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Introduction

We present  a new retrial systems which can be used to 

describe:

• ALOHA type multiple access protocols [3];

• short TCP transfers [2].

Estimation of blocking probability in M/G/1/1-type retrial 
queuing system .



Description of the model
• Poisson input with rate    ; 

• general service time with rate                        ;

• arrivals who find the server busy join the infinite capacity orbit, and then 

return to the system after exponentially distributed retrial time with rate      .

M/G/1/1-type retrial system :( )
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The total input stream to the server consists of two
(generally, dependent) streams:

• Poisson    -input of primary customers;

• the input of retrial  customers with a rate                     when the orbit 

is not empty, and ,              otherwise).
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Auxiliary system( )



• The same Poisson    -input; 

• The same service times ;

• An independent Poisson input with rate      ;

• arriving customer who finds the server busy leaves the system forever and do not 

affect the future state.
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The server in system     is less loaded  than than server in                    .
~
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We expect: the stability of the orbit  in   auxiliary implies 
stability of the orbit in original system [1].



Stability condition

- stationary loss probability in  system    (always   exists). It has been 

proved in [1] that the following condition:
lossP
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is sufficient (and often necessary) for stability of the orbit in system    .



Erlang models
Stability condition (1) for  the c-server Erlang model (that is M/G/c/c loss 
system):
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reducing for M/G/1/1 system (c=1):



Regenerative analysis (notation)
• - the  arrival instants of    -customers in both systems; 
• - the orbit size   at instant t;
• - the state of server (0 or 1) at instant t;   
• ;
•
• - the total number of rejected customers in interval [0,t];
• - the total number of calls (    and      -customers) in interval [0,t];
• - the number of orbit customers during regeneration cycle
• - the total number of arrivals during regeneration cycle.
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System  regenerates at the instants when the     -customers find the server 
empty in case of empty orbit. Regenerations of the discrete-time basic process        : 
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Stability case
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is positive recurrent  [1] with regenerations       so, w.p.1:

(5)

- indicator of rejection of n-th custumer. If      is aperiodic, then:

(6)

By uniform integrability of indicators holds:

(7)

Also by the regenerative theory:

(8)

Both limit ratios give the same expression for stationary probability      .      
Original system is less loaded, and one expect  than in the stability region  X  is 
positive recurrent (that is            ) and thus:

(9)
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Instability case
~

0 0 In the instability region the limit                is expected, and we also 
expect that the estimator            must approach         .( )orbP n
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The process X is not positive recurrent regenerative.

Quasi-regenerations :
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One expect:  more the system is unstable
the less difference must be as . | ( ) |orblossP P n
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After a finite (w.p.1) time , the orbit will never be empty, and for
systems couple. Quasi-regenerations become classical

regenerations for the isolated process . 
As a result, the estimator will converge to w.p.1 as .
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Estimation of             both in stability and instability regions using 
regenerative/quasi-regenerative simulation for  M/G/1/1 system with and 
G=M or G=Pareto.

Simulation results

Denote by     the difference between  two sides of  stability condition (3):
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• in the stability region; 
• in the instability region;
• at the boundary.
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We expect:
In stability region:
• If       , then the difference      ;
• If          , then         .
In instability region:          .
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Simulations of M/M/1/1  systems are presented in Table 1, where n is the  number of  
regenerations (4) in the stability region ,   or the number of  quasi-regenerations (9) in the 
instability region (   =1).



Similar  results are obtained for  M/Pareto/1/1 systems with  service time       
in Table 2.2,5
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Dynamics of orbit

Stable dynamics of orbit in M/M/1/1, 0 4, 3.  

0 0,5, 2,3.  Instable of orbit in M/M/1/1, 
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