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Two questions

Let X,, n € Z, be a homogeneous Markov process. Suppose that
X, has a stationary distribution.



Two questions

Let X,, n € Z, be a homogeneous Markov process. Suppose that
X, has a stationary distribution.

e How fast is convergence to stationary regime?

e How fast is “mixing”?



Motivation



Mixing

e Sometimes it might be necessary to establish Central Limit
Theorem (CLT) for dependent random variables.

e We can describe the dependence in terms of mixing
coefficients.

7o
d "/,

}{CI }{S ><s+t

e Roughly speaking, if the dependence between events separated
by large number of time steps is “weak”, then CLT is satisfied.



Mixing

Let 77X be a o-field generated by random variables {Xs, s € /}.

a(t) :=sup sup |P(AB)—P(A)P(B)|,
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B(t) :=supE sup [P(A|FX)—P(A).
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It is clear that a(t) = 0 and 5(t) = O for independent Xo, X1, . ...
In general case, if these coefficients are “sufficiently small”, then
under simple moment conditions the CLT holds.



Mixing and CLT

Theorem (I.A. Ibragimov). Let (X,)ncz, be a stationary process
such that:

1 EXo =0, E|Xp|?>™ < oo for some § > 0;

2. Z a(n )2+5 < 00;
n=1
3. 02:=EX§+2Y EXoXi #0.
k=1

Then
Xo+ -+ Xn d

T — N(0,1), n— occ.



Mixing and CLT

Theorem (I.A. Ibragimov). Let (X,)ncz, be a stationary process
such that:

1 EXo =0, E|Xp|?>™ < oo for some § > 0;

2. Z a(n )2+5 < 00;
n=1
3. 02:=EX§+2Y EXoXi #0.
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Then X X
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e We prove that for certain class of Markov processes
B(n) = O(e™"), n = o0.

e Since a(n) < B(n) this implies the CLT for these processes.



The coupling method



Total variation distance

e Let (Q,F) be a measurable space.

o If Q and Q are two measures on (2, F), then total variation
distance between @ and Q@ is defined by

drv(Q. Q) =2 50p |Q(A)-Q(A)| = sup / () dQ / f(0)dQ) .
Q
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where the second supremum is taken over measurable
functions bounded by 1.

e Obviously, if Q, are probability measures and
drv(Qn, Q) = 0, n— o0, then Q, > Q.



Total variation distance

e Similarly, the total variation distance between two random
variables X and Y is defined to be the total variation distance
between their distributions.

drv(X,Y) = 2 sup |P(X € A)—P(Y € A)| = sup|E f(X)—E f(Y)|.
AeF f

e [t follows from the definition, that

drv(X,Y) < 2P(X # Y).



Setup

e Suppose (Xp)nez, and (Y,)nez,, are homogeneous Markov
processes with the same transition functions.

e Our goal is to estimate drv (X, Y).

e If p is a stationary distribution of X, and Law(Yp) = u, then
dTV(Xny Yn) = dTV(Xnnu)



Coupling: a simple example

e To estimate d7y(Xn, Yn) we use the coupling method.
e Let 7:=inf{n: X, = Y,} be the moment of the first meet of
the processes.

™

e Then L, := X, I(n < 7)+ Y,I(n > 7) is distributed as X,,.
e Hence
dT\/(X,,, Yn) = dT\/(Ln, Yn) < 2P(Ln 75 Yn) < 2P(T > n).
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e Then L, := X, I(n < 7)+ Y,I(n > 7) is distributed as X,,.
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Coupling: definition

A coupling is a bivariate process ()N(,,, Y’n) such that
o Xo L X,and Y, £, forall neZ,,
o Xp(w) = Yp(w) for all n > 7(w).
It is clear, that d7rv(X,, Yn) = d-r\/()?,,7 \7,,) < 2P(7 > n).

For instance, (Lp, Yy) is a coupling. This construction was
suggested by Doeblin.

Can Doeblin’s coupling be improved?



Doeblin’s coupling vs Vaserstein's coupling

The Doeblin coupling

()?na ?n) (Xn+1a Yn+l) p..
(i,i) — (k, k) Pik
(I’J) - (kv k) PikPjk
(I7J) — (kv /) Pik Pji

The Vaserstein coupling

(;(nv SV/n) (;En—&—lv SV/n—i-l) /3
(i,i) — (k, k) Pik
(Iv./) — (ka k) Pik/\ij
(i,j) — (k, 1) c(i,J)(pik — pik N pi)(pjr — pir A pjr)
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Suppose that processes X, and Y, have transition probability
density p(u, v).
Let us define
+00
a(uv)i= [ plut) A p(v. ) .
—00

Let n, = (n},m2) be a Markov process with transition probability

density o(x, y) = @1(x, y1)@2(x, y2), where x = (x!, x?),
y=(y'y?) and
pr(x,u) == (1= g ) (Pl u) = plx u) A (. )
pa(x,u) = (1= g(x", x*)) 7" (p(x*, u) = p(x*, u) A p(x*,u)) .

We also set ng = Xp.
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Lemma. /t is possible to construct a coupling ()?,,, \~/,,> such that

]‘:)(5?177'é Y EH 7717771
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|dea of the proof
Let v, = I(7 > n).

Consider the following decomposition

Xn = 77r1; I('yn = 1) +Cn I('Vn = O)a
Y, = 77% I(Vn = 1) + Cn I(’Yn = O)'

Random processes 75 and 1?2 represent X, and Y,,, correspondingly,

under condition that coupling was not successful until time n.

On the other hand, {, represents both X, and Y/, if the coupling
occurs before time n.

It is possible to show, that (n},n2,(n,7n) is a Markov process and

P(yni1 = 1ym = L = x4, 2 = x%) = 1 — q(x*, x).
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Estimates of convergence rate
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Operator

Let us introduce operator A: Cp, — Cp

Af(x) == (1= q(x)) Ex ().
Operator A has an interesting property:

n—1

EA"f(n0) = E [ [ (1 = a(m)f(na)-
i=0

Therefore, )
EdTV(Xna Yn) < EAnl(UO) < HAHH
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Theorem. If operator A has a spectral radius r # 1 then for any
e > 0 and for sufficiently large n > ng(e)

dry(Xn, Yp) < 2e~(lInrl=e),
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Alternative approach

In some cases it might be difficult to check whether r < 1.
We developed also an alternative approach.

Clearly, r < ||A||, however ||A]| =1 —inf g(x) = 1 in many
cases. *

So we introduce operator B with |B|| <1 —e¢.
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Alternative approach
Let us consider a “good” set K. := {(x,x?) : q(x!, x?) > €}.

We denote by 7 :=inf{n > 0: n, € K.} a first hit time for the set

K.
\/_X{r
Define operator B : C, — Cp, by the following formula

Bf (x) := Ex((1 = q(m))(1 = q(12)) - ... - (1 = q(n:))f (1))
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Operator B

Af(x) := (1 — q(x)) Ex f(m).
Bf (x) := Ex((1 — q(m))(1 — q(n2)) - .

We see, that since

Bf(x) < Ex((l - q(%))f(m))

we have ||B]| < 1 —e.

(1= q(nr))f (1r))-

< (1 -e)Ecf(nr),
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Operator B

Moreover,

E(1— q0)B"F(10) = E [ (1 — a(n)) F(1r,):
=0

where 7, is a n — th hit time for the set K..
On the other hand, it follows from Lemma that

P(Xot1 # Yai1) < EJ](1 = q(m))-
i=0
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Operator B

Moreover,

E(1— q0)B"F(10) = E [ (1 — a(n)) F(1r,):
=0

where 7, is a n — th hit time for the set K..
On the other hand, it follows from Lemma that

P(Xpp1 # Yni1) < EH(1 — q(ni))

Therefore if we introduce a "bad” set x, := {w : 7|, a] > n} then

P(Xni1 # Yas1) < EBIA1(10) + El(s55).
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Theorem. Assume that there exist € > 0, A > 0, M > 0 such that
1. EeM < 0.

2. For all x € K. we have E, e’ < M.
Then

drv(Xn, Yn) < Ce™™,
where C > 0 and

_In(T—=¢)[A
" InM+|In(l—¢)|

e Recall that 7 is a first hit time for process 7.

e Let us reformulate conditions 1 and 2 in terms of a first hit
time for process X,.
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Let us assume that q(u,v) > ¢
for all u, v such that |u] < K, |v| < K.

’?

-

Theorem. Assume that there exist A >0, K >0, M >0, s > 0,
such that

1. E, e’ < oo for all u.

2. E,er < M forall |u] < K.

3. Py(|X1| < K) > 5 for all |u| < K.

Then

Define T :=inf{n>0: |X,| < K}.

drv(Xn, Yn) < Ce™"1,
wit some C >0, 8; > 0.
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Estimates of convergence rate: Summary

o If r <1 then dry(Xn, Yn) < 2e—n(|Inrl—e)

e Under certain conditions on a first hit time for the set
[~K, K] we have dry(X,, Y,) < Ce™".
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Estimation of mixing coefficients
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[B-mixing

Theorem. Assume that X, has a stationary distribution. If r # 1
then for any e >0

ﬂ(n) < Ce—n(| In r|—€),

for some C > 0 and sufficiently large n > N(g).
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Central Limit Theorem
e Therefore, CLT for dependent random variables implies

Theorem. Suppose that X, has a stationary distribution and

r# 1.
Let X¥, ne Zy, be a stationary version of the process X,.

Furthermore, assume that
1 E|XH?H0 < oo, forsome § >0,

2. 0% :=VarX{' +2 Z cov(X{", X}’ ;) #0.

Then the process X, sat/sf/es central limit theorem, i.e.
n
S Xi—nEX{

i=1

7 45 N(0,02) as n— oo.
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