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Suppose a continuous random field X (t), t € [0,1]%, d > 1, with finite
second moment can observed in a finite number of randomly chosen points.
We want to approximate
X (t)dt
[0,1]4

by a quadrature formula based on these observations.



Stratified Monte Carlo quadrature

Let D := [0, 1]d be partitioned into N stratas Di,..., Dy by a rectangular
grid. Let |D;| denote the volume of the hyperrectangle D;, i = 1,..., N.
For a random field X € C(D), define a stratified Monte Carlo quadrature
(sMCaq)

In(X) = Y X(n)|Di,

where 7y, ...,mn are uniformly distributed in the strata Di,..., Dy,
respectively.









Sampling grid distribution

o Interdimensional grid distribution

e Withindimensional grid distribution



Interdimensional grid distribution

The interdimensional distribution of N strata is determined by a vector
function 7* : N — N¢:

(n1,n3,...,nq) = (11 (N),73(N), ..., ma(N)) = 7" (N),
where imy 00 7} (V) = 00, j = 1,2,...,d, and the condition

Hw;-‘(N):N

is satisfied.



Withindimensional grid distribution

We consider cross regular sequences of designs
TN = {ti = (tl,i17"'7td,id) 1= (i1,...,id)7 0 Slk S’I’LZ, k= 1,...,d}
defined by the one-dimensional grids
ZR * 7 *
/ h](U)dU:j7 'L‘:O71,...,nj, j:].,...,d,
0 n;
where hj(s), s €[0,1], j =1,...,d, are positive and continuous density
functions.



Qe



Mean Squared Error

The accuracy of the approximation is measured by the mean squared error,
ie.,
en = E(I(X) — In(X))* = [| 1(X) — In(X) ||*.
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Component division

For k < d, let 1 = (I1,...,lx) be a vector of positive integers such that
Sk 1y =d, and let L; := > i=1li»i=0,...k, Lo =0, be the sequence of

Jj=1
its cumulative sums.



Component division

For k < d, let 1 = (I1,...,lx) be a vector of positive integers such that
Z§:1 lj=d,and let L; :== 7", 1l;,i=0,...k, Lo =0, be the sequence of
its cumulative sums.

Then the vector 1 defines the [-decomposition of D into D! x D? x ...D*,
with the [;-cube D7 =[0,1]Y, j =1,... k.



Component division

For k < d, let 1 = (I1,...,lx) be a vector of positive integers such that
Z§:1 lj=d,and let L; :== 7", 1l;,i=0,...k, Lo =0, be the sequence of
its cumulative sums.

Then the vector 1 defines the I-decomposition of D into D* x D? x ... DF,
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component of the decomposition by s, i.e.,

sjzsj(l) = (sLj71+1,...,sLj)EDj, ji=1,... k.



Component division

For k < d, let 1 = (I1,...,lx) be a vector of positive integers such that
Z§:1 lj=d,and let L; :== 7", 1l;,i=0,...k, Lo =0, be the sequence of
its cumulative sums.

Then the vector 1 defines the [-decomposition of D into D! x D? x ...D*,
with the [;-cube D7 =[0,1]Y, j =1,... k.

For any s € D, we denote the coordinates vector corresponding to the j-th
component of the decomposition by s, i.e.,

sjzsj(l) = (SL171+1,...7SLj)EDj7 ji=1,... k.

Example Let D = [0,1]® and 1 = (1,2). Then for any s = (s1, 52, s3) € D,
s' =s; and s2 = (s2,83).



Q-1Norm

For a vector o = (av1,...,a1), 0 < a; <2,j=1,...,k, and the
decomposition vector 1= (I1,...,lx), we define

[Isly for all s € D

with the Euclidean norms ||sj||,j =1,...,k



Holder fields

For a random field X € C([0, 1]¢), we say that X € C([0,1]¢, C) if for some
a, 1, and a positive constant C, the random field X satisfies the Holder
condition, i.e.,

| X(t+s)—X(t)[><Clsll, for all t,t 4+ s € [0, 1]



Locally stationary fields

For a random field X € C([0,1]%), we say that X € B{([0,1]¢, ¢(-)) if for
some a, 1, and a vector function c(t) = (c1(t),...,ck(t)), t € [0,1]%, the
random field X is locally stationary, i.e.,

2
I Xk(t +5) X_(t)a” —1 ass— 0 uniformly in t € [0,1]%,
D= cr(t) |87 ][

with positive and continuous functions ¢1(+),. .., cx(:).

We assume additionally that for j = 1,...,k, the function ¢;(-) is invariant
with respect to coordinates permutation within the j-th component.



For the partition generated by a vector 1 = (I1,...,lx), we consider cross
regular designs T, defined by functions h = (h1,...,hy) and
w(N) = (ni(N),...,nk(N)), in the following way:

hi()=hi(), ni=mny;, i=Lj1+1,...,L;, j=1,... .k

We call functions hi(+),...,hi(-) and 7(N) withincomponent densities
and intercomponent grid distribution, respectively. The corresponding
property of a design T is denoted by: Tn is ¢cRS(h,m,1).
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For any u € RY", we denote

bﬂ,m(u):%/ / [ (& — ) || dedv
[0,1]™ Jo,1)™

where '*’ denotes coordinate-wise multiplication, i.e., if z = (z1,x, . ..

and y = (y1,¥2,...,y4) then x xy = (z1y1, T2Y2, . - ., TaYd)-

For sequences of real numbers u,, and v,, we write u, ~ v, if
limp— o0 Un/Vn =1 and un S vp if limp—oo Un /vn < 1.

) xd)l



Theorem

Let X € BY*(D,c(-)) be a random field and let I(X) be approzimated by
sMCq In(X,Tn), where Ty is cRS(h,m,1). Then

k
E — as N — oo,
where

vj:/ch(t)baj,zj(Dj(tj)) [T poa(tm) " at,

m=1

and Dj(tj) = (1/hj(tLj71+1)7 ceey 1/hj(tLj) o



Intercomponent optimality

Denote by

L -1 k
pr—(Zci) ooe= I

j=1



Intercomponent optimality

Denote by

L -1 k Y
() eI

Proposition

Let X € BY(D,c(-)) be a random field and let I(X) be approzimated by
sMCq In(X,Tn), where Tn is cRS(h,m,1). Then

P
Nlte

Moreover, for the asymptotically optimal intercomponent grid allocation,

as N — oo.

1 1(X) = In(X,Tw) I* 2 k

1/a
,U 3

NP/ j=1,...,k as N — oo,

mng t
J,op /ﬁp/"‘i

the equality is attained asymptotically.



Stochastic processes

For 0 < 8 < 2, let
1

A+p)2+8)

apg =



Stochastic processes

For 0 < 8 < 2, let
1

A+p)2+8)

apg =

Corollary

Let X € BY([0,1],¢(-)) be a random process and let I(X) be approzimated
by sMCq In(X,Tn), where Ty is RS(h). Then

1
lim NP || I(X) = In(X, Tn) ||? = aa/ c(t)h(t) "Nt
N—oc0 0
The density minimizing the asymptotic constant is given by
£)7
hOPt(t) = #a te [07 1]7
fo c(r)vdr

where v :=1/(2 + &). Furthermore, for such density, we get

1 1/v
lim N7 || I[(X) — In(X, Tn) || = @a (/ c(t)”dt) .
N— o0 0



Holder class

Proposition

Let X € C*(D, C) be a random field and let 1(X) be approzimated by sMCq
INn(X,TnN), where Tn is cRS(h,n,1). Then

C k
| 1(X) - In(X,Tn) | N;

for positive constants du, . ..,dr. Moreover if nj ~ NP/ 5 =1,...,k, then

1 1(X) — In(X,Tw) ||> = O (meﬂ)) .
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We focus on the random fields consisting of one component, i.e., k =1,
1 =d and a = «, and denote the classes of corresponding Holder and
locally stationary random functions by Cg and Bg, respectively.



Let a random function X (t), ¢ € [0,1]%, satisfy the Holder condition with
B € (0,2) for t € [0,1]%. Let, additionally, X be locally stationary with
parameter o > 3, for all points t € (0, 1]d, We construct sequences of grid
designs with an asymptotic approximation rate N~ (/4



The definition of cRS for k = 1 gives that n; = N'/% and h}(-) = h(-),
j=1,...,d, for a positive and continuous density h(t), t € [0,1]. For the
density h(-), we define the related distribution functions

t t
H(t) ::/ h(u)du, G(t) :== H '(t) :/ g(v)dv, te]0,1],
0 0
i.e., G(-) is a quantile function for the distribution H. Moreover, by
g9(t) == G'(t) =1/h(G(t)), t€[0,1],

we denote the quantile density function.



Local Holder Class

For a random function X € C([0, 1]%), we say that:
e X €C3(A, V() if X € C(A) and X is locally Holder continuous, i.e., if
for all t,t +s,€ A,
IX(6+s)— X0 |P < VB [Is]*,0<a<2,

for a positive continuous function V (t),t € A, and some
te{t:t=t+s*u,uciol];

e X €CBS((0,1]1%,¢(-), V(-)) if there exist 0 < a < 2, and positive
continuous functions c(t), V(t), t € (0,1]% such that
X €C3(A, V() NBS(A,c(-)) for any closed A C (0,1]%.



Shifting Condition

We say that a positive function f(t), t € R satisfies a shifting condition if
there exist positive constants C' and a such that

f(s) < Cf(v)

for all s, v such that 31+d < ”‘S,“‘l <V3+d, s,vel0,a™\0q.




Let X € C5([0,1]%, M) N CBI((0,1]%¢(-),V(), 0< B < a < 2.

For 8 > o — d, we prove that under some condition on local Hélder function

V(-), the cross regular sequences attain the optimal approximation rate
N (ta/d)

Observe that 8 > a — d holds for all a, 8 € (0,2) if d > 2 and for d =1 if
B>a—1.



Let H(t) := (H(t1),..., H(ta)) ,t €[0,1]%, and G(t) =: (G(t1),. .., G(ta)),
t € [0,1]%. We formulate the following condition:

(C) Let V(G(-)) be bounded from above by a function R(-) satisfying
shifting condition and such that R(H(:)) € L'[0,]%, for some b > 0.



Results

Theorem

Let X € C5([0,1]%, M) N CBS((0,1]%,¢(-), V(-)), @ —d < B < a, be a random
field and let 1(X) be approzimated by sMCQ In(X,Tn), where TN is

cRS(h,m,d). If the local Holder function V (-) satisfies the condition (C),
then

d
1160 = (XTI ~ Frrzara [ e(®baa(D®) TT htw) ™t

m=1

as N — oo, where D(t) = (1/h(t1),...,1/h(td)).



quasi RS for random processes

Now we consider the case d =1 and 0 < 8 < a — 1, which is not included in
the above theorem.

We consider quasi regular sequences (qRS) of sampling designs Tny = Tn (h),
which are a simple modification of the regular sequences.

We assume that h(t) is continuous for ¢t € (0, 1], and allow it to be
unbounded in ¢ = 0. If h(t) is unbounded in ¢ = 0, then h(t) — +oo as

t — 0+. We denote this property of Ty by: T is qRS(h). The
corresponding quantile density function g(t) is assumed to be continuous
for t € [0, 1] with the convention that g(0) = 0 if h(t) — 400 as t — 0+.



Let X € CP([0,1], M) NCB((0,1],¢(-),V(-)), 0 < B < a — 1. We modify the
condition (C) and formulate the following condition for a local Holder
function V(-) and a grid generating density h(-):

(C") Let V(G(+)) and g(-) be bounded from above by functions R(-) and
r(-), respectively, where R(-) and r(-) satisfy the shifting condition.
Moreover, let R(H (t))r(H(t))~ 1+ e L0, 4], for some b > 0, and

G(s)=o (8<1+a)/(2+ﬁ)) as s — 0.



Results

Theorem

Let X € Cf([O, 1], M) N CBY((0,1],¢(+), V(+)), 0 < B < a— 1, be a random
process and let 1(X) be approzimated by sMCQ In(X,Tn), where Ty is

qRS(h). Let for the density h(-) and local Hoélder function V(-), the
condition (C') hold. Then

1
lim N || I[(X) — In(X, Tn) ||* = aﬁ/ c(t)h(t)~ T at.
0

N —oco
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We use hyni to denote a density that results uniform distribution of knots
in each direction, i.e., huni(t) =1, t € D, and muni(N) to denote the
uniform distribution of knots between the components.



Example 1

Let D = [0,1]* and X (t) be a fractional Brownian field with covariance
function

1
2
where o = (3/2,1/2) and 1 = (2,1).

Cov(X (t),X(s))

(Il +lslle =t =sll,),  steo1]
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The plots correspond to the following asymptotic behavior:

e?\f (Truni) ~ Cl N_7/6 + CQ N_3/2 ~ Cl ]\,_7/67
ex(mopt) ~ O3 NT18/10 as N — oo,

where C7 ~ 0.26, C5 ~ 0.20, and C3 ~ 0.48.



Example 2

Let Y (t),t € [0,1] be a stochastic process with covariance function
Cov(X (t), X(s)) = exp(—|s — t|) and consider process
1

X(t):t+0.1

Y(t), telo,1].

Then X € B([0,1],¢(-)) with o = 1 and ¢(t) = 2/(t +0.1)%, t € [0, 1].



[="eof
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The plots correspond to the following asymptotic behavior:

X (huni)  ~
e?\r (hopt) ~

with C; ~ 3.03 and C> ~ 0.86.

1 N_Q,

CoN2as N — oo

1000




Example 3

Let Xx(t) = Bs/2(t"), t €[0,1], 0 < A < 1, where B5, 0 < 3 <2, is a
fractional Brownian field. Then

X € CY2([0,1], M) N BEY2((0,1],¢(-), V("))

with M = 1 and ¢(t) = V() = A*?#3/2O=D 't € [0,1]. We consider the
behavior of the mean squared errors for \; = 1/10, A2 = 1/2, and
As = 9/10.



-15.5-
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These plots correspond to the following asymptotic behavior:

ez\[(X)q» unz) ~ Nﬁjisv
en(Xxg, huni) ~ CaNT™7,
e?V(X)\S,hum) ~ O33N 2%as N — oo

with C7 ~ 0.64, C3 = 3.69, and C3 ~ 2.86.

6.8



Consider now the case A\; = 1/10. Using quasi regular sequences of designs
we regain the optimal convergence rate.
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