Regenerative approach for retrial queuing system

Ruslana Goricheva

Institute of Applied Mathematical Research Karelian Research Centre, RAS. (joint work with K.Avrachenkov, E.Morozov)

Introduction

We present a new retrial systems which can be used to describe:

- ALOHA type multiple access protocols [3];
- short TCP transfers [2].

Estimation of blocking probability in M/G/1/1-type retrial queuing system .

Description of the model

M/G/1/1-type retrial system(Σ):

- Poisson input with rate λ ;
- general service time with rate μ (*ES* = 1/ μ);
- arrivals who find the server busy **join the infinite capacity orbit**, and then return to the system after exponentially distributed retrial time with rate μ_0 .

The total input stream to the server consists of two (generally, dependent) streams:

- Poisson λ -input of primary customers;
- the input of retrial customers with a rate $\mu_0 \le \mu_0$, $(\mu_0 = \mu_0$ when the orbit is not empty, and , $\mu_0 = 0$ otherwise).

Auxiliary system $(\hat{\Sigma})$

- The same Poisson λ -input;
- The same service times ;
- An independent Poisson input with rate μ_0 ;
- arriving customer who finds the server busy leaves the system forever and do not affect the future state.

The server in system Σ is less loaded than than server in $\stackrel{\wedge}{\Sigma} (\mu_0 \leq \mu_0)$.

We expect: the stability of the orbit in auxiliary implies stability of the orbit in original system [1].

Stability condition

 P_{loss} - stationary loss probability in system \sum_{loss} (always exists). It has been proved in [1] that the following condition:

$$(\lambda + \mu_0) P_{loss} < \mu_0. \tag{1}$$

is sufficient (and often necessary) for stability of the orbit in system Σ .

Erlang models

Stability condition (1) for the c-server Erlang model (that is M/G/c/c loss system):

$$\frac{((\lambda + \mu_0) / \mu)^c}{c!} \left[\sum_{n=0}^c \frac{((\lambda + \mu_0) / \mu)^n}{n!} \right] < \frac{\mu_0}{\lambda + \mu_0}, \quad (2)$$

reducing for M/G/1/1 system (c=1):

$$\frac{\lambda + \mu_0}{\mu} < \frac{\mu_0}{\lambda + \mu_0}.$$
 (3)

Regenerative analysis (notation)

- $\{t_n\}$ the arrival instants of λ -customers in both systems;
- N(t) the orbit size at instant t;
- v(t) the state of server (0 or 1) at instant t;
- $X = X(t) = \{N(t) + v(t), t \ge 0\};$
- $N(t_n^-) = N_n, \ v(t_n^-) = v_n, \ X(t_n^-) = X_n := N_n + v_n, n \ge 1;$
- R(t) the total number of rejected customers in interval [0,t];
- A(t) the total number of calls (λ and μ_0 -customers) in interval [0,t];
- R the number of orbit customers during regeneration cycle
- A the total number of arrivals during regeneration cycle.

System regenerates at the instants when the -custometers find the server empty in case of empty orbit. Regenerations of the discrete-time basic process $\{X_n\}$:

$$\beta_{n+1} = \inf_{k} f(k > \beta_{n+1} : X_k = 0), \ n \ge 0, \ \beta_0 = 0.$$
(4)

Stability case $\{R(t), t \ge 0\}$ is positive recurrent [1] with regenerations $\{\beta_n\}$ so, w.p.1:

$$\lim_{t \to \infty} \frac{R(t)}{A(t)} = \frac{ER}{EA}.$$
 (5)

 I_n - indicator of rejection of n-th custumer. If β is aperiodic, then:

$$I_n \Rightarrow I.$$
 (6)

By uniform integrability of indicators holds:

$$P(I_n = 1) \to P_{orb} \coloneqq EI, \quad n \to \infty.$$
 (7)

Also by the regenerative theory:

$$\stackrel{\wedge}{P}_{orb}(n) := \frac{\sum_{k=1}^{n} I_k}{n} \to \frac{ER}{EA} = P_{orb}, \quad n \to \infty.$$
 (8)

Both limit ratios give the same expression for stationary probability P_{orb} . Original system is less loaded, and one expect than in the stability region X is positive recurrent (that is $E\beta < \infty$) and thus:

$$\stackrel{\wedge}{P}_{orb}(n) \to P_{orb} \le P_{loss}, \quad n \to \infty.$$
 (9)

Instability case

In the instability region the limit $\mu_0 \to \mu_0$ is expected, and we also expect that the estimator $P_{orb}(n)$ must approach P_{loss} .

The process X is **not positive recurrent regenerative.**

Quasi-regenerations :

$$\alpha_{n+1} = \inf_{k} f(k > \alpha_{n+1} : v_k = 0), \ n \ge 0, \ \alpha_0 = 0.$$
 (10)

One expect: more the system is unstable the less difference $|P_{loss} - \hat{P}_{orb}(n)|$ must be as $n \to \infty$.

After a finite (w.p.1) time t_0 , the orbit will never be empty, and for $t \ge t_0$ systems Σ , Σ couple. Quasi-regenerations become **classical** regenerations for the isolated process $\{v_n\}$.

As a result, the estimator $P_{orb}(n)$ will converge to P_{loss} w.p.1 as $n \to \infty$.

Simulation results

Estimation of $\hat{P}_{orb}(n)$ both in stability and instability regions using regenerative/quasi-regenerative simulation for M/G/1/1 system with and G=M or G=Pareto.

Denote:
$$\delta = P_{loss} - \hat{P}_{orb}(n) = \frac{\lambda + \mu_0}{\lambda + \mu_0 + \mu} - \hat{P}_{orb}(n).$$

Denote by Γ the difference between two sides of stability condition (3):

$$\Gamma = \frac{\mu_0}{\lambda + \mu_0} - \frac{\lambda + \mu_0}{\lambda + \mu_0 + \mu}.$$

- $\Gamma > 0$ in the stability region;
- $\Gamma < 0$ in the instability region;
- $\Gamma = 0$ at the boundary.

We expect:

In stability region:

- If $\Gamma \uparrow$, then the difference $\delta \uparrow$;
- If $\Gamma \downarrow 0$, then $\delta \downarrow 0$. In instability region: $\delta \approx 0$.

Simulations of M/M/1/1 systems are presented in Table 1, where n is the number of regenerations (4) in the stability region , or the number of quasi-regenerations (9) in the instability region ($\lambda = 1$).

μ_0	μ	n	P_{loss}	$\hat{P}_{orb}(n)$	δ	Г
2	4	11222	0,4286	0,2965	0,1321	0,2381
4	3	8051	$0,\!625$	0,4799	0,1451	0,175
0,6	3	1753	$0,\!3478$	0,3365	0,0113	0,0272
6	$1,\!3$	572	0,8434	0,8331	0,0103	0,0137
2	1,4	6417	0,6818	$0,\!6791$	0,0027	-0,0151
4	1,1	3529	0,8197	0,8235	-0,0038	-0,0197
0,5	2,3	12092	$0,\!3947$	0,3953	-0,0006	-0,0614
0,1	2	12947	$0,\!3548$	0,3526	0,0022	-0,2639
0,1	0,1	1679	$0,\!9167$	0,916	0,0007	-0,825

Table 1: Simulation of M/M/1/1

Similar results are obtained for M/Pareto/1/1 systems with service time $P(S \ge x) = (x / x_0)^{-2.5}, x \ge x_0$ in Table 2.

μ_0	x_0	n	P_{loss}	$\hat{P}_{orb}(n)$	δ	Г				
2,7	0,1	14335	0,9569	0,2057	0,7512	$0,\!3483$				
1	0,1	12715	0,9231	0,1808	0,7423	$0,\!2500$				
2	0,2	7809	0,9000	0,4033	0,4967	0,1667				
$1,\!65$	0,37	339	0,8112	0,5986	0,2126	0,0023				
2	0,5	5652	0,7826	0,7159	0,0667	-0,0476				
0,1	0,4	11537	0,6226	0,4224	0,2002	-0,3322				

Table 2: Simulation of M/Pareto/1/1

Dynamics of orbit

Stable dynamics of orbit in M/M/1/1, $\mu_0 = 4$, $\mu = 3$.

Instable of orbit in M/M/1/1, $\mu_0 = 0, 5, \mu = 2, 3$.

References

- 1. Avrachenkov K., Morozov E. V. Stability analysis of GI/G/c/K Retrial Queue with Constant Retrial Rate, INRIA, Research Report No 7335, July 2010 (Sophia Antipolis).
- K. Avrachenkov and U. Yechiali, "Retrial networks with nite buers and their application to Internet data traffic", Probability in the Engineering and Informational Sciences", v.22, pp.519-536, 2008.
- 3. B.D. Choi, K.H. Rhee and K.K. Park, "The M/G/1 retrial queue with retrial rate contol policy" Probability in the Engineering and Informational Sciences, v.7, pp.29-46, 1993.
- G. Fayolle, "A simple telephone exchange with delayed feedback", In O.J. Boxma, J.W. Cohen and H.C. Tijms (eds.), Teletrac Analysis and Computer Performance Evaluation, v.7, pp.245-253, Elsevier, Amsterdam, 1986.
- 5. Glynn P. W., Iglehart D. L. Conditions for the applicability of the regenerative method //Management Science. 1993. V. 39. P. 1108-1111.
- Morozov E. V. Weak regeneration in modeling of queueing processes // Queueing Systems.
 2004.V. 46. P. 295-315.
- 7. Wolff R. W. Stochastic Modeling and the Theory of Queues //Prentice-Hall . 1989.

Thank you!