Estimation of a Pseudo-Periodic Function Observed in the Stationary Noise

S. Reshetov

Saint Petersburg State University of Information Technologies, Mechanics and Optics

Third Northern Triangular Seminar

Suppose we observe the random process Y(t) on the fixed finite interval [a, b]:

$$dY(t) = s(t)dt + \varepsilon dW(t)$$
(1)

where *s* is the unknown function, W(t) is the standard Wiener process.

The function $s \in L^2_{[a,b]}$ and

$$m{s} = \sum_{j=1}^\infty \, heta_j(m{s}) arphi_j$$

is its expansion in some orthonormal basis $\{\varphi_j, j = 1, 2, ...\}$ of the space $L^2_{[a,b]}$.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

If θ_j , $1 \le j \le N$ are some estimators of $\theta_j(s)$, constructed on observations (1) then the function

$$\widetilde{\boldsymbol{s}} = \sum_{j=1}^{N} \widetilde{ heta}_{j} \varphi_{j},$$

is the estimator of the unknown function *s*. This method of estimation was initiated by N. N. Centsov (1962) with

$$\widetilde{ heta}_j = y_j = \int_a^b \overline{\varphi_j(t)} \, dY(t) = heta_j(s) + \varepsilon \int_a^b \overline{\varphi_j(t)} \, dW(t)$$

The estimator \tilde{s} is unbiased for the function

$$s_{\mathcal{N}} = \sum_{j=1}^{\mathcal{N}} \, heta_j(s) arphi_j,$$

which is an orthoprojection of *s* on the subspace L_N , generated by the piece $\{\varphi_1, \ldots, \varphi_N\}$ of the orthonormal basis, and we have to neglect the value of

$$\varrho_N = \sum_{j=N+1}^{\infty} \theta_j(s) \varphi_j.$$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 □ りへで

We indicate a compact subset $L \subset L^2_{[a,b]}$, the function *s* is supposed to belong to.

The quality of the estimation procedure given by an estimator \tilde{s} , can be naturally measured by the value of quadratic risk

$$m{R}\left(\widetilde{m{s}}\,;\,L
ight)=\sup_{m{s}\in L}m{E}\,\left\|\widetilde{m{s}}-m{s}
ight\|_{L^2_{\left[a,b
ight]}}^2$$

The minimax risk is

$$R^{*}(L) = \inf_{\widetilde{s}} R(\widetilde{s}; L).$$

The equality

$$y_j = heta_j(s) + \varepsilon x_j, \ x_j = \int\limits_a^b \overline{\varphi_j(t)} \, dW(t),$$

turns our problem into the equivalent problem of estimation of the unknown vector

$$\theta = (\theta_1, \theta_2, \ldots) \in I_2$$

on the observations

$$y_j = \theta_j + \varepsilon x_j, \ j = 1, 2, \dots,$$
 (2)

where x_1, \ldots, x_n, \ldots are iid $\mathcal{N}(0, 1)$ and $\varepsilon > 0$ is known, $\theta \in \Theta$, where Θ is the compact subset of the space l_2 .

ヘロン 不通 とくほ とくほ とう

In this problem

$$R\left(\widetilde{ heta};\Theta\right) = \sup_{\theta\in\Theta} \mathbf{E} \left\|\widetilde{ heta} - heta \right\|_{l_2}^2$$

is the risk of an estimator $\widetilde{\theta}$ of the vector $\theta\in\Theta$ and

$$R_{*}\left(\Theta
ight)=\inf_{\widetilde{ heta}}R\left(\widetilde{ heta}\,;\Theta
ight)$$

is the minimax risk.

We give the following example. Suppose the unknown function $s \in S(\beta, \tau, C) \subset L^2_{[-\pi/\tau, \pi/\tau]}, \beta > 1/2, \tau > 0$:

$$S = \left\{ g(t) = \sum_{-\infty < k < \infty} \widehat{g}_k e^{ik\tau t} : \sum_{-\infty < k < \infty} \left| \widehat{g}_k \right|^2 (1 + |\tau k|)^{2\beta} \le C \right\}.$$

Ibragimov and Has'minskiy (1977, 1978) obtained the asymptotic behavior of the minimax risk $R^*(S(\beta, \tau, C))$ in this problem with $\varepsilon \to 0$ up to the order:

$$\lambda_{2}(\beta, \tau, C) \varepsilon^{\frac{2\beta}{2\beta+1}} \leq R^{*}(S(\beta, \tau, C)) \leq \lambda_{1}(\beta, \tau, C) \varepsilon^{\frac{2\beta}{2\beta+1}}.$$
 (3)

In 1980 Pinsker obtained the exact asymptotic.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Suppose we observe the random process Y(t) on the large interval [-T, T]:

$$dY(t) = s(t) dt + X(t) dt, \qquad (4)$$

where $s \in \mathcal{L}_*(\Lambda)$ is an unknown function we wish to estimate, X(t) is a generalized Gaussian stationary process with the zero mean and the spectral density *f*.

It means that we possess the random variables

$$\boldsymbol{Y}[\varphi] = \int_{-\infty}^{\infty} \boldsymbol{s}(t) \,\overline{\varphi(t)} \, \boldsymbol{d}t + \boldsymbol{X}[\varphi], \ \varphi \in \mathcal{D}(T) \,,$$

where

$$\mathcal{D}(\mathcal{T}) = \{ \varphi : \varphi \in \mathcal{D}, \text{ supp } \varphi \subset [-\mathcal{T}, \mathcal{T}] \},\$$

D is the space of the infinitely differentiable finite functions.

・ロト ・ 理 ト ・ ヨ ト ・

X is a linear operator from the space $\mathcal{D} = \mathcal{D}(R^1)$ to the Gaussian subset Γ of the space $L^2(dP)$ and 1. For the functional $\mathcal{R}(\varphi_1, \varphi_2) = \mathbf{E} X[\varphi_1] \overline{X[\varphi_2]}$ the equality

$$\mathcal{R}(\varphi_1,\,\varphi_2)=\mathcal{R}(\eta_t\varphi_1,\,\eta_t\varphi_2)$$

holds for any real *t* and any functions $\varphi_1, \varphi_2 \in D$; η_t is a shift operator: $\eta_t \varphi(z) = \varphi(t + z)$. 2.

$$\mathbf{E} X[\varphi] = \mathbf{0}, \, \varphi \, \in \mathcal{D}.$$

3.

$$\mathcal{R}(\varphi_1, \varphi_2) = \mathbf{E} X[\varphi_1] \overline{X[\varphi_2]} = \int_{-\infty}^{\infty} \widehat{\varphi_1}(u) \ \overline{\widehat{\varphi_2}(u)} f(u) \ du, \ \varphi_1, \varphi_2 \in \mathcal{D},$$

where $\widehat{\varphi}$ is the Fourier transform of φ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

The unknown function *s* is supposed to belong to the compact subset $\mathcal{L}_*(\Lambda) = \mathcal{L}_*(\Lambda, \beta, C)$ of the Banach space $\mathcal{L}(\Lambda)$ of the pseudo-periodic functions with the spectral set Λ , which means that

$$\mathcal{L}_{*}(\Lambda) = \left\{ s(t) = \sum_{u \in \Lambda} a_{u} e^{iut} : \sum_{u \in \Lambda} |a_{u}|^{2} (|u|+1)^{2\beta} \leq C, \ \beta > 1/2 \right\}$$

 $\boldsymbol{\Lambda}$ is a countable set and

$$\tau = \inf_{u \neq v; u, v \in \Lambda} |u - v| > 0.$$

The corresponding Banach norm $\|\cdot\|_{\mathcal{L}}$:

$$\|s\|_{\mathcal{L}}^2 = \int\limits_{x}^{x+1} |s(t)|^2 dt.$$

We assume at first that $f \in A_2(\mathcal{M})$. The class $A_2(\mathcal{M})$ consists of the nonnegative functions g for which

$$\sup_{I} \frac{1}{|I|} \int_{I} g(t) dt \frac{1}{|I|} \int_{I} \frac{1}{g(t)} dt \leq \mathcal{M}.$$
 (5)

Second $f \in B_{\gamma}$, where $B_{\gamma} = B_{\gamma}(c_1, c_2, T_0, \beta, \Lambda), \gamma > -1$ consists of the nonnegative functions g = g(t) for which

$$0 < c_2 \le M^{-1-\gamma} \sum_{u \in \Lambda, |u| \le M} 2T \int_{|u-t| \le \frac{1}{T}} g(t) dt \le c_1 < \infty$$
 (6)

for any $T > T_0$, $M = T^{\frac{1}{1+\gamma+2\beta}}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

The quality of an estimator \tilde{s} of the unknown function *s* is measured by the value of the risk:

$$R\left(\widetilde{s}, \mathcal{L}_{*}\left(\Lambda\right)\right) = R\left(\widetilde{s}, \mathcal{L}_{*}\left(\Lambda\right), T\right) = \sup_{s \in \mathcal{L}_{*}\left(\Lambda\right)} \mathbf{E} \left\|s - \widetilde{s}\right\|_{\mathcal{L}}^{2}.$$

We define the minimax risk:

$$R^{*}\left(\mathcal{L}_{*}\left(\Lambda
ight),\ T
ight)=\inf_{\widetilde{s}}\,R\left(\widetilde{s},\,\mathcal{L}_{*}\left(\Lambda
ight),\ T
ight).$$

~

.⊒ →

Consider the function system $\{\varphi_u = \varphi_u(t) = e^{iut}, u \in \Lambda\}$ and the conjugate system $\{\varphi_u^* = \varphi_{u,T}^*, u \in \Lambda\}$:

$$(\varphi_{u}^{*}, \varphi_{v})_{T} = \frac{1}{2T} \int_{-T}^{T} \varphi_{u}^{*}(t) \overline{\varphi_{v}(t)} dt = \delta_{uv}, \ u, \ v \in \Lambda.$$

Let $r = \lfloor \beta \rfloor$. Consider the even function k(x) = k(T, x) which is r + 1 times continuously differentiable, monotonically decreasing when $x \in [T - 2, T - 1]$ and

$$k(x) = \begin{cases} 1 & x \in [0, T-2] \\ 0 & x > T-1 \end{cases}$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

For some $\gamma > -1$ we now define the estimator \tilde{s}_{γ}^* :

$$\widetilde{\boldsymbol{s}}_{\gamma}^{*} = \sum_{\boldsymbol{u} \in \Lambda, \, |\boldsymbol{u}| \le M} \boldsymbol{y}_{\boldsymbol{u}}^{\boldsymbol{k}} \varphi_{\boldsymbol{u}}^{*}, \, \boldsymbol{M} = T^{\frac{1}{1+\gamma+2\beta}}, \tag{7}$$

where

$$y_u^k = \frac{1}{2T} Y[k\varphi_u], \ u \in \Lambda.$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Theorem

Consider the problem of estimation of the unknown function s defined by conditions (4)-(6).

1. There exists such constant

 $C_1 = C_1 (c_1, T_0, \gamma, \beta, \tau, \mathcal{M}, C) < \infty$ that the inequality

$$R\left(\widetilde{s}_{\gamma}^{*}, \mathcal{L}_{*}\left(\Lambda\right), T\right) < C_{1} T^{-\frac{2\beta}{2\beta+\gamma+1}}$$
(8)

holds for any $T > T_*(T_0, \tau)$; 2. There exists such constant $C_2 = C_2(c_1, c_2, T_0, \gamma, \beta, \tau, \mathcal{M}, C) > 0$, that the inequality

$$R^{*}\left(\mathcal{L}_{*}\left(\Lambda\right), T\right) > C_{2} T^{-\frac{2\beta}{2\beta+\gamma+1}}$$
(9)

holds for any $T > T_*(T_0, \tau)$.

イロト イ押ト イヨト イヨトー

э.

Remark

Applying (8) and (9) we have firstly:

$$R^{*}\left(\mathcal{L}_{*}\left(\Lambda\right), T\right) < C_{1} T^{-\frac{2\beta}{2\beta+\gamma+1}},$$
(10)

and secondly:

$$1 \leq \frac{R\left(\tilde{s}_{\gamma}^{*}, \mathcal{L}_{*}\left(\Lambda\right), T\right)}{R^{*}\left(\mathcal{L}_{*}\left(\Lambda\right), T\right)} < C_{3} < \infty.$$

S. Reshetov Estimation of a Pseudo-Periodic Function Observed in the Station

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Suppose the spectral density $f \equiv \sigma > 0$ and the set

$$\Lambda = \{\tau \, \boldsymbol{n} : \, \boldsymbol{n} \in \mathbb{Z}\}\,.$$

All conditions of the theorem hold and it is clear that $\gamma = 0$. That is why according to (9) and (10), for $T > T_*$

$$C_2 T^{-rac{2\beta}{2\beta+1}} < R^* \left(\mathcal{L}_* \left(\Lambda
ight), \ T
ight) < C_1 T^{-rac{2\beta}{2\beta+1}}$$

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● の Q ()~

The following lemma is a consequence of the Wiener and Paley (1934) results.

Lemma

There is such $T_1 = T_1(\tau)$ that for any $T > T_1(\tau)$ the following norms

$$\|s\|_{\mathcal{L}}^{2} = \sup_{x} \int_{x}^{x+1} |s(t)|^{2} dt, \ \|s\|_{T}^{2} = \frac{1}{2T} \int_{-T}^{T} |s(t)|^{2} dt,$$
$$\|s\|_{2}^{2} = \sum_{u \in \Lambda} |a(u)|^{2}$$

given on $\mathcal{L}(\Lambda)$ are equivalent up to the constants which do not depend on T.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Applying this fact and the Bari's theorem we can easily obtain

Lemma

Let the norm $\|\cdot\|_T$ is given on the set $\mathcal{L}(\Lambda)$. The function system $\{\varphi_u(t) = e^{iut}, u \in \Lambda\}$ is the Riss' basis uniformly by $T > T_1(\tau)$ in $\mathcal{L}(\Lambda)$. There exists the conjugate function system

$$\{\varphi_{\boldsymbol{u}}^*: \ (\varphi_{\boldsymbol{w}}^*, \varphi_{\boldsymbol{v}}) = \delta_{\boldsymbol{w}\boldsymbol{v}}, \ \boldsymbol{w}, \ \boldsymbol{v} \in \Lambda; \ \boldsymbol{u} \in \Lambda\}$$

which is also the Riss' basis uniformly by $T > T_1(\tau)$ in $\mathcal{L}(\Lambda)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

We denote $P_{\mathcal{L}(\Lambda)}$ the orthoprojector on the space $\mathcal{L}(\Lambda)$ in $L^2_{[-T, T]}$ -metric and

$$b_{u} = \frac{1}{2T} \int_{-T}^{T} k(T;t) \overline{\varphi_{u}(t)} s(t) dt, \ u \in \Lambda$$

the coefficients in the expansion of the function $P_{\mathcal{L}(\Lambda)} \{ks\}$ in the function system $\{\varphi_u^*, u \in \Lambda\}$.

Hence we have

$$y_u^k = b_u + \sigma_u \mathbf{x}_u, \ u \in \Lambda,$$

where \mathbf{x}_u , $u \in \Lambda$ are the normal standard random variables

$$\sigma_{u} = \frac{\left\|\widehat{k\varphi_{u}}\right\|_{f}}{2T} = \frac{1}{2T} \sqrt{\int_{-\infty}^{\infty} \left|\widehat{k\varphi_{u}}(t)\right|^{2} f(t) dt}, \ u \in \Lambda.$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Applying Lemma 1 we have for any $T > T_1(\tau)$

$$R\left(\widetilde{s}_{\gamma}^{*}, \mathcal{L}_{*}\left(\Lambda\right), T\right) = \sup_{s \in \mathcal{L}_{*}(\Lambda)} \mathbf{E} \left\| s - \widetilde{s}_{\gamma}^{*} \right\|_{\mathcal{L}}^{2} \leq K_{1}\left(\tau\right) \sup_{s \in \mathcal{L}_{*}(\Lambda)} \mathbf{E} \left\| s - \widetilde{s}_{\gamma}^{*} \right\|_{T}^{2}.$$

Fix any function $s = \sum_{u \in \Lambda} a_u \varphi_u \in \mathcal{L}_*(\Lambda)$. We have

$$\begin{split} \mathbf{\mathsf{E}} \left\| \boldsymbol{s} - \widetilde{\boldsymbol{s}}_{\gamma}^{*} \right\|_{T}^{2} &\leq 2 \left\| \boldsymbol{s} - \boldsymbol{P}_{\mathcal{L}(\Lambda)} \boldsymbol{k} \boldsymbol{s} \right\|_{T}^{2} + 2 \mathbf{\mathsf{E}} \left\| \boldsymbol{P}_{\mathcal{L}(\Lambda)} \boldsymbol{k} \boldsymbol{s} - \widetilde{\boldsymbol{s}}_{\gamma}^{*} \right\|^{2} \leq \\ &\leq 2 \left\| \boldsymbol{s} - \boldsymbol{k} \boldsymbol{s} \right\|_{T}^{2} + 2 \mathbf{\mathsf{E}} \left\| \boldsymbol{P}_{\mathcal{L}(\Lambda)} \boldsymbol{k} \boldsymbol{s} - \widetilde{\boldsymbol{s}}_{\gamma}^{*} \right\|_{T}^{2}. \end{split}$$

According to the construction of the function k we have

$$\|ks - s\|_T^2 \leq \frac{2}{T} \sup_x \int_x^{x+1} |s(t)|^2 dt.$$

By Lemma 1 using condition $s \in \mathcal{L}_{*}(\Lambda)$ we have

$$\sup_{x} \int\limits_{x}^{x+1} |s(t)|^2 dt \leq K_2(\tau) \sum_{u \in \Lambda} |a_u|^2 \leq C K_2(\tau).$$

Hence

$$\|k\boldsymbol{s}-\boldsymbol{s}\|_{T}^{2} \leq K_{3}(\boldsymbol{C},\,\tau)\,\frac{1}{T}$$

and to obtain (8) it is sufficient to prove the inequality

$$\mathbf{E} \left\| P_{\mathcal{L}(\Lambda)} k s - \widetilde{s}_{\gamma}^{*} \right\|_{T}^{2} \leq K_{4} T^{-\frac{2\beta}{2\beta+\gamma+1}}.$$
(11)

for any large enough T.

★ E → ★ E →

We have

$$\begin{split} \mathbf{E} \left\| P_{\mathcal{L}(\Lambda)} k \mathbf{s} - \widetilde{\mathbf{s}}_{\gamma}^{*} \right\|_{T}^{2} &= \mathbf{E} \left\| \sum_{u \in \Lambda, |u| > M} b_{u} \varphi_{u}^{*} - \sum_{u \in \Lambda, |u| \leq M} \sigma_{u} \mathbf{x}_{u} \varphi_{u}^{*} \right\|_{T}^{2} \leq \\ &\leq 2 \left\| \sum_{u \in \Lambda, |u| > M} b_{u} \varphi_{u}^{*} \right\|_{T}^{2} + 2 \mathbf{E} \left\| \sum_{u \in \Lambda, |u| \leq M} \sigma_{u} \mathbf{x}_{u} \varphi_{u}^{*} \right\|_{T}^{2} \leq \\ &\leq K_{5}(\tau) \sum_{u \in \Lambda, |u| > M} |b_{u}|^{2} + K_{5}(\tau) \sum_{u \in \Lambda, |u| \leq M} |\sigma_{u}|^{2} \,. \end{split}$$

The last inequality is valid by Lemma 2. To finish we need two more lemmas.

イロト イポト イヨト イヨト

æ

Lemma

There exists such constant $K_6 = K_6(\tau, \beta)$ that for any function $s = \sum_{u \in \Lambda} a_u \varphi_u \in \mathcal{L}_*(\Lambda)$ we have

$$\sum_{u \in \Lambda} |b_u|^2 \, (1+|u|)^{2\beta} \leq K_6 \sum_{u \in \Lambda} |a_u|^2 \, (1+|u|)^{2\beta}$$

The coefficients b_u , $u \in \Lambda$ are the same as above.

Lemma

Let the function $f \in A_2(\mathcal{M})$. Then for any T > 2 an any u

$$L_2 \int_{|t-u| \le 1/T} f(t) dt \le \frac{1}{T^2} \int_{-\infty}^{\infty} \left| \widehat{k\varphi_u}(t) \right|^2 f(t) dt \le L_1 \int_{|t-u| \le 1/T} f(t) dt,$$

where $0 < L_2(\mathcal{M}) \leq L_1(\mathcal{M}) < \infty$.

By Lemma 3 we have

$$\sum_{u \in \Lambda, |u| > M} |b_u|^2 \le M^{-2\beta} \sum_{u \in \Lambda, |u| > M} |b_u|^2 (|u|+1)^{2\beta} \le$$
$$\le K_6 \sum_{u \in \Lambda} |a_u|^2 (1+|u|)^{2\beta} \le C K_6 M^{-2\beta},$$
and as $M = T^{-\frac{2\beta}{1+\gamma+2\beta}}$ we have for any large enough T
$$\sum_{u \in M} |b_u|^2 \le C K_6 T^{-\frac{2\beta}{1+\gamma+2\beta}}.$$
(12)

$$\sum_{u\in\Lambda,\,|u|>M} |\mathcal{D}_u|^2 \leq C \,K_6 \,I^{-1+\gamma+2\beta}. \tag{12}$$

<ロ> (日) (日) (日) (日) (日)

Further, by Lemma 4

$$\sum_{u\in\Lambda,\,|u|\leq M}|\sigma_u|^2\leq K_7(\mathcal{M})\sum_{u\in\Lambda,\,|u|\leq M}\int_{|t-u|\leq \frac{1}{T}}f(t)\,dt.$$

As
$$f \in B_{\gamma}$$
, for any $T > T_0$ we have
 $M^{2\beta} \sum_{u \in \Lambda, |u| \le M} \int_{|t-u| \le \frac{1}{T}} f(t) dt \le c_1$, and therefore

$$\sum_{u\in\Lambda,\,|u|\leq M}|\sigma_u|^2\leq K_8T^{-\frac{2\beta}{1+\gamma+2\beta}}.$$
(13)

(12) and (13) imply (8).

ъ

The first step of the proof of (9) is to pass from the problem of estimation of the function $s \in \mathcal{L}_*(\Lambda)$ to the problem of estimation of the vector which belongs to the correspondent compact subset of l_2 . As we denoted above $y_u^k = \frac{1}{2T} Y[k \varphi_u]$ for any $u \in \Lambda$. So we can write

$$y_u^k = b_u + \sigma_u \mathbf{x}_u, \ u \in \Lambda.$$
 (14)

It can be shown that there exists such constant $D_1 = D_1(\tau, C)$ that for any $T > T_2(\tau)$ the following inequality holds:

$$R^*\left(\mathcal{L}_*\left(\Lambda\right), \ T\right) \geq D_1 R_*(A_{C^*}, \ \sigma), \ \sigma = \left(\sigma_u\right)_{u \in \Lambda}.$$

Here $R_*(A_{C^*}, \sigma)$ is the minimax risk in the problem of estimation of the vector $(b_u)_{u \in \Lambda} \in A_{C^*}$ on observations (14), the set

$$egin{aligned} \mathcal{A}_{\mathcal{C}^*} &= \left\{ \left(b_u
ight)_{u \in \Lambda} : \; \sum_{u \in \Lambda} \left| b_u
ight|^2 \left(\left| u
ight| + 1
ight)^{2eta} \leq \mathcal{C}^*
ight\}, \; \mathcal{C}^* = \mathcal{C}^* \left(\mathcal{C}, \; au, \; eta
ight) \end{aligned}$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

The random variables \mathbf{x}_u , $u \in \Lambda$ participating in (14) are not independent. That is why the next step is to pass to the problem of estimation of the vector $(b_u)_{u \in \Lambda} \in A_{C^*}$ on the same observations with the additional condition of independence of the random variables \mathbf{x}_u , $u \in \Lambda$.

▲冊▶▲≣▶▲≣▶ ≣ 釣�?

For this purpose it can be shown that the equality

$$(\mathbf{x}_{u}, \mathbf{x}_{v}) = \left(\frac{\widehat{k\varphi_{u}}}{\left\|\widehat{k\varphi_{u}}\right\|_{f}}, \frac{\widehat{k\varphi_{v}}}{\left\|\widehat{k\varphi_{v}}\right\|_{f}}\right)_{f}$$

which is valid for any $u, v \in \Lambda$ and condition (5) imply the inequality

$$\inf_{a_{v}, v \in \Lambda, v \neq u} \mathbf{E} \left(\mathbf{x}_{u} - \sum_{v \in \Lambda, v \neq u, |v| \leq N} a_{v} \mathbf{x}_{v} \right)^{2} \geq \varrho(\mathcal{M}) > 0$$

for any $u \in \Lambda$ and any positive *N*. By this inequality it can be shown that

$$R_*(A_{C^*}, \sigma) \geq D_2(\mathcal{M}) R^0_*(A_{C^*}, \sigma)$$

where $R^0_*(A_{C^*}, \sigma)$ is the risk in the same problem with the additional condition of independence of the random variables $\mathbf{x}_u, u \in \Lambda$.

For this risk the following estimate can be obtained:

$$R^0_*(A_{C^*}, \sigma) \geq D_3(\tau, \mathcal{M}, C, \beta) \sum_{u \in \Lambda, |u| \leq M} \sigma_u^2$$

which together with Lemma 4 implies (9).

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Centsov N. N. (1962). Estimation of an Unknown Density of the Distribution on the Observations - Doklady Academii Nauk SSSR **147**, pp. 45–48(in Russian)

Ibragimov I. A., Khas'minskii R. Z. (1977). On Estimation of the Infinite Parameter in the Gaussian White Noise. – Doklady Academii Nauk SSSR, 236, 5, 1053–1056.(in Russian)

Ibragimov I. A., Khas'minskii R. Z. (1978). On the Capacity at the Transmission by the Smooth Signals. – Doklady Academii Nauk SSSR, 242, 1, 32–37.(in Russian)

Pinsker M. S. (1980). The Optimal Filtration of the Square-Integrable Signals on the Gaussian Noise. – Problems of Information Transmission, 16:2, 120133.

(ロ) (同) (三) (三) (三) (○)

Thank you for your attention!

イロン イロン イヨン イヨン

2