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Introduction

Let X and Y be d-dimensional random vectors with
distributions PX and PY .

For the discrete case PX = {pX(k), k ∈ Nd} and
PY = {pY (k), k ∈ Nd}.

In the continuous case let PX and PY be with densities
pX(x), pY (x), x ∈ Rd, respectively.
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Entropy

In information theory and statistics, there are various
generalizations of Shannon entropy, characterizing uncertainty,
e.g.,

the Rényi entropy,

hs :=
1

1− s
log

(∫

Rd
pX(x)sdx

)
, s #= 1,

the (differentiable) variability for approximate record
matching in random databases

v := − log

(∫

Rd
pX(x)pY (x)dx

)
.
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Bregman distance

An example of statistical distance between distributions is given
by the (nonsymmetric) Bregman distance

Bs(pX , pY ) =

∫

Rd

[
pX(x)s+

1

s− 1
pY (x)

s − s

s− 1
pX(x)pY (x)

s−1
]
dx,

for s #= 1. When s = 2, we get the second order distance

B2(pX , pY ) =

∫

Rd
[pX(x)− pY (x)]

2dx.
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Entropy-type functionals

For non-negative integers r1, r2 ≥ 0 and r := (r1, r2), we
consider Rényi entropy functionals

qr = qr1,r2 :=

∫

Rd
pX(x)r1pY (x)

r2dx,

for continuous distributions, and

qr = qr1,r2 :=
∑

k

pX(k)r1pY (k)
r2 ,

for discrete distributions.
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Note that

the Rényi entropy hs = hs,0 = log(qs,0)/(1− s).

the variability v = h1,1 = − log(q1,1).

the second order Bregman distance K2 = q2,0 + q0,2 − 2q1,1.
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Our aim

Estimation of entropy-type functionals qr and related
characteristics for PX and PY from mutually independent and
identically distributed samples X1, . . . , Xn1 and Y1, . . . , Yn2 .
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Basic notation
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Basic notation

Let the d(x, y) denote the Euclidean distance in Rd and
Bε(x) := {y : d(x, y) ≤ ε} be an ε-ball in Rd with center at x,
radius ε, and volume bε(d) = εdb1(d). Define the ε-ball
probability

pX,ε(x) := P (X ∈ Bε(x)).

Write I(C) for the indicator of an event C.

Denote n := (n1, n2), n := n1 + n2, and say that n → ∞ if
n1, n2 → ∞ and let pn := n1/n → p, 0 < p < 1, as n → ∞.
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Coincidence probability

Our method relies on estimating the ε-coincidence probability

qr,ε := P (d(X1, Xi) ≤ ε, d(X1, Yj) ≤ ε, i = 2, . . . , r1, j = 2, . . . , r2)

= EpX,ε(X)r1−1pY,ε(X)r1 .

In the discrete case, we put ε = 0. Hence

qr,0 = qr = P (X1 = Xi = Yj , i = 2, . . . , r1, j = 1, . . . , r2)

is the coincidence probability.
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Estimator

Let Sm,k be the set of all k-subsets of {1, . . . ,m}. For
S ∈ Sn1,r1 , T ∈ Sn2,r2 , and i ∈ S, define

ψ(i)
n (S;T ) := I(d(Xi, Xj) ≤ ε, d(Xi, Yk) ≤ ε, ∀j ∈ S, ∀k ∈ T ),

i.e., the indicator of the event that all elements in {Xj , j ∈ S}
and {Yk, k ∈ T} are ε-close to Xi.
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Estimator

Note that

Eψ(i)
n (S;T ) = EpX,ε(X)r1−1pY,ε(X)r2 = qr,ε.

A generalized U -statistic for qr,ε is given by

Qn = Qn,r,ε :=

(
n1

r1

)−1(n2

r2

)−1 ∑

(n1,r1)

∑

(n2,r2)

ψn(S;T )

with the symmetrized kernel

ψn(S;T ) :=
1

r1

∑

i∈S
ψ(i)
n (S;T ).

David Källberg Ume̊a university Statistical inference for entropy-type density functionals



Asymptotic variance

For discrete and continuous distributions, we define

ζ1,0 := Var(pX(X)r1−1pY (X)r2) = q2r1−1,2r2 − q2r1,r2 ,

ζ0,1 := Var(pX(Y )r1pY (Y )r2−1) = q2r1,2r2−1 − q2r1,r2 ,

κ := p−1r21ζ1,0 + (1− p)−1r22ζ0,1.

Idea: The asymptotic variance κ takes the form of an
entropy-type functional, and hence it can be estimated by the
same method.
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Main results
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Discrete distributions

Exact coincidences (ε = 0) are considered. Then

ψn(S;T ) = ψ(i)
n (S;T ),

and Qn is an unbiased estimator of qr. Let Qn,r := Qn,r,0,

Kn := p−1
n r21(Qn,2r1−1,2r2−Q2

n,r)

+(1− pn)
−1r22(Qn,2r1,2r2−1 −Q2

n,r),

and kn := max(Kn, 1/n) be an estimator of κ.

Denote by Hn := log(max(Qn, 1/n))/(1− r) the estimator of
hr := log(qr)/(1− r).
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Discrete distributions

Theorem

If ζ1,0, ζ0,1 > 0, then

√
n(Qn − qr)

D→ N(0,κ) and
√
n(Qn − qr)/k

1/2
n

D→ N(0, 1);

√
n(1− r)

Qn

k1/2n

(Hn − hr)
D→ N(0, 1) as n → ∞.
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Continuous distributions

Denote by
Q̃n := Qn/bε(d)

r−1

the estimator of qr.

Let q̃r,ε := EQ̃n = qr,ε/bε(d)r−1 and v2n := Var(Q̃n).

Assume that ε = ε(n) → 0 as n → ∞.
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Continuous distributions

Theorem

Let pX(x) and pY (x) be bounded and continuous or with a finite
number of discontinuity points.

(i) v2n = O(n−1εd(1/r−1)) and EQ̃n → qr as n → ∞, and hence
if nεd(1−1/r) → ∞ as n → ∞, then Q̃n is a consistent
estimator of qr.

(ii) If nεd → ∞ as n → ∞ and ζ1,0, ζ0,1 > 0, then

√
n(Q̃n − q̃r,ε)

D→ N(0,κ) as n → ∞.
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Smoothness conditions

The estimator is biased, so we introduce smoothness conditions
to evaluate qr.

Denote by H(α)(C) , 0 < α ≤ 2, C > 0, a linear space of
bounded and continuous functions in Rd satisfying α-Hölder
condition if 0 < α ≤ 1 or if 1 < α ≤ 2 with continuous partial
derivatives satisfying (α− 1)-Hölder condition with constant C.
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Continuous distributions

Let

Kn := p−1
n r21(Q̃n,2r1−1,2r2,ε−Q̃2

n,r,ε)

+(1− pn)
−1r22(Q̃n,2r1,2r2−1,ε − Q̃2

n,r,ε),

and define kn := max(Kn, 1/n).

Denote by Hn := log(max(Q̃n, 1/n))/(1− r) the estimator
of hr := log(qr)/(1− r).

Let L(n) be a slowly varying function.
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Continuous distributions

Theorem

Let pX(x), pY (x) ∈ H(α)(C).
(i) Then the bias |q̃r,ε − qr| ≤ C1εα, C1 > 0.
(ii) If 0 < α ≤ d/2 and ε ∼ cn−α/(2α+d(1−1/r)), 0 < c < ∞, then

Q̃n − qr = OP(n
−α/(2α+d(1−1/r)));

Hn − hr = OP(n
−α/(2α+d(1−1/r))) as n → ∞.

(iii) If α > d/2 and ε ∼ L(n)n−1/d and nεd → ∞, then

√
n(Q̃n − qr)

D→ N(0,κ) and
√
n(Q̃n − qr)/k

1/2
n

D→ N(0, 1);

√
n(1− r)

Q̃n

k1/2n

(Hn − hr)
D→ N(0, 1) as n → ∞.
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Numerical experiments
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Numerical experiments
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Cubic Rényi entropy h3,0 for the Bernoulli d-dimensional
distribution; d = 3, Be(p)-i.i.d. components, p = 0.8, sample
size n = 200, Nsim = 500.
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Numerical experiments
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Variability v = h1,1 for two Gaussian distributions; N(0, 3/2),
N(2, 1/2), n1 = 100, n2 = 200, ε = 1/10, Nsim = 300.
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Numerical experiments
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Bivariate normal distribution with N(0, 1)-i.i.d. components;
sample size n = 300, ε = 1/2, Nsim = 300.
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Numerical experiments
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Bregman distance B2(p, q) for two exponential distributions
p(x) = β1e−β1x, x > 0, and q(x) = β2e−β2x, x > 0, with rate
parameters β1 = 1,β2 = 3, and equal sample size n, with nε = a
for different values of n and a.
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Applications
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Approximate matching in stochastic databases

Let tables (in a relational database) T1 and T2 be matrices with
m1 and m2 i.i.d. random tuples (or records), respectively. The
basic database operation join combines two tables into a third
one by matching values for given columns (attributes).

For the approximate join, we match ε-close tuples, say,
d(t1(j), t2(i)) ≤ ε, tk(j) ∈ Tk, k = 1, 2, with a specified distance.
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The cost of join operations is usually proportional to the size of
the intermediate results and so the joining order is a primary
target for join-optimizers for multiple (large) tables.

The distribution of the ε-join size Nε is thus of importance.
With some conditions, it can be shown that the average size

ENε = m1m2q1,1,ε = m1m2ε
db1(d)(q1,1 + o(1)) as ε → 0,

that is the asymptotically optimal (in average) pairs of tables
are amongst the tables with minimal value of the functional
q1,1. The estimators of q1,1 can be used for samples X1, . . . , Xn1

and Y1, . . . , Yn2 .
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Entropy maximizing distributions

For a positive definite and symmetric matrix Σ, s #= 1, define
the constants

m = d+ 2/(s− 1), Cs = (m+ 2)Σ,

and

As =
1

|πCs|1/2
Γ(m/2 + 1)

Γ((m− d)/2 + 1)
.

Among all densities with mean µ and covariance matrix Σ, the
Rényi entropy hs, s = 2, . . . , is uniquely maximized by the
density.

p∗s(x) =

{
As(1− (x− µ)TC−1

s (x− µ))1/(s−1), x ∈ Ωs

0, x /∈ Ωs,
(1)

with support

Ωs = {x ∈ Rd : (x− µ)TC−1
s (x− µ) ≤ 1}.
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Entropy maximizing distributions

The distribution given by p∗s(x) belongs to the class of Student-r
distributions.

Let K be a class of d-dimensional density functions with
positive definite covariance matrix.

The proposed estimator of hs can be used to test the null
hypothesis H0 : X1, . . . , Xn is a sample from a Student-r
distribution of type (1) against the alternative H1 : X1, . . . , Xn

is a sample from any other member of K.
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