April 13, 2011

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Coauthor:

 $Oleg\ Seleznjev$ Department of Mathematics and Mathematical Statistics

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Umeå university

Outline

1 Introduction

Problem formulation Stratified Monte Carlo quadrature Sampling grid distribution Classes of interest

- 2 Results
- 3 Point Singularity
- **4** Numerical Experiments

Suppose a continuous random field $X(\mathbf{t}), \mathbf{t} \in [0, 1]^d, d \ge 1$, with finite second moment can observed in a finite number of randomly chosen points. We want to approximate

$$\int_{[0,1]^d} X(\mathbf{t}) d\mathbf{t}$$

by a quadrature formula based on these observations.

Stratified Monte Carlo quadrature

Let $\mathcal{D} := [0, 1]^d$ be partitioned into N stratas $\mathcal{D}_1, \ldots, \mathcal{D}_N$ by a rectangular grid. Let $|\mathcal{D}_i|$ denote the volume of the hyperrectangle \mathcal{D}_i , $i = 1, \ldots, N$. For a random field $X \in \mathcal{C}(\mathcal{D})$, define a *stratified Monte Carlo quadrature* (sMCq)

$$I_N(X) := \sum_{i=1}^N X(\boldsymbol{\eta}_i) |\mathcal{D}_i|,$$

where $\boldsymbol{\eta}_1, \ldots, \boldsymbol{\eta}_N$ are uniformly distributed in the strata $\mathcal{D}_1, \ldots, \mathcal{D}_N$, respectively.

Ö.	Ö.	Ö.	Ō.	0.	Ö.	Ö.	Ö.
Ö.	O.	Ö	0	Ö.	Ö,	Ö.	O.
		Ö.		0.			O.
Ö.	O.		Ö.		Ö,	Ö.	
Ö.		Ö.		Ö,	Ö	Ö.	Ö
	O.		O.				

・ロト・4日ト・4日ト・4日ト・4日ト・4日ト

Sampling grid distribution

・ロト ・ 四ト ・ ヨト ・ ヨー ・ うへぐ

- Interdimensional grid distribution
- With indimensional grid distribution

Interdimensional grid distribution

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

The interdimensional distribution of N strata is determined by a vector function $\pi^* : \mathbb{N} \to \mathbb{N}^d$:

$$(n_1^*, n_2^*, \dots, n_d^*) =: (\pi_1^*(N), \pi_2^*(N), \dots, \pi_d^*(N)) =: \pi^*(N),$$

where $\lim_{N\to\infty} \pi_j^*(N) = \infty$, $j = 1, 2, \ldots, d$, and the condition

$$\prod_{j=1}^d \pi_j^*(N) = N$$

is satisfied.

Withindimensional grid distribution

ション ふゆ ア キョン キョン しょうく

We consider **cross regular sequences** of designs $T_N := \{\mathbf{t_i} = (t_{1,i_1}, \ldots, t_{d,i_d}) : \mathbf{i} = (i_1, \ldots, i_d), 0 \le i_k \le n_k^*, k = 1, \ldots, d\}$ defined by the one-dimensional grids

$$\int_0^{t_{j,i}} h_j^*(v) dv = \frac{i}{n_j^*}, \quad i = 0, 1, \dots, n_j^*, \quad j = 1, \dots, d,$$

where $h_j^*(s), s \in [0, 1], j = 1, ..., d$, are positive and continuous density functions.

Approximation Accuracy Measure

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

Mean Squared Error

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

The accuracy of the approximation is measured by the mean squared error, i.e., $2 = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2 = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2$

$$e_N^2 = \mathbb{E}(I(X) - I_N(X))^2 = ||I(X) - I_N(X)||^2$$

Fields of interest

・ロト ・日下 ・ヨト ・ヨト ・ りゃぐ

For $k \leq d$, let $\mathbf{l} = (l_1, \ldots, l_k)$ be a vector of positive integers such that $\sum_{j=1}^k l_j = d$, and let $L_i := \sum_{j=1}^i l_j, i = 0, \ldots, k, L_0 = 0$, be the sequence of its cumulative sums.

For $k \leq d$, let $\mathbf{l} = (l_1, \ldots, l_k)$ be a vector of positive integers such that $\sum_{j=1}^{k} l_j = d$, and let $L_i := \sum_{j=1}^{i} l_j$, $i = 0, \ldots, k$, $L_0 = 0$, be the sequence of its cumulative sums.

Then the vector \mathbf{l} defines the *l*-decomposition of \mathcal{D} into $\mathcal{D}^1 \times \mathcal{D}^2 \times \ldots \mathcal{D}^k$, with the l_j -cube $\mathcal{D}^j = [0,1]^{l_j}, j = 1, \ldots, k$.

For $k \leq d$, let $\mathbf{l} = (l_1, \ldots, l_k)$ be a vector of positive integers such that $\sum_{j=1}^{k} l_j = d$, and let $L_i := \sum_{j=1}^{i} l_j$, $i = 0, \ldots, k$, $L_0 = 0$, be the sequence of its cumulative sums.

Then the vector **l** defines the *l*-decomposition of \mathcal{D} into $\mathcal{D}^1 \times \mathcal{D}^2 \times \ldots \mathcal{D}^k$, with the l_j -cube $\mathcal{D}^j = [0,1]^{l_j}, j = 1, \ldots, k$.

For any $\mathbf{s} \in \mathcal{D}$, we denote the coordinates vector corresponding to the *j*-th component of the decomposition by \mathbf{s}^{j} , i.e.,

$$\mathbf{s}^{j} = \mathbf{s}^{j}(\mathbf{l}) := (s_{L_{j-1}+1}, \dots, s_{L_{j}}) \in \mathcal{D}^{j}, \quad j = 1, \dots, k.$$

(日) (日) (日) (日) (日) (日) (日)

For $k \leq d$, let $\mathbf{l} = (l_1, \ldots, l_k)$ be a vector of positive integers such that $\sum_{j=1}^{k} l_j = d$, and let $L_i := \sum_{j=1}^{i} l_j, i = 0, \ldots, k, L_0 = 0$, be the sequence of its cumulative sums.

Then the vector **l** defines the *l*-decomposition of \mathcal{D} into $\mathcal{D}^1 \times \mathcal{D}^2 \times \ldots \mathcal{D}^k$, with the l_j -cube $\mathcal{D}^j = [0,1]^{l_j}, j = 1, \ldots, k$.

For any $\mathbf{s} \in \mathcal{D}$, we denote the coordinates vector corresponding to the *j*-th component of the decomposition by \mathbf{s}^{j} , i.e.,

$$\mathbf{s}^j = \mathbf{s}^j(\mathbf{l}) := (s_{L_{j-1}+1}, \dots, s_{L_j}) \in \mathcal{D}^j, \quad j = 1, \dots, k.$$

Example Let $\mathcal{D} = [0, 1]^3$ and $\mathbf{l} = (1, 2)$. Then for any $s = (s_1, s_2, s_3) \in \mathcal{D}$, $\mathbf{s}^1 = s_1$ and $\mathbf{s}^2 = (s_2, s_3)$.

α -norm

ション ふゆ ア キョン キョン しょうく

For a vector $\boldsymbol{\alpha} = (\alpha_1, \ldots, \alpha_k), \ 0 < \alpha_j < 2, \ j = 1, \ldots, k$, and the decomposition vector $\mathbf{l} = (l_1, \ldots, l_k)$, we define

$$\left|\left|\mathbf{s}\right|\right|_{\boldsymbol{lpha}} := \sum_{j=1}^{k} \left|\left|\mathbf{s}^{j}\right|\right|^{\alpha_{j}} \quad ext{ for all } \mathbf{s} \in \mathcal{D}$$

with the Euclidean norms $||\mathbf{s}^j||, j = 1, \dots, k$.

Hölder fields

For a random field $X \in \mathcal{C}([0,1]^d)$, we say that $X \in \mathcal{C}_1^{\alpha}([0,1]^d, C)$ if for some α , **l**, and a positive constant C, the random field X satisfies the Hölder condition, i.e.,

$$||X(\mathbf{t} + \mathbf{s}) - X(\mathbf{t})||^2 \le C ||\mathbf{s}||_{\alpha} \quad \text{for all } \mathbf{t}, \mathbf{t} + \mathbf{s} \in [0, 1]^d.$$

Locally stationary fields

For a random field $X \in \mathcal{C}([0, 1]^d)$, we say that $X \in \mathcal{B}_{\mathbf{l}}^{\boldsymbol{\alpha}}([0, 1]^d, c(\cdot))$ if for some $\boldsymbol{\alpha}$, \mathbf{l} , and a vector function $c(\mathbf{t}) = (c_1(\mathbf{t}), \ldots, c_k(\mathbf{t})), \mathbf{t} \in [0, 1]^d$, the random field X is **locally stationary**, i.e.,

$$\frac{||X(\mathbf{t} + \mathbf{s}) - X(\mathbf{t})||^2}{\sum_{j=1}^k c_k(\mathbf{t}) ||\mathbf{s}^j||^{\alpha_j}} \to 1 \quad \text{as } \mathbf{s} \to 0 \text{ uniformly in } \mathbf{t} \in [0, 1]^d,$$

with positive and continuous functions $c_1(\cdot), \ldots, c_k(\cdot)$.

We assume additionally that for j = 1, ..., k, the function $c_j(\cdot)$ is invariant with respect to coordinates permutation within the *j*-th component.

For the partition generated by a vector $\mathbf{l} = (l_1, \ldots, l_k)$, we consider cross regular designs T_N , defined by functions $h = (h_1, \ldots, h_k)$ and $\pi(N) = (n_1(N), \ldots, n_k(N))$, in the following way:

$$h_i^*(\cdot) \equiv h_j(\cdot), \quad n_i^* = n_j, \quad i = L_{j-1} + 1, \dots, L_j, \quad j = 1, \dots, k.$$

We call functions $h_1(\cdot), \ldots, h_k(\cdot)$ and $\pi(N)$ withincomponent densities and intercomponent grid distribution, respectively. The corresponding property of a design T_N is denoted by: T_N is $cRS(h, \pi, \mathbf{l})$.

(日) (日) (日) (日) (日) (日) (日)

Main Results

・ロト ・日下 ・ 山下 ・ 小田 ト ・ 山下

For any $\mathbf{u} \in \mathbb{R}^m_+$, we denote

$$b_{\beta,m}(\mathbf{u}) = \frac{1}{2} \int_{[0,1]^m} \int_{[0,1]^m} \left| \left| \mathbf{u} * (\mathbf{t} - \mathbf{v}) \right| \right|^{\beta} d\mathbf{t} d\mathbf{v}$$

where '*' denotes coordinate-wise multiplication, i.e., if $x = (x_1, x_2, \ldots, x_d)'$ and $y = (y_1, y_2, \ldots, y_d)$ then $x * y = (x_1y_1, x_2y_2, \ldots, x_dy_d)$.

ション ふゆ ア キョン キョン しょうく

For sequences of real numbers u_n and v_n , we write $u_n \sim v_n$ if $\lim_{n\to\infty} u_n/v_n = 1$ and $u_n \leq v_n$ if $\lim_{n\to\infty} u_n/v_n \leq 1$.

Theorem

Let $X \in \mathcal{B}_{\mathbf{l}}^{\alpha}(\mathcal{D}, c(\cdot))$ be a random field and let I(X) be approximated by $sMCq I_N(X, T_N)$, where T_N is $cRS(h, \pi, \mathbf{l})$. Then

$$e_N^2 \sim \frac{1}{N} \sum_{j=1}^k \frac{v_j}{n_j^{\alpha_j}} \text{ as } N \to \infty,$$

where

$$v_j = \int_{\mathcal{D}} c_j(\mathbf{t}) b_{\alpha_j, l_j}(D_j(\mathbf{t}^j)) \prod_{m=1}^d h_m^*(t_m)^{-1} d\mathbf{t},$$

and $D_j(\mathbf{t}^j) = (1/h_j(t_{L_{j-1}+1}), \dots, 1/h_j(t_{L_j})).$

Intercomponent optimality

Denote by

$$\rho := \left(\sum_{i=1}^k \frac{l_i}{\alpha_i}\right)^{-1}, \qquad \kappa := \prod_{j=1}^k v_j^{l_j/\alpha_j}.$$

4日 + 4日 + 4日 + 4日 + 4日 - 900

Intercomponent optimality

Denote by

$$\rho := \left(\sum_{i=1}^k \frac{l_i}{\alpha_i}\right)^{-1}, \qquad \kappa := \prod_{j=1}^k v_j^{l_j/\alpha_j}$$

Proposition

Let $X \in \mathcal{B}_{\mathbf{l}}^{\alpha}(\mathcal{D}, c(\cdot))$ be a random field and let I(X) be approximated by $sMCq I_N(X, T_N)$, where T_N is $cRS(h, \pi, \mathbf{l})$. Then

$$||I(X) - I_N(X, T_N)||^2 \gtrsim k \frac{\kappa^{\rho}}{N^{1+\rho}} \text{ as } N \to \infty.$$

Moreover, for the asymptotically optimal intercomponent grid allocation,

$$n_{j,opt} \sim \frac{v_j^{1/\alpha_j}}{\kappa^{\rho/\alpha_j}} N^{\rho/\alpha_j}, \quad j = 1, \dots, k \text{ as } N \to \infty,$$

the equality is attained asymptotically.

Stochastic processes

For $0 < \beta < 2$, let

$$a_{\beta} := \frac{1}{(1+\beta)(2+\beta)}.$$

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

Stochastic processes

For $0 < \beta < 2$, let

$$a_{\beta} := \frac{1}{(1+\beta)(2+\beta)}.$$

Corollary

Let $X \in \mathcal{B}_{1}^{\alpha}([0,1],c(\cdot))$ be a random process and let I(X) be approximated by $sMCq I_N(X,T_N)$, where T_N is RS(h). Then

$$\lim_{N \to \infty} N^{1+\alpha} || I(X) - I_N(X, T_N) ||^2 = a_\alpha \int_0^1 c(t) h(t)^{-(1+\alpha)} dt.$$

The density minimizing the asymptotic constant is given by

$$h_{opt}(t) = \frac{c(t)^{\gamma}}{\int_0^1 c(\tau)^{\gamma} d\tau}, \qquad t \in [0, 1],$$

where $\gamma := 1/(2 + \alpha)$. Furthermore, for such density, we get

$$\lim_{N \to \infty} N^{1+\alpha} || I(X) - I_N(X, T_N) ||^2 = a_\alpha \left(\int_0^1 c(t)^\gamma dt \right)^{1/\gamma}$$

▲ロト ▲昼 ▶ ▲ 臣 ▶ ▲ 臣 ● のへ⊙

Hölder class

Proposition

Let $X \in C_{\mathbf{l}}^{\alpha}(\mathcal{D}, C)$ be a random field and let I(X) be approximated by sMCq $I_N(X, T_N)$, where T_N is $cRS(h, \pi, \mathbf{l})$. Then

$$||I(X) - I_N(X, T_N)||^2 \le \frac{C}{N} \sum_{j=1}^k \frac{d_j}{n^{\alpha_j}}$$

for positive constants d_1, \ldots, d_k . Moreover if $n_j \sim N^{\rho/\alpha_j}$, $j = 1, \ldots, k$, then

$$||I(X) - I_N(X, T_N)||^2 = O\left(N^{-(\rho+1)}\right).$$

Point Singularity at the origin

・ロト ・日下 ・ヨト ・ヨト ・ りゃぐ

We focus on the random fields consisting of one component, i.e., k = 1, $\mathbf{l} = d$ and $\boldsymbol{\alpha} = \alpha$, and denote the classes of corresponding Hölder and locally stationary random functions by C_d^{α} and \mathcal{B}_d^{α} , respectively.

Let a random function $X(\mathbf{t}), t \in [0,1]^d$, satisfy the Hölder condition with $\beta \in (0,2)$ for $\mathbf{t} \in [0,1]^d$. Let, additionally, X be locally stationary with parameter $\alpha > \beta$, for all points $\mathbf{t} \in (0,1]^d$. We construct sequences of grid designs with an asymptotic approximation rate $N^{-(1+\alpha/d)}$.

The definition of cRS for k = 1 gives that $n_j = N^{1/d}$ and $h_j^*(\cdot) = h(\cdot)$, $j = 1, \ldots, d$, for a positive and continuous density $h(t), t \in [0, 1]$. For the density $h(\cdot)$, we define the related distribution functions

$$H(t) := \int_0^t h(u) du, \qquad G(t) := H^{-1}(t) = \int_0^t g(v) dv, \quad t \in [0, 1],$$

i.e., $G(\cdot)$ is a quantile function for the distribution H. Moreover, by

$$g(t) := G'(t) = 1/h(G(t)), \quad t \in [0, 1],$$

ション ふゆ ア キョン キョン しょうく

we denote the quantile density function.

Local Hölder Class

うつう 山田 エルト エリア エロア

For a random function $X \in \mathcal{C}([0,1]^d)$, we say that:

• $X \in C_d^{\alpha}(\mathcal{A}, V(\cdot))$ if $X \in C(\mathcal{A})$ and X is locally Hölder continuous, i.e., if for all $\mathbf{t}, \mathbf{t} + \mathbf{s}, \in \mathcal{A}$,

 $||X(\mathbf{t} + \mathbf{s}) - X(\mathbf{t})||^2 \le V(\bar{\mathbf{t}}) ||\mathbf{s}||^{\alpha}, 0 < \alpha < 2,$

for a positive continuous function $V(\mathbf{t}), \mathbf{t} \in \mathcal{A}$, and some $\bar{\mathbf{t}} \in {\{\bar{\mathbf{t}} : \bar{\mathbf{t}} = \mathbf{t} + \mathbf{s} * \mathbf{u}, \mathbf{u} \in [0, 1]^d\}};$

• $X \in \mathcal{CB}^{\alpha}_d((0,1]^d, c(\cdot), V(\cdot))$ if there exist $0 < \alpha < 2$, and positive continuous functions $c(\mathbf{t}), V(\mathbf{t}), \mathbf{t} \in (0,1]^d$ such that $X \in \mathcal{C}^{\alpha}_d(\mathcal{A}, V(\cdot)) \cap \mathcal{B}^{\alpha}_d(\mathcal{A}, c(\cdot))$ for any closed $\mathcal{A} \subset (0,1]^d$.

Shifting Condition

ション ふゆ ア キョン キョン しょうく

We say that a positive function $f(\mathbf{t}), \mathbf{t} \in \mathbb{R}^d$ satisfies a *shifting condition* if there exist positive constants C and a such that

 $f(\mathbf{s}) \leq C f(\mathbf{v})$ for all \mathbf{s}, \mathbf{v} such that $\frac{1}{\sqrt{3+d}} \leq \frac{||\mathbf{s}||}{||\mathbf{v}||} \leq \sqrt{3+d}, \quad \mathbf{s}, \mathbf{v} \in [0, a]^d \backslash \mathbf{0}_d.$

Let $X \in \mathcal{C}^{\beta}_d([0,1]^d, M) \cap \mathcal{CB}^{\alpha}_d((0,1]^d, c(\cdot), V(\cdot)), 0 < \beta < \alpha < 2.$

For $\beta > \alpha - d$, we prove that under some condition on local Hölder function $V(\cdot)$, the cross regular sequences attain the optimal approximation rate $N^{-(1+\alpha/d)}$.

Observe that $\beta > \alpha - d$ holds for all $\alpha, \beta \in (0, 2)$ if $d \ge 2$ and for d = 1 if $\beta > \alpha - 1$.

ション ふゆ ア キョン キョン しょうく

Let $\mathbf{H}(\mathbf{t}) := (H(t_1), \dots, H(t_d))$, $\mathbf{t} \in [0, 1]^d$, and $\mathbf{G}(\mathbf{t}) =: (G(t_1), \dots, G(t_d))$, $\mathbf{t} \in [0, 1]^d$. We formulate the following condition:

(日) (日) (日) (日) (日) (日) (日)

(C) Let $V(\mathbf{G}(\cdot))$ be bounded from above by a function $R(\cdot)$ satisfying shifting condition and such that $R(\mathbf{H}(\cdot)) \in L^1[0, b]^d$, for some b > 0.

Results

Theorem

Let $X \in C^{\beta}_{d}([0,1]^{d}, M) \cap C\mathcal{B}^{\alpha}_{d}((0,1]^{d}, c(\cdot), V(\cdot)), \alpha - d < \beta < \alpha$, be a random field and let I(X) be approximated by $sMCQ I_{N}(X, T_{N})$, where T_{N} is $cRS(h, \pi, d)$. If the local Hölder function $V(\cdot)$ satisfies the condition (C), then

$$||I(X) - I_N(X, T_N)||^2 \sim \frac{1}{N^{1+\alpha/d}} \int_{\mathcal{D}} c(\mathbf{t}) b_{\alpha,d}(D(\mathbf{t})) \prod_{m=1}^d h(t_m)^{-1} d\mathbf{t}$$

as $N \to \infty$, where $D(\mathbf{t}) = (1/h(t_1), \dots, 1/h(t_d))$.

quasi RS for random processes

(日) (日) (日) (日) (日) (日) (日)

Now we consider the case d = 1 and $0 < \beta \le \alpha - 1$, which is not included in the above theorem.

We consider quasi regular sequences (qRS) of sampling designs $T_N = T_N(h)$, which are a simple modification of the regular sequences.

We assume that h(t) is continuous for $t \in (0, 1]$, and allow it to be unbounded in t = 0. If h(t) is unbounded in t = 0, then $h(t) \to +\infty$ as $t \to 0+$. We denote this property of T_N by: T_N is qRS(h). The corresponding quantile density function g(t) is assumed to be continuous for $t \in [0, 1]$ with the convention that g(0) = 0 if $h(t) \to +\infty$ as $t \to 0+$. Let $X \in \mathcal{C}_1^{\beta}([0,1], M) \cap \mathcal{CB}_1^{\alpha}((0,1], c(\cdot), V(\cdot)), 0 < \beta \leq \alpha - 1$. We modify the condition (C) and formulate the following condition for a local Hölder function $V(\cdot)$ and a grid generating density $h(\cdot)$:

(C') Let $V(G(\cdot))$ and $g(\cdot)$ be bounded from above by functions $R(\cdot)$ and $r(\cdot)$, respectively, where $R(\cdot)$ and $r(\cdot)$ satisfy the shifting condition. Moreover, let $R(H(t))r(H(t))^{-(1+\alpha)} \in L^1[0,b]$, for some b > 0, and

$$G(s) = o\left(s^{(1+\alpha)/(2+\beta)}\right)$$
 as $s \to 0$.

(日) (日) (日) (日) (日) (日) (日)

Results

Theorem

Let $X \in C_1^{\beta}([0,1], M) \cap C\mathcal{B}_1^{\alpha}((0,1], c(\cdot), V(\cdot)), 0 < \beta \leq \alpha - 1$, be a random process and let I(X) be approximated by $sMCQ I_N(X, T_N)$, where T_N is qRS(h). Let for the density $h(\cdot)$ and local Hölder function $V(\cdot)$, the condition (C') hold. Then

$$\lim_{N \to \infty} N^{1+\alpha} || I(X) - I_N(X, T_N) ||^2 = a_\beta \int_0^1 c(t) h(t)^{-(1+\alpha)} dt.$$

Numerical Experiments

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

We use h_{uni} to denote a density that results uniform distribution of knots in each direction, i.e., $h_{uni}(t) \equiv 1, t \in \mathcal{D}$, and $\pi_{uni}(N)$ to denote the uniform distribution of knots between the components.

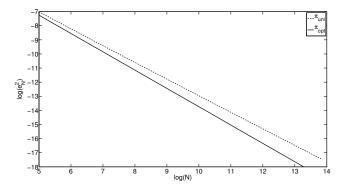
・ロト ・日下 ・ヨト ・ヨト ・ りゃぐ

Example 1

Let $\mathcal{D} = [0,1]^3$ and $X(\mathbf{t})$ be a fractional Brownian field with covariance function

$$Cov(X(\mathbf{t}), X(\mathbf{s})) = \frac{1}{2} \left(||\mathbf{t}||_{\alpha} + ||\mathbf{s}||_{\alpha} - ||\mathbf{t} - \mathbf{s}||_{\alpha} \right), \qquad \mathbf{s}, \mathbf{t} \in [0, 1]^3,$$

where $\boldsymbol{\alpha} = (3/2, 1/2)$ and $\mathbf{l} = (2, 1).$



The plots correspond to the following asymptotic behavior:

$$e_N^2(\pi_{uni}) \sim C_1 N^{-7/6} + C_2 N^{-3/2} \sim C_1 N^{-7/6}, e_N^2(\pi_{opt}) \sim C_3 N^{-13/10}$$
 as $N \to \infty.$

イロト イポト イヨト イヨト

Ē

500

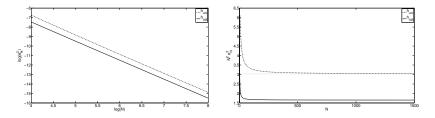
where $C_1 \simeq 0.26$, $C_2 \simeq 0.20$, and $C_3 \simeq 0.48$.

Example 2

Let $Y(t), t \in [0, 1]$ be a stochastic process with covariance function $Cov(X(t), X(s)) = \exp(-|s - t|)$ and consider process

$$X(t) = \frac{1}{t+0.1}Y(t), \quad t \in [0,1].$$

Then $X \in \mathcal{B}_1^{\alpha}([0,1], c(\cdot))$ with $\alpha = 1$ and $c(t) = 2/(t+0.1)^2, t \in [0,1]$.



The plots correspond to the following asymptotic behavior:

$$\begin{array}{lll} e_N^2(h_{uni}) & \sim & C_1 \, N^{-2}, \\ e_N^2(h_{opt}) & \sim & C_2 \, N^{-2} \text{ as } N \to \infty \end{array}$$

Ē

500

with $C_1 \simeq 3.03$ and $C_2 \simeq 0.86$.

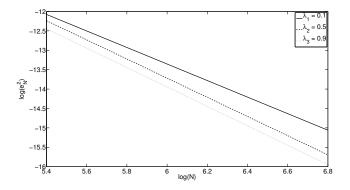
Example 3

ション ふゆ ア キョン キョン しょうく

Let $X_{\lambda}(t) = B_{3/2}(t^{\lambda}), t \in [0, 1], 0 < \lambda < 1$, where $B_{m,\beta}, 0 < \beta < 2$, is a fractional Brownian field. Then

$$X_{\lambda} \in \mathcal{C}_{1}^{3/2\lambda}([0,1], M) \cap \mathcal{BC}_{1}^{3/2}((0,1], c(\cdot), V(\cdot))$$

with M = 1 and $c(t) = V(t) = \lambda^{3/2} t^{3/2(\lambda-1)}$, $t \in [0, 1]$. We consider the behavior of the mean squared errors for $\lambda_1 = 1/10$, $\lambda_2 = 1/2$, and $\lambda_3 = 9/10$.



These plots correspond to the following asymptotic behavior:

$$\begin{array}{lcl} e_{N}^{2}(X_{\lambda_{1}},h_{uni}) &\sim & C_{1} \, N^{-2.15}, \\ e_{N}^{2}(X_{\lambda_{2}},h_{uni}) &\sim & C_{2} \, N^{-2.5}, \\ e_{N}^{2}(X_{\lambda_{3}},h_{uni}) &\sim & C_{3} \, N^{-2.5} \text{ as } N \to \infty \end{array}$$

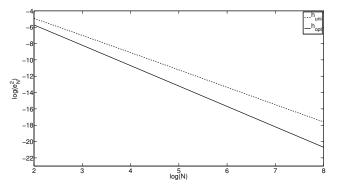
イロト イロト イヨト イヨト

Ē

500

with $C_1 \simeq 0.64$, $C_2 = 3.69$, and $C_3 \simeq 2.86$.

Consider now the case $\lambda_1 = 1/10$. Using quasi regular sequences of designs we regain the optimal convergence rate.



Bibliography

K.Abramowicz, O. Seleznjev

Spline approximation of a random process with singularity. Jour. Statistical Planning and Inference, 84, 1333-1342, 2011

S.M. Berman

Sojourns and extremes of Gaussian processes.

Ann. Probability 2, 999-1026; corrections 8, 999 (1980); 12, 281 (1984),

O. Seleznjev

Spline approximation of random processes and design problems. Jour. Statistical Planning and Inference 84, 249-262, 2000 Thank you !

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <