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Overview of research

I General objective: pricing and hedging of mortality-linked cash
flows

I Derivatives (e.g. forwards, bonds and swaps) linked to the
mortality of a certain population

I Insurance portfolios, pension fund management

in incomplete markets
I Stochastic modelling of risk factors

I Mortality
I Liabilities
I Assets
I Other relevant factors

I Numerical techniques
I Integration quadratures
I Numerical optimization
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Mortality-linked cash flows

I Population age structure is shifting towards the old, rendering
private insurance companies and governments even more
vulnerable to risks of misestimating mortality improvements

I Means of risk management for mortality-linked cash flows is
needed

I Mortality-linked securities are financial instruments with cash
flows dependent on the mortality of a reference population

I Mortality/longevity markets are developing

I Quantitative methods for risk management of mortality-linked
securities are instrumental for the development of such a
market
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Mortality-linked cash flows

The value of financial instruments depends essentially on the
following subjective factors:

1. Probability distribution: description of future development
of claims and investment returns, both involving significant
uncertainties

I Dependence between claims and asset returns instrumental in
hedging

2. Risk preferences: the level of risk at which assets should
cover liabilities

3. Hedging strategy: investment strategy for the given initial
capital

I Optimal strategy generally cannot be found (cf. Black-Scholes
and delta hedging )
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Stochastic modelling of risk factors

I Focus of this talk: modelling the law of a multivariate
stochastic process consisting of

I Mortality
I Asset returns (interest rates, stock price index)

I Particular emphasis on
I Connections between mortality and asset returns
I Long-term development of mortality

I GDP as a link between mortality risk factors and asset returns

I Aro & Pennanen: Stochastic modelling of mortality and its
connection with financial markets (manuscript)
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Mortality model

I We employ the general discrete-time stochastic framework for
mortality introduced in Aro & Pennanen, User-friendly
approach to stochastic mortality modelling. European
Actuarial Journal, 2011.

I Let Ex ,t be the size of population aged [x , x + 1) (cohort) at
the beginning of year t

I Denote by Dx ,t the number of deaths of people aged
[x , x + 1) during time [t, t + 1)

I Objective: model the values of Ex ,t over time t = 0, 1, 2, . . .
for a given set X ⊂ N of ages

I Assume the conditional distribution of Ex+1,t+1 = Ex ,t − Dx ,t

given Ex ,t is binomial:

Ex+1,t+1 ∼ Bin(Ex ,t , px ,t)

where px ,t is the probability that an individual aged x and alive
at the beginning of year t is still alive at the end of that year
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Mortality model

I We reduce the dimensionality of (px ,t)x∈X by modelling the
logistic probabilities by

logit px ,t := ln
( px ,t

1− px ,t

)
=

n∑
i=1

v itφi (x),

where φi (x) are user-defined basis functions across cohorts,
and v it stochastic risk factors that vary over time

I In other words, px ,t = pv(t)(x), where
v(t) = (v1(t), . . . , vn(t)), and pv : X → (0, 1) is the
parametric function defined for each v ∈ Rn by

pv (x) =
exp (

∑n
i=1 viφi (x))

1 + exp(
∑n

i=1 viφi (x))

I Modelling the logit transforms instead of px ,t directly
guarantees that px ,t ∈ (0, 1).
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Mortality model

I Certain desired properties of px ,t , e.g. continuity with respect
to x , are achieved by corresponding choices of φi (x)

I Incorporation of user preferences and/or population-specific
characteristics

I Choice of basis functions assigns interpretations to risk factors

I Concrete interpretations facilitate the modelling of risk
factors, which is advantageous the risk management of
mortality-linked instruments

I Vector vt of risk factors is modelled as a stochastic process,
based on historical values, expert opinions, or both

I Historical values of vt are constructed by maximum likelihood
estimation, log-likelihood function is strictly concave
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Mortality model

I We consider female mortality dynamics of six large OECD
countries: Australia, Canada, France, Japan, UK, US

I Data consists of annual values of cohort sizes Ex ,t and
numbers of deaths Dx ,t for each country, covering years
1950–2006 (Source: Human mortality database)

I A model with three basis functions and three risk factors is
employed
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Mortality model

I The model:

logit px ,t = v1t φ1(x) + v2t φ2(x) + v3t φ3(x),

where basis functions are piecewise linear:

φ1(x) =

{
1− x−18

32
for x ≤ 50

0 for x ≥ 50,
φ2(x) =

{
1
32
(x − 18) for x ≤ 50

2− x
50

for x ≥ 50,

φ3(x) =

{
0 for x ≤ 50
x
50

− 1 for x ≥ 50.

I The linear combination now also piecewise linear:
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I Interpretation: values of v it points on the logit px ,t curve
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Statistical analysis of risk factors: v1
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Figure: Historical values for risk factor v1, females. Note the different
scales.
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Statistical analysis of risk factors: v1

I Fundamental question: how long can mortality keep
improving?

I Mortality risk factors traditionally modelled as random walk
with a negative drift, i.e. mortality will decline indefinitely

I Some experts predict that the steady decline in overall
mortality during past decades will continue for the fore-
seeable future, while others suggest that human life
expectancy might even decrease.

I In several sample countries, the historical values of v1t display
a stabilizing tendency

I In order to analyse this phenomenon, we fit the following
regression into historical data:

∆v1t = b + av1t−1 + εt = −a(−b

a
− v1t−1) + εt
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Statistical analysis of risk factors: v1

Table: Parameter estimates, t-values and summary statistics for
∆v1

t = b + av1
t−1.

AU CAN F JP UK US

b 0.778 0.446 0.569 0.614 0.902 0.437
p-value(t-stat.) 0.017 0.028 0.020 0.000 0.000 0.015

a -0.095 -0.053 -0.072 -0.074 -0.107 -0.055
p-value(t-stat.) 0.020 0.036 0.026 0.000 0.000 0.018

R2 0.097 0.079 0.089 0.627 0.461 0.100
Adj. R2 0.080 0.062 0.072 0.620 0.451 0.083

p-value(F-Statistic) 0.020 0.036 0.026 0.000 0.000 0.018
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Statistical analysis of risk factors: v1

Table: Residual test statistics for the regression ∆v1
t = b + av1

t−1.

AU CAN F JP UK US

Serial correlation (BG) 0.329 0.533 0.123 0.731 0.084 0.044
Normality (JB) 0.450 0.364 0.170 0.484 0.692 0.481

Heteroskedasticity (BP) 0.546 0.307 0.074 0.013 0.029 0.263

ADF t-statistic -9.191 -8.374 -8.105 -7.11 -3.722 -4.474
p-value < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 <0.01

KPSS level 0.219 0.164 0.394 0.086 0.255 0.139
p-value > 0.1 > 0.1 0.0796 > 0.1 > 0.1 >0.1

Notes. Serial correlation is tested with the Breusch–Godfrey tests for serial
correlation. A small p-value suggests rejecting the zero hypothesis of serial correlation.
Normality is tested with the Jarque–Bera test for normality. The Breusch-Pagan tests
against heteroskedasticity, with the null hypothesis of homoskedasticity. Stationarity of
the residuals is tested with the augmented Dickey-Fuller unit root test (ADF) and

Kwiatkowski-Phillips-Schmidt-Shin test (KPSS).
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Statistical analysis of risk factors: v2
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Figure: Historical values for risk factor v2, females. Note the different
scales.
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Statistical analysis of risk factors: v2

I Dramatic reduction in coronary disease amongst the
middle-aged during the past three decades shows in the rapid
growth of risk factor v2 reflecting the survival probability of
50-year-olds

I To which extent do improvements in treatment and possible
further reductions in smoking can outweigh the detrimental
effects of obesity and other lifestyle-related factors?

I Even thought the historical values (apart from Japan) do not
yet show signs of levelling out, eventual stabilizing behaviour
similar to that of v1 may also be a future possibility for v2

I To quantify the rate of improvement for v2, we fit the
regression

∆v2t = b + εt ,
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Statistical analysis of risk factors: v3 and GDP
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Figure: Historical values for risk factor v3, females. Note the different
scales.
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Statistical analysis of risk factors: v3 and GDP
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Figure: Historical values for risk factor logarithm of per capita GDP. Note
the different scales.
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Statistical analysis of risk factors: v3 and GDP

I Risk factor v3 describes old-age mortality, with which the cash
flows of mortality linked instruments are connected

I Long-term dependence between GDP and mortality has been
observed (e.g. Preston 1975, Preston 2007).

I Similarities in the general shape of their plots support the
observation that v3 and log-per capita GDP may move
together in the long run

I We analyse the dependence of v3 on GDP with the regression

∆v3t = b + a1v
3
t−1 + a2gt−1 + εt ,

where gt is the log-per capita GDP
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Statistical analysis of risk factors: v3 and GDP

Table: Parameter estimates, t-values and summary statistics for the
regression ∆v3

t = b + a1v
3
t−1 + a2gt−1

.

AU CAN F JAP UK US

b -3.062 -1.686 -1.826 -0.332 -2.894 -0.664
p-value (t-stat.) 0.000 0.000 0.001 0.053 0.000 0.020

a1 -0.877 -0.455 -0.388 -0.057 -0.656 -0.189
p-value (t-stat.) 0.000 0.000 0.001 0.1941 0.000 0.015

a2 0.367 0.205 0.208 0.040 0.334 0.083
p-value (t-stat.) 0.000 0.000 0.001 0.044 0.000 0.016

R2 0.454 0.255 0.195 0.076 0.335 0.109
Adj. R2 0.433 0.227 0.164 0.041 0.310 0.076

p-value (F-Statistic) 0.000 0.0004 0.003 0.124 0.000 0.046
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Statistical analysis of risk factors: v3 and GDP

Table: Residual test statistics for ∆v3
t = b + a1v

3
t−1 + a2gt−1.

1950–2006
AU CAN F JAP UK US

Serial correlation (BG) 0.000 0.002 0.000 0.000 0.090 0.26
Normality (JB) 0.536 0.279 0.009 0.203 0.880 0.533

Heteroskedasticity (BP) 0.330 0.038 0.101 0.001 0.012 0.734

ADF t-statistic -7.356 -3.921 -1.172 -10.599 -6.843 -8.499
p-value < 0.01 < 0.01 > 0.1 < 0.01 < 0.01 < 0.01

KPSS level 0.120 0.311 0.463 0.084 0.263 0.150
p-value > 0.1 > 0.1 0.050 > 0.1 > 0.1 > 0.1

Notes. Serial correlation is tested with the Breusch–Godfrey tests for serial
correlation. A small p-value suggests rejecting the zero hypothesis of serial correlation.
Normality is tested with the Jarque–Bera test for normality. The Breusch-Pagan tests
against heteroskedasticity, with the null hypothesis of homoskedasticity. Stationarity of
the residuals is tested with the augmented Dickey-Fuller unit root test (ADF) and

Kwiatkowski-Phillips-Schmidt-Shin test (KPSS).
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Statistical analysis of risk factors: GDP and financial
markets
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Figure: Differences of US log per capita GDP and term spread
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Statistical analysis of risk factors: GDP and financial
markets

I GDP is linked with financial markets (extensive review article:
Stock&Watson 2003)

I Yield curve/term spread
I Credit spread
I Stock prices

I As in e.g. Wheelock&Wohar(2009), we analyse the
connection between gt and term spread st with the regression

∆gt = b + ast−1 + εt ,

where st is the difference between the 10-year Treasury rate
and the 6-month Certificate of Deposit rate

Helena Aro Stochastic modelling of mortality and financial markets



Statistical analysis of risk factors: GDP and financial
markets

Table: Parameter estimates, t-values and summary statistics for the
regression ∆gt = b + ast−1.

b 0.0185 Serial Correlation (BG) 0.4498
p-value(t-statistic) 0.0000 Normality (JB) 0.7417

a 0.6460 Heteroskedasticity (BP) 0.9257
p-value(t-statistic) 0.0004

ADF t-statistic -6.85
R2 0.2117 p-value < 0.01

Adj. R2 0.1971 KPSS level 0.3374
p-value(F-Statistic) 0.0004 p-value > 0.1
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Statistical analysis of risk factors: GDP and financial
markets

I We apply the established drifting Brownian motion approach,
and fit the process

∆pt = b + εt

into the logarithm of S&P Composite stock price index data
pt for the same observation period

I Residuals of the above equation and of

∆gt = b + ast−1 + εt

have a correlation coefficient of 0.4843 (significance below
0.001)
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Modelling the risk factors

I Based on our observations, we propose the linear stochastic
difference equation model for US:

∆x = Ax + b + εt

for x = [v1t , v
2
t , v

3
t , gt , st , pt ] and multivariate Gaussian εt ,

I The equations are

∆v1t = a11v
1
t + b1 + ε1t

∆v2t = b2 + ε2t

∆v3t = a33v
3
t + a34gt + b3 + ε3t

∆gt = a45st + b4 + ε4t

∆st = a55st + b5 + ε5t

∆pt = b6 + ε6t

where ai ,j and bj are components of matrix A and vector b
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Simulations
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Figure: Simulation sample paths, US females.

Helena Aro Stochastic modelling of mortality and financial markets



Simulations
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Figure: Medians and 95% confidence intervals for MC simulations
(N=10000), US females.
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Conclusions

I Recent development of markets for mortality-linked securities
has created a need for quantitative methods for their risk
management

I We present a relatively simple model connecting mortality and
economic conditions, which provides a solid starting point for
solving pricing and hedging problems of mortality-linked cash
flows

I Next step: how to choose the investment strategy, given the
model and its set of assets?
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