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Two questions

Let Xn, n ∈ Z+ be a homogeneous Markov process. Suppose that
Xn has a stationary distribution.

• How fast is convergence to stationary regime?

• How fast is “mixing”?
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Motivation
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Mixing

• Sometimes it might be necessary to establish Central Limit
Theorem (CLT) for dependent random variables.

• We can describe the dependence in terms of mixing
coefficients.

• Roughly speaking, if the dependence between events separated
by large number of time steps is “weak”, then CLT is satisfied.
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Mixing

Let FX
I be a σ-field generated by random variables {Xs , s ∈ I}.

α(t) := sup
s>0

sup
A∈FX

>s+t

B∈FX
s

|P(AB)− P(A)P(B)|,

β(t) := sup
s>0

E sup
A∈FX

>s+t

|P(A|FX
s )− P(A)|.

It is clear that α(t) = 0 and β(t) = 0 for independent X0,X1, . . . .
In general case, if these coefficients are “sufficiently small”, then
under simple moment conditions the CLT holds.
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Mixing and CLT

Theorem (I.A. Ibragimov). Let (Xn)n∈Z+ be a stationary process
such that:

1. E X0 = 0, E |X0|2+δ <∞ for some δ > 0;

2.
∞∑
n=1

α(n)
δ

2+δ <∞;

3. σ2 := E X 2
0 + 2

∞∑
k=1

E X0Xk 6= 0.

Then
X0 + · · ·+ Xn

σ
√

n

d→ N(0, 1), n→∞.

• We prove that for certain class of Markov processes
β(n) = O(e−cn), n→∞.

• Since α(n) 6 β(n) this implies the CLT for these processes.
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The coupling method
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Total variation distance

• Let (Ω,F) be a measurable space.

• If Q and Q̃ are two measures on (Ω,F), then total variation
distance between Q and Q̃ is defined by

dTV (Q, Q̃) := 2 sup
A∈F
|Q(A)−Q̃(A)| = sup

f

∣∣∣∣∣∣
∫
Ω

f (ω) dQ −
∫
Ω

f (ω) dQ̃

∣∣∣∣∣∣ ,
where the second supremum is taken over measurable
functions bounded by 1.

• Obviously, if Qn are probability measures and

dTV (Qn,Q)→ 0, n→∞, then Qn
d→ Q.
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Total variation distance

• Similarly, the total variation distance between two random
variables X and Y is defined to be the total variation distance
between their distributions.

dTV (X ,Y ) := 2 sup
A∈F
|P(X ∈ A)−P(Y ∈ A)| = sup

f
|E f (X )−E f (Y )|.

• It follows from the definition, that

dTV (X ,Y ) 6 2P(X 6= Y ).
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Setup

• Suppose (Xn)n∈Z+ and (Yn)n∈Z+ , are homogeneous Markov
processes with the same transition functions.

• Our goal is to estimate dTV (Xn,Yn).

• If µ is a stationary distribution of Xn and Law(Y0) = µ, then
dTV (Xn,Yn) = dTV (Xn, µ)
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Coupling: a simple example
• To estimate dTV (Xn,Yn) we use the coupling method.
• Let τ := inf{n : Xn = Yn} be the moment of the first meet of

the processes.

• Then Ln := Xn I(n < τ) + Yn I(n > τ) is distributed as Xn.
• Hence

dTV (Xn,Yn) = dTV (Ln,Yn) 6 2P(Ln 6= Yn) 6 2P(τ > n).
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Coupling: definition

• A coupling is a bivariate process
(

X̃n, Ỹn

)
, such that

• X̃n
d
= Xn and Ỹn

d
= Yn, for all n ∈ Z+,

• X̃n(ω) = Ỹn(ω) for all n > τ(ω).

• It is clear, that dTV (Xn,Yn) = dTV (X̃n, Ỹn) 6 2P(τ > n).

• For instance, (Ln,Yn) is a coupling. This construction was
suggested by Doeblin.

• Can Doeblin’s coupling be improved?
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Doeblin’s coupling vs Vaserstein’s coupling

The Doeblin coupling

(X̃n, Ỹn) (X̃n+1, Ỹn+1) p̃..
(i , i) → (k , k) pik

(i , j) → (k , k) pikpjk

(i , j) → (k , l) pikpjl

The Vaserstein coupling

(X̃n, Ỹn) (X̃n+1, Ỹn+1) p̃..
(i , i) → (k , k) pik

(i , j) → (k , k) pik ∧ pjk

(i , j) → (k , l) c(i , j)(pik − pik ∧ pjk)(pjl − pil ∧ pjl)
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Suppose that processes Xn and Yn have transition probability
density p(u, v).

Let us define

q(u, v) :=

+∞∫
−∞

p(u, t) ∧ p(v , t) dt.

Let ηn =
(
η1
n, η

2
n

)
be a Markov process with transition probability

density ϕ(x , y) := ϕ1(x , y1)ϕ2(x , y2), where x = (x1, x2),
y = (y 1, y 2) and

ϕ1(x , u) := (1− q(x1, x2))−1
(
p(x1, u)− p(x1, u) ∧ p(x2, u)

)
,

ϕ2(x , u) := (1− q(x1, x2))−1
(
p(x2, u)− p(x1, u) ∧ p(x2, u)

)
.

We also set η0 = X0.
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Lemma. It is possible to construct a coupling
(

X̃n, Ỹn

)
such that

P(X̃n 6= Ỹn) 6 E
n−1∏
i=0

(1− q(η1
i , η

2
i )).
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Idea of the proof

Let γn = I(τ > n).

Consider the following decomposition

X̃n = η1
n I(γn = 1) + ζn I(γn = 0),

Ỹn = η2
n I(γn = 1) + ζn I(γn = 0).

Random processes η1
n and η2

n represent Xn and Yn, correspondingly,
under condition that coupling was not successful until time n.

On the other hand, ζn represents both Xn and Yn if the coupling
occurs before time n.

It is possible to show, that (η1
n, η

2
n, ζn, γn) is a Markov process and

P(γn+1 = 1|γn = 1, η1
n = x1, η2

n = x2) = 1− q(x1, x2).

13



Estimates of convergence rate
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Operator

Let us introduce operator A : Cb → Cb

Af (x) := (1− q(x)) Ex f (η1).

Operator A has an interesting property:

E Anf (η0) = E
n−1∏
i=0

(1− q(ηi ))f (ηn).

Therefore,
1

2
dTV (Xn,Yn) 6 E An1(η0) 6 ‖An‖.
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Theorem. If operator A has a spectral radius r 6= 1 then for any
ε > 0 and for sufficiently large n > n0(ε)

dTV (Xn,Yn) 6 2e−n(| ln r |−ε).
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Alternative approach

• In some cases it might be difficult to check whether r < 1.

• We developed also an alternative approach.

• Clearly, r 6 ‖A‖, however ‖A‖ = 1− inf
x

q(x) = 1 in many
cases.

• So we introduce operator B with ‖B‖ 6 1− ε.
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Alternative approach
Let us consider a “good” set Kε := {(x1, x2) : q(x1, x2) > ε}.

We denote by τ := inf{n > 0 : ηn ∈ Kε} a first hit time for the set
Kε.

Define operator B : Cb → Cb by the following formula

Bf (x) := Ex

(
(1− q(η1))(1− q(η2)) · . . . · (1− q(ητ ))f (ητ )

)
.
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Operator B

Af (x) := (1− q(x)) Ex f (η1).

Bf (x) := Ex

(
(1− q(η1))(1− q(η2)) · . . . · (1− q(ητ ))f (ητ )

)
.

We see, that since

Bf (x) 6 Ex

(
(1− q(ητ ))f (ητ )

)
6 (1− ε) Ex f (ητ ),

we have ‖B‖ 6 1− ε.
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Operator B

Moreover,

E(1− q(η0)Bnf (η0) = E
τn∏
i=0

(
1− q(ηi )

)
f (ητn),

where τn is a n − th hit time for the set Kε.
On the other hand, it follows from Lemma that

P(X̃n+1 6= Ỹn+1) 6 E
n∏

i=0

(1− q(ηi )).

Therefore if we introduce a “bad” set κn := {ω : τbn/∆c > n} then

P(X̃n+1 6= Ỹn+1) 6 E Bbn/∆c1(η0) + E I(κn).
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Theorem. Assume that there exist ε > 0, λ > 0, M > 0 such that
1. E eλτ <∞.
2. For all x ∈ Kε we have Ex eλτ < M.
Then

dTV (Xn,Yn) 6 Ce−nθ,

where C > 0 and

θ =
| ln(1− ε)|λ

ln M + | ln(1− ε)|
.

• Recall that τ is a first hit time for process η.

• Let us reformulate conditions 1 and 2 in terms of a first hit
time for process Xn.
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Let us assume that q(u, v) > ε
for all u, v such that |u| < K , |v | < K .

Define T := inf{n > 0 : |Xn| < K}.

Theorem. Assume that there exist λ > 0, K > 0, M > 0, κ > 0,
such that
1. Eu eλT <∞ for all u.
2. Eu eλT < M for all |u| < K .
3. Pu(|X1| < K ) > κ for all |u| < K .
Then

dTV (Xn,Yn) 6 Ce−nθ1 ,

wit some C > 0, θ1 > 0.
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Estimates of convergence rate: Summary

• If r < 1 then dTV (Xn,Yn) 6 2e−n(| ln r |−ε).

• Under certain conditions on a first hit time for the set
[−K ,K ] we have dTV (Xn,Yn) 6 Ce−nθ.
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Estimation of mixing coefficients
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β-mixing

Theorem. Assume that Xn has a stationary distribution. If r 6= 1
then for any ε > 0

β(n) 6 Ce−n(| ln r |−ε),

for some C > 0 and sufficiently large n > N(ε).
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Central Limit Theorem

• Therefore, CLT for dependent random variables implies

Theorem. Suppose that Xn has a stationary distribution and
r 6= 1.

Let Xµ
n , n ∈ Z+, be a stationary version of the process Xn.

Furthermore, assume that
1. E |Xµ

1 |2+δ <∞, for some δ > 0,

2. σ2 := Var Xµ
1 + 2

∞∑
k=1

cov(Xµ
1 ,X

µ
k+1) 6= 0.

Then the process Xn satisfies central limit theorem, i.e.

n∑
i=1

Xi − n E Xµ
1

√
n

d−→ N (0, σ2) as n→∞.
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