Stochastic modelling of mortality and financial markets

Helena Aro Teemu Pennanen (PhD instructor)

Department of Mathematics and Systems Analysis, Aalto University School of Science and Technology

> Northern Triangular Seminar 12th April, 2011

Overview of research

- General objective: pricing and hedging of mortality-linked cash flows
 - Derivatives (e.g. forwards, bonds and swaps) linked to the mortality of a certain population
 - Insurance portfolios, pension fund management
 - in incomplete markets
- Stochastic modelling of risk factors
 - Mortality
 - Liabilities
 - Assets
 - Other relevant factors
- Numerical techniques
 - Integration quadratures
 - Numerical optimization

- Population age structure is shifting towards the old, rendering private insurance companies and governments even more vulnerable to risks of misestimating mortality improvements
- Means of risk management for mortality-linked cash flows is needed
- Mortality-linked securities are financial instruments with cash flows dependent on the mortality of a reference population
- Mortality/longevity markets are developing
- Quantitative methods for risk management of mortality-linked securities are instrumental for the development of such a market

The value of financial instruments depends essentially on the following subjective factors:

- 1. **Probability distribution**: description of future development of claims and investment returns, both involving significant uncertainties
 - Dependence between claims and asset returns instrumental in hedging
- 2. **Risk preferences**: the level of risk at which assets should cover liabilities
- 3. **Hedging strategy**: investment strategy for the given initial capital
 - Optimal strategy generally cannot be found (cf. Black-Scholes and delta hedging)

- Focus of this talk: modelling the law of a multivariate stochastic process consisting of
 - Mortality
 - Asset returns (interest rates, stock price index)
- Particular emphasis on
 - Connections between mortality and asset returns
 - Long-term development of mortality
- ► GDP as a link between mortality risk factors and asset returns
- Aro & Pennanen: Stochastic modelling of mortality and its connection with financial markets (manuscript)

Mortality model

- We employ the general discrete-time stochastic framework for mortality introduced in Aro & Pennanen, User-friendly approach to stochastic mortality modelling. European Actuarial Journal, 2011.
- ▶ Let E_{x,t} be the size of population aged [x, x + 1) (cohort) at the beginning of year t
- Denote by D_{x,t} the number of deaths of people aged [x,x+1) during time [t, t+1)
- ► Objective: model the values of *E_{x,t}* over time *t* = 0, 1, 2, ... for a given set *X* ⊂ N of ages
- ► Assume the conditional distribution of E_{x+1,t+1} = E_{x,t} D_{x,t} given E_{x,t} is binomial:

$$E_{x+1,t+1} \sim \mathsf{Bin}(E_{x,t},p_{x,t})$$

where $p_{x,t}$ is the probability that an individual aged x and alive at the beginning of year t is still alive at the end of that year

Mortality model

► We reduce the dimensionality of (p_{x,t})_{x∈X} by modelling the logistic probabilities by

$$\operatorname{logit} p_{x,t} := \ln \left(\frac{p_{x,t}}{1 - p_{x,t}} \right) = \sum_{i=1}^{n} v_t^i \phi_i(x),$$

where $\phi_i(x)$ are user-defined basis functions across cohorts, and v_t^i stochastic risk factors that vary over time

▶ In other words, $p_{x,t} = p_{v(t)}(x)$, where $v(t) = (v_1(t), \ldots, v_n(t))$, and $p_v : X \to (0, 1)$ is the parametric function defined for each $v \in \mathbb{R}^n$ by

$$p_{\nu}(x) = \frac{\exp\left(\sum_{i=1}^{n} v_i \phi_i(x)\right)}{1 + \exp\left(\sum_{i=1}^{n} v_i \phi_i(x)\right)}$$

Modelling the logit transforms instead of p_{x,t} directly guarantees that p_{x,t} ∈ (0, 1).

- ► Certain desired properties of p_{x,t}, e.g. continuity with respect to x, are achieved by corresponding choices of φ_i(x)
 - Incorporation of user preferences and/or population-specific characteristics
- Choice of basis functions assigns interpretations to risk factors
- Concrete interpretations facilitate the modelling of risk factors, which is advantageous the risk management of mortality-linked instruments
- Vector v_t of risk factors is modelled as a stochastic process, based on historical values, expert opinions, or both
- Historical values of v_t are constructed by maximum likelihood estimation, log-likelihood function is strictly concave

- We consider female mortality dynamics of six large OECD countries: Australia, Canada, France, Japan, UK, US
- Data consists of annual values of cohort sizes E_{x,t} and numbers of deaths D_{x,t} for each country, covering years 1950–2006 (Source: Human mortality database)
- A model with three basis functions and three risk factors is employed

Mortality model

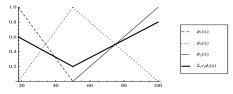
The model:

logit
$$p_{x,t} = v_t^1 \phi_1(x) + v_t^2 \phi_2(x) + v_t^3 \phi_3(x),$$

where basis functions are piecewise linear:

$$\begin{split} \phi_1(x) &= \begin{cases} 1 - \frac{x - 18}{32} & \text{for } x \le 50\\ 0 & \text{for } x \ge 50, \end{cases} \quad \phi_2(x) &= \begin{cases} \frac{1}{32}(x - 18) & \text{for } x \le 50\\ 2 - \frac{x}{50} & \text{for } x \ge 50, \end{cases} \\ \phi_3(x) &= \begin{cases} 0 & \text{for } x \le 50\\ \frac{x}{50} - 1 & \text{for } x \ge 50. \end{cases} \end{split}$$

The linear combination now also piecewise linear:



▶ Interpretation: values of v_t^i points on the logit $p_{x,t}$ curve

Statistical analysis of risk factors: v_1

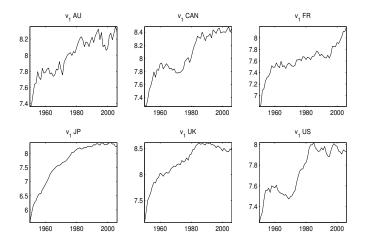


Figure: Historical values for risk factor v_1 , females. Note the different scales.

Statistical analysis of risk factors: v_1

- Fundamental question: how long can mortality keep improving?
- Mortality risk factors traditionally modelled as random walk with a negative drift, i.e. mortality will decline indefinitely
- Some experts predict that the steady decline in overall mortality during past decades will continue for the foreseeable future, while others suggest that human life expectancy might even decrease.
- In several sample countries, the historical values of v_t¹ display a stabilizing tendency
- In order to analyse this phenomenon, we fit the following regression into historical data:

$$\Delta v_t^1 = b + av_{t-1}^1 + \varepsilon_t = -a(-\frac{b}{a} - v_{t-1}^1) + \varepsilon_t$$

Table: Parameter estimates, t-values and summary statistics for $\Delta v_t^1 = b + a v_{t-1}^1$.

	AU	CAN	F	JP	UK	US
b	0.778	0.446	0.569	0.614	0.902	0.437
p-value(t-stat.)	0.017	0.028	0.020	0.000	0.000	0.015
а	-0.095	-0.053	-0.072	-0.074	-0.107	-0.055
p-value(t-stat.)	0.020	0.036	0.026	0.000	0.000	0.018
_						
R^2	0.097	0.079	0.089	0.627	0.461	0.100
Adj. R ²	0.080	0.062	0.072	0.620	0.451	0.083
p-value(F-Statistic)	0.020	0.036	0.026	0.000	0.000	0.018

Table: Residual test statistics for the regression $\Delta v_t^1 = b + av_{t-1}^1$.

	AU	CAN	F	JP	UK	US
Serial correlation (BG)	0.329	0.533	0.123	0.731	0.084	0.044
Normality (JB)	0.450	0.364	0.170	0.484	0.692	0.481
Heteroskedasticity (BP)	0.546	0.307	0.074	0.013	0.029	0.263
ADF t-statistic	-9.191	-8.374	-8.105	-7.11	-3.722	-4.474
p-value	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
KPSS level	0.219	0.164	0.394	0.086	0.255	0.139
p-value	> 0.1	> 0.1	0.0796	> 0.1	> 0.1	>0.1

Notes. Serial correlation is tested with the Breusch–Godfrey tests for serial correlation. A small p-value suggests rejecting the zero hypothesis of serial correlation. Normality is tested with the Jarque–Bera test for normality. The Breusch-Pagan tests against heteroskedasticity, with the null hypothesis of homoskedasticity. Stationarity of the residuals is tested with the augmented Dickey-Fuller unit root test (ADF) and Kwiatkowski-Phillips-Schmidt-Shin test (KPSS).

Statistical analysis of risk factors: v_2

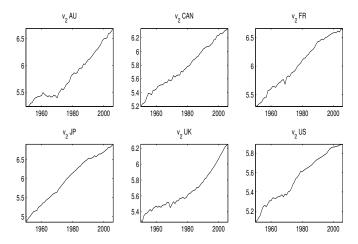


Figure: Historical values for risk factor v_2 , females. Note the different scales.

Statistical analysis of risk factors: v2

- Dramatic reduction in coronary disease amongst the middle-aged during the past three decades shows in the rapid growth of risk factor v₂ reflecting the survival probability of 50-year-olds
- To which extent do improvements in treatment and possible further reductions in smoking can outweigh the detrimental effects of obesity and other lifestyle-related factors?
- Even thought the historical values (apart from Japan) do not yet show signs of levelling out, eventual stabilizing behaviour similar to that of v₁ may also be a future possibility for v₂
- ► To quantify the rate of improvement for v₂, we fit the regression

$$\Delta v_t^2 = b + \varepsilon_t,$$

Statistical analysis of risk factors: v_3 and GDP

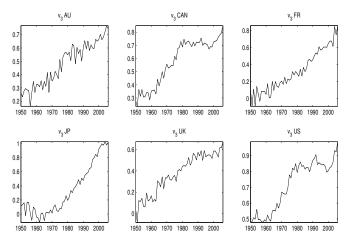


Figure: Historical values for risk factor v_3 , females. Note the different scales.

Statistical analysis of risk factors: v₃ and GDP

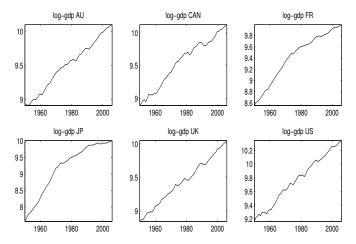


Figure: Historical values for risk factor logarithm of per capita GDP. Note the different scales.

Statistical analysis of risk factors: v_3 and GDP

- Risk factor v₃ describes old-age mortality, with which the cash flows of mortality linked instruments are connected
- Long-term dependence between GDP and mortality has been observed (e.g. Preston 1975, Preston 2007).
- Similarities in the general shape of their plots support the observation that v₃ and log-per capita GDP may move together in the long run
- We analyse the dependence of v_3 on GDP with the regression

$$\Delta v_t^3 = b + a_1 v_{t-1}^3 + a_2 g_{t-1} + \varepsilon_t,$$

where g_t is the log-per capita GDP

Table: Parameter estimates, t-values and summary statistics for the regression $\Delta v_t^3 = b + a_1 v_{t-1}^3 + a_2 g_{t-1}$

.

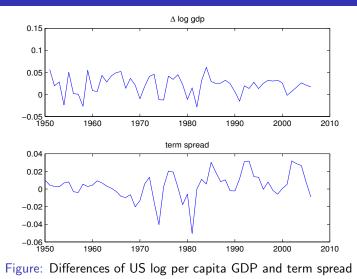
	AU	CAN	F	JAP	UK	US	
b	-3.062	-1.686	-1.826	-0.332	-2.894	-0.664	
p-value (t-stat.)	0.000	0.000	0.001	0.053	0.000	0.020	
a_1	-0.877	-0.455	-0.388	-0.057	-0.656	-0.189	
p-value (t-stat.)	0.000	0.000	0.001	0.1941	0.000	0.015	
a_2	0.367	0.205	0.208	0.040	0.334	0.083	
p-value (t-stat.)	0.000	0.000	0.001	0.044	0.000	0.016	
R^2	0.454	0.255	0.195	0.076	0.335	0.109	
Adj. <i>R</i> ²	0.433	0.227	0.164	0.041	0.310	0.076	
p-value (F-Statistic)	0.000	0.0004	0.003	0.124	0.000	0.046	

Statistical analysis of risk factors: v_3 and GDP

Table: Residual test statistics for $\Delta v_t^3 = b + a_1 v_{t-1}^3 + a_2 g_{t-1}$.

	1950–2006					
	AU	CAN	F	JAP	UK	US
Serial correlation (BG)	0.000	0.002	0.000	0.000	0.090	0.26
Normality (JB)	0.536	0.279	0.009	0.203	0.880	0.533
Heteroskedasticity (BP)	0.330	0.038	0.101	0.001	0.012	0.734
ADF t-statistic	-7.356	-3.921	-1.172	-10.599	-6.843	-8.499
p-value	< 0.01	< 0.01	> 0.1	< 0.01	< 0.01	< 0.01
KPSS level	0.120	0.311	0.463	0.084	0.263	0.150
p-value	> 0.1	> 0.1	0.050	> 0.1	> 0.1	> 0.1

Notes. Serial correlation is tested with the Breusch–Godfrey tests for serial correlation. A small p-value suggests rejecting the zero hypothesis of serial correlation. Normality is tested with the Jarque–Bera test for normality. The Breusch-Pagan tests against heteroskedasticity, with the null hypothesis of homoskedasticity. Stationarity of the residuals is tested with the augmented Dickey-Fuller unit root test (ADF) and Kwiatkowski-Phillips-Schmidt-Shin test (KPSS).



Helena Aro Stochastic modelling of mortality and financial markets

- GDP is linked with financial markets (extensive review article: Stock&Watson 2003)
 - Yield curve/term spread
 - Credit spread
 - Stock prices
- As in e.g. Wheelock&Wohar(2009), we analyse the connection between g_t and term spread s_t with the regression

$$\Delta g_t = b + a s_{t-1} + \varepsilon_t,$$

where s_t is the difference between the 10-year Treasury rate and the 6-month Certificate of Deposit rate

Table: Parameter estimates, t-values and summary statistics for the regression $\Delta g_t = b + as_{t-1}$.

Ь	0.0185	Serial Correlation (BG)	0.4498
p-value(t-statistic)	0.0000	Normality (JB)	0.7417
а	0.6460	Heteroskedasticity (BP)	0.9257
p-value(t-statistic)	0.0004		
		ADF t-statistic	-6.85
R^2	0.2117	p-value	< 0.01
Adj. <i>R</i> ²	0.1971	KPSS level	0.3374
p-value(F-Statistic)	0.0004	p-value	> 0.1

 We apply the established drifting Brownian motion approach, and fit the process

$$\Delta p_t = b + \varepsilon_t$$

into the logarithm of S&P Composite stock price index data p_t for the same observation period

Residuals of the above equation and of

$$\Delta g_t = b + as_{t-1} + \varepsilon_t$$

have a correlation coefficient of 0.4843 (significance below 0.001)

Modelling the risk factors

Based on our observations, we propose the linear stochastic difference equation model for US:

$$\Delta x = Ax + b + \varepsilon_t$$

for $x = [v_t^1, v_t^2, v_t^3, g_t, s_t, p_t]$ and multivariate Gaussian ε_t , \blacktriangleright The equations are

$$\Delta v_t^1 = a_{11}v_t^1 + b_1 + \varepsilon_t^1$$

$$\Delta v_t^2 = b_2 + \varepsilon_t^2$$

$$\Delta v_t^3 = a_{33}v_t^3 + a_{34}g_t + b_3 + \varepsilon_t^3$$

$$\Delta g_t = a_{45}s_t + b_4 + \varepsilon_t^4$$

$$\Delta s_t = a_{55}s_t + b_5 + \varepsilon_t^5$$

$$\Delta p_t = b_6 + \varepsilon_t^6$$

where $a_{i,j}$ and b_j are components of matrix A and vector b

Simulations

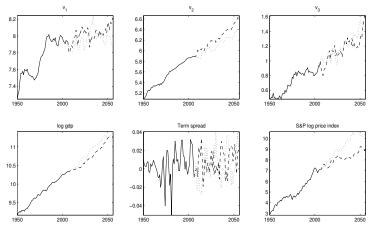


Figure: Simulation sample paths, US females.

Simulations

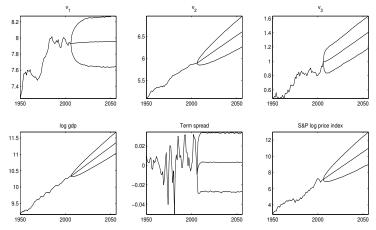


Figure: Medians and 95% confidence intervals for MC simulations (N=10000), US females.

- Recent development of markets for mortality-linked securities has created a need for quantitative methods for their risk management
- We present a relatively simple model connecting mortality and economic conditions, which provides a solid starting point for solving pricing and hedging problems of mortality-linked cash flows
- Next step: how to choose the investment strategy, given the model and its set of assets?