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Introduction
Problem setting

Let X be a random variable, distribution F , taking values in
some space X . Consider the task of computing Φ(F ) for some
functional Φ:

Expectation: Φf (F ) =
∫

fdF =: F (f ), for some f : X 7→ R,

Quantile: Φq(F ) = F−1(q) = inf{x : F ((x ,∞)) ≤ q},
q ∈ (0, 1),

L-statistic: Φ(F ) =
∫ 1

0 φ(q)F−1(q)dq.

When explicit computation is impossible, turn to simulation.
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Introduction
Standard Monte Carlo

Take an i.i.d. sample X1, ..., Xn from F and construct the
empirical measure

Fn =
1
n

n∑
i=1

δXi .

The Monte Carlo estimate of Φ(F ) is Φ(Fn) (plug-in
estimate).

Monte Carlo may require a large sample size, e.g., for rare
events or extreme quantiles.

Importance sampling a way to (possibly) reduce sample
size.
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Introduction
Importance sampling (IS)

Take an i.i.d. sample X1, ..., Xn from the sampling
distribution G, F ≪ G.

Weight function w := dF
dG .

Construct the weighted empirical measure

Gw
n =

1
n

n∑
i=1

w(Xi)δXi .

Yields the importance sampling estiamte Φ(Gw
n ).
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Performance of simulation algorithms
Introduction

Performance of IS determined by the choice of sampling
distribution G.

Evaluated in terms of Var(Φ(Gw
n )) in the unbiased case.

Biased case more complicated, e.g., empirical process
theory [5].
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Performance of simulation algorithms
Main idea

Use large deviation results for the empirical measures to
quantify the performance of importance sampling
algorithms.

Relate performance to the rate function associated with a
large deviations principle.
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Large deviations
Cramér’s and Sanov’s theorems

Cramér’s theorem: The empirical mean of i.i.d. R-valued
random variables satisfies the LDP with rate function

Λ∗(s) = sup
θ∈R

{θs − Λ(θ)},

where Λ(θ) = log
∫

exp{θx}dF (x).
Sanov’s theorem: The empirical measure of i.i.d. random
variables with common distribution F satisfies the LDP with
rate function

H(G | F ) =

∫
log

dG
dF

dG,

i.e., the relative entropy w.r.t. F .
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Performance of Monte Carlo
Estimation of an expectation

For Φ(Fn) = Fn(f ), Cramér’s theorem implies an upper
bound

lim sup
n

1
n

log P(| Fn(f ) − F (f ) |> ǫ) ≤ − inf
x∈B(F (f ),ǫ)c

Λ∗(x).

Suggests, for n sufficiently large,

P(Fn(f ) ∈ B(F (f ), ǫ)c) ≈ exp{−n inf
x∈B(F (f ),ǫ)c

Λ∗(x)}.

Sample size needed for an upper bound δ on the
probability:

n ≈
1

infx∈B(F (f ),ǫ)c Λ∗(x)
(− log δ).
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Performance of Monte Carlo
Estimation for a general functional

For general functionals Φ, want to consider the probability
of Fn being close to F .

Sanov’s theorem provides an LDP for the empirical
measures Fn of Monte Carlo.

Let, e.g., Aǫ = {G ∈ M1 :| Φ(G) − Φ(F ) |> ǫ}. By Sanov’s,

lim sup
n

1
n

log P(Fn ∈ Aǫ) ≤ − inf
G∈Aǫ

H(G | F ).
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Performance of IS
Application of large deviation results

Suppose the weighted empirical measures of IS satisfy an LDP.

Let Aǫ ⊂ M be some set that relates to the accuracy of the
estimate Φ(Gwf

n ).

The LDP implies, for sufficiently large n,

P(Gwf
n ∈ Aǫ) ≈ exp{−n inf

ν∈Aǫ

I(ν)}.

With δ the desired bound for the probability, we obtain

n ≈
1

inf
ν∈Aǫ

I(ν)
(− log δ).
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Performance of IS

For Gw
n (f ) Cramér’s theorem is applicable, yielding an

asymptotic upper bound on the error probability.

Sanov’s theorem not applicable for the weighted empirical
measures Gw

n .

Need an LDP for Gw
n in order to quantify the notion of the

weighted empirical measures being close to F .
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LDP for the weighted empirical measures of IS

Suffices to have the weighted empirical measures Gw
n

close fo F in the region that largely determines Φ(F ).

Let f be an F -integrable function characterizing the
importance of different regions of the space X . Want

Gwf
n =

1
n

n∑
i=1

w(Xi)f (Xi)δXi ,

to be close to F f , where F f is defined as

F f (g) =

∫
g(x)f (x)dF (x),

for each bounded, measurable function g.
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LDP for the weighted empirical measures of IS
Laplace principle

Theorem Let F , G and f be given as above, with F ≪ G on the
support of f . Suppose that

∫
ewf dG < ∞. Then, for any

bounded, continuous h : M 7→ R,

lim
n

1
n

log E[e−nh(Gwf
n )] = − inf

ν∈M
{h(ν) + I(ν)}.

Γ = {Q ∈ M1 : H(Q | G) < ∞, Q(wf ) < ∞}.

Ψ : Γ 7→ M the mapping, for each bounded, measurable g,

Ψ(G; g) =

∫
g(x)w(x)f (x)dG(x).

I(ν) = inf{H(Q | G) : Ψ(Q) = ν, Q ∈ Γ}.
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Application
Comparison of Monte Carlo and importance sampling

Possible ways to use the derived result to quantify performance
of simulation algorithms:

Comparison of Monte Carlo and importance sampling in
terms of the rate of decay of the error probability.

Compare the sample size n, expressed in the true quantity
Φ(F ), needed for Monte Carlo and importance sampling
respectively to reach the desired accuracy.

Larger rate, i.e., infx∈Aǫ
I(x), suggests improved

performance.
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LDP for the weighted empirical measures
Idea of proof

Relies on the weak convergence approach to large
deviations1.

Identify Wn = −1
n log E[exp{(−nh(Gwf

n )}] with the total cost
of a stochastic control problem and derive a representation
formula.

The Laplace principle upper bound

lim
n

1
n

log E[e−nh(Gwf
n )] ≤ − inf

ν∈M
{h(ν) + I(ν)},

requires the most work compared to the case of ordinary
empirical measures (Sanov’s theorem).

1Dupuis and Ellis (1997)
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Summary

Proposed a way to use the rate function of large deviation
results to quantify the performance of importance sampling
algorithms.

Derived a Laplace principle for the weighted empirical
measures of IS.
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