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We consider the Heston model when the stock dynamics is given
by a system of stochastic equations

dS(ϑ) = S(ϑ)[rdϑ+
√
v(ϑ)dŵ1(ϑ)], S(t) = s > 0, (1)

dv(ϑ) = κ1(θ1 − v(ϑ))dϑ+ σ1

√
v(ϑ)dw2(ϑ), v(t) = v > 0. (2)

Here ŵ1(ϑ), w2(ϑ) ∈ R1 are Ft-measurable Wiener processes,
defined on a probability space (Ω,F , P ) with a filtration Ft,
E[dŵ1(ϑ)dw2(ϑ)] = ρdϑ, while r, κ1, θ1 σ1 and correlation
coefficient ρ are given constants, |ρ| < 1.
For simplicity we assume that P is a martingale measure.



The price F (t, s, v) of an American option with a contract function
Φ(s) is given by

F (t, s, v) = sup
τ∈T[t,T ]

Et,s,v{e−r(τ−t)Φ(S(τ))}, (3)

where T[t,T ] is a set of stopping time τ ∈ [t, T ] with respect to Ft.
In particular a contract function for a put option has the form
Φ(s) = [K − s]+ = max(K − s, 0), constant K > 0.
An alternative definition

F (t, s, v) = sup
S∗(τ,v),τ∈[t,T ]

Et,s,v{e−r(τS∗−t)[K − S(τS∗)]+}, (4)

where τS∗ is the first exit time when the process S hits the optimal
execution boundary S∗(ϑ, v), ϑ ∈ [t, T ] allows to include explicitly
an unknown function S∗(ϑ, v) to be defined in a process of
solution.



This explains the possibility to describe F (t, s, v) for a put option
as a solution of a free boundary value problem for a parabolic
equation

F = K − s, ∂F

∂t
+ L1F − rF < 0, 0 ≤ s ≤ S∗(t, v), (5)

F > K − s, ∂F

∂t
+ L1F − rF = 0, S∗(t, v) < s <∞, (6)

where L1 is a linear operator acting as follows

L1F = rs
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+κ1(θ1−v)

∂F

∂v
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2
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1

2
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1v
∂2F

∂v2
+ρsσ1v
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(7)
Boundary conditions at s = S∗(t, v) are stated as a continuity
condition for F (t, s, v) and its derivative in s and

F (t, S∗(t, v), v) = [K−S∗(t, v)]+,
∂F

∂s
(t, S∗(t, v), v) = −1. (8)



A substitution

s = Kex+αy, Kf(t, x, y) = F (t, s, v), Kϕ(x, y) = Φ(s), (9)

leading to dimensionless variables allows to reduce the problem
(5)-(6) to a problem with constant (in x) coefficients and eliminate
mixed derivatives.



Lemma. Assume that stochastic processes S(ϑ), v(ϑ)
(0 ≤ t ≤ ϑ ≤ T ) are governed by the system

dS(ϑ) = S(ϑ)[rdϑ+
√
v(ϑ)dŵ1(ϑ)], S(t) = s, (10)

dv(ϑ) = κ1(θ1 − v(ϑ))dϑ+ σ1

√
v(ϑ)dw2(ϑ), v(t) = v, (11)

where ŵ1(t), w2(t) are correlated Wiener processes and
E[dŵ1(t)dw2(t)] = ρdt. Then processes X(ϑ), y(ϑ) defined by
S(ϑ) = exp(X(ϑ) + αy(ϑ)), v(ϑ) = (1 + α2σ2)y(ϑ) satisfy
stochastic equations

dX(ϑ) = a(y(ϑ))dϑ+
√
y(ϑ)dw1(ϑ), X(t) = x, (12)

dy(ϑ) = κ(θ − y(ϑ))dϑ+ σ
√
y(ϑ)dw2(ϑ), y(t) = y, (13)

where w1(t), w2(t) are independent Wiener processes,

a(y) = r − ακ(θ − y)− y

2(1− ρ2)
, (14)

α =
ρ

σ
√

1− ρ2
, σ = σ1

√
1− ρ2, κ = κ1, θ = θ1(1− ρ2).

(15)



The above considerations show that (5) and (6) are reduced to

∂f

∂t
+ Lf − rf = 0, (t, x, y) ∈ C, (16)

∂f

∂t
+ Lf − rf < 0, (t, x, y) ∈ E , (17)

where C, E are given by{
f(t, x, y) = 1− ex+αy, if h(t, y) ≥ x, that is x ∈ E ,

f(t, x, y) > 1− ex+αy, if h(t, y) < x, that is x ∈ C,
(18)

h(t, y) is an unknown function to be defined in the process of
solution the problem and Keh(ϑ,y)+αy(ϑ) = S∗(ϑ, v).

Lf = a(y)
∂f

∂x
+
y

2

∂2f

∂x2
+ κ(θ − y)

∂f

∂y
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σ2y

2

∂2f

∂y2
, (19)

and a(y) is given by (14).



Perpetual American put option

A price f(x, y) of a perpetual American put option with a contract
function ϕ(x, y) in dimensionless coordinates is determined by a
relation

f(x, y) = sup
τ∈T

Ex,y[e
−rτϕ(x(τ), y(τ))]. (20)

In this case the function f(t, x, y) ≡ f(x, y) does not depend on t
and satisfies the boundary problem

(L − r)f(x, y) = 0, x > h(y), (21)

f(x, y) = (1− ex+αy)+, x ≤ h(y), (22)

f(h, y) = 1− eh+αy,
∂

∂x
f(x, y)|x=h = −eh+αy, (23)

where operator L has the form (19).



After discretization in y-space we reduce equation (21) to a free
boundary value problem for a system of parabolic equations

1

2
yj
∂2

∂x2
fj(x)+a(yj)

∂

∂x
fj(x)−qj(x)fj(x)+

∑
k 6=j

λjkfk(x) = 0, x > hj ,

(24)
fj(x) = (1− ex+αyj ), x ≤ hj . (25)

where qj = r + Λj , Λj =
∑

k 6=j λjk, or

(qj − Lj)fj =
∑
k 6=j

λjkfk(x), (26)

Lj = a(yj)∂x +
yj
2
∂2
x, (27)

λjk = 0, if |j − k| > 1, (28)
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, if k = j−1.

(30)
with boundary condition

fj(x) = (1− ex+αyj ), x ≤ hj . (31)



Introduce a function f̃j = fj −Gj , Gj(x) = 1− ex+αyj

We construct a solution of (26) by a system of successive
approximations.
Set f̃0

k (x) = 0 and for n = 1, 2, . . . f̃nj (x) satisfy equations

(qj − Lj)f̃nj (x) = Fn−1
j (x), x > hnj , (32)

f̃nj (x) = 0, x ≤ hnj , (33)

where
Fn−1
j (x) =

∑
k 6=j

λjkf̃
n−1
k (x) + g̃j(x) (34)

and
g̃j(x) =

∑
k 6=j λjkGk(x)− (qj − Lj)Gj(x) =

∑
k 6=j λjkGk − gj(x)

To obtain numerical results for the price of the option we apply a
method based on the Wiener-Hopf factorization developed in
[1]-[4].



Theorem. For n = 1, 2, . . .
1) the functions Fn−1

j (x) =
∑

k 6=j λjkf̃
n−1
k (x) + g̃j ,

vn−1
j (x) = E+

j F
n−1
j (x) are non-decreasing and have a unique zero

at the point x = hnj , hence hnj is a root of the equation

vn−1
j (x) = 0,

2) τj is an optimal stopping time,
3) f̃nj (x) = q−1

j E
−
j I(hnj ,∞)v

n−1
j (x),

4) fnj (x) = f̃nj (x) +Gj ,

5) the function f̃nj (x) is non-dereasing and vanishes when x < hnj ,
where

E+
j u(x) = β+

j

∫ ∞
0

e−β
+
j yu(x+ y)dy,

E−j u(x) = −β−j
∫ 0

−∞
e−β

−
j yu(x+ y)dy,

β+
j , β−j are positive and negative roots of the characteristic

equation
yj
2
β2 + a(yj)β − qj = 0.



Algorithm. Calculate

m0,j(x) = E+
j (gj(x)) = qj(E−j )−1Gj(x) = qj

(
1− β−j −1

β−j
ex+αyj

)
.

Set f0
j (x) = Gj(x). Then for n = 1, 2, . . .

1) moving from x1 = xmax down with the chosen step ∆x,
calculate the values of fuctions

mn
1,j(x) = E+

j

(∑
k 6=j λjkf

n−1
k (x)

)
and

vnj (x) = mn
1,j(x)−m0,j(x).

2) functions vnj (x) are increasing, we stop calculation as soon as

vn−1
j (x) < 0, or xi < xmin, and set hnj = xi−1, i−j = i− 1.

3) moving from xi−j
= hnj up with step ∆x calculate the values of

functions

fn0,j(x) = q−1
j E

−
j I(−∞,hnj ]m0,j(x) = eβ

−
j (x−hnj )(1− eαyjeh

n
j ),

fn1,j(x) = q−1
j E

−
j I(hnj ,∞)m

n
1,j(x),

fnj (x) = fn1,j(x) + fn0,j(x) when x ≥ xi−j = hnj ,

and fnj (x) = Gj(x) for x ≤ xi−j = hnj .



Figure: Perpetual American put option price F (s, v) and optimal
stopping boundary S∗(v) in Heston model. Parameters K = 100,
δ = 0, 1, r = 0, 05, κ1 = 2, θ1 = 0, 03, σ1 = 0, 2, ρ = −0, 2.





American put option with finite maturity time

Then we consider American put option with finite maturity

∂tf(t, x, y) + (L − r)f(t, x, y) = 0, x > h(t, y), (35)

f(t, x, y) > 1− ex+αy, x > h(t, y), (36)

∂tf(t, x, y) + Lf(t, x, y)− rf(t, x, y) ≤ 0, x ≤ h(t, y), (37)

f(t, x, y) = (1− ex+αy)+, x ≤ h(t, y), (38)

f(t, h, y) = 1− eh+αy,
∂

∂x
f(t, x, y)|x=h(t,y) = −eh+αy, (39)

where operator L has the form (19).
Given a maturity date T we divide the period [0, T ] into N
subperiods 0 ≤ t0 < t1 < · · · < tk < · · · < tN = T and apply the
Carr randomization technique.



We use the time derivative ∂tf approximation by
f(tk+1,x,y)−f(tk,x,y)

∆k
and apply the same discretization in y-space as

in the case of a perpetual American option.
As a result the discretized form of (35)-(38) has the form

fk+1
j (x)− fkj (x)

∆k
+

1

2
yj
∂2

∂x2
fnj (x) + a(yj)

∂

∂x
fnj (x)− (40)

−qj(x)fnj (x) +
∑
k 6=j

λjkf
n
k (x) = 0, x > hnj ,

fnj (x) = (1− ex+αyj ), x ≤ hnj , n < N, (41)

fNj (x) = (1− ex+αyj )+, n = N. (42)

Introduce qkj = ∆−1
k + qj and Gj(x) = 1− eαyjex then

(qkj − Lj)fkj (x) = ∆−1
k fk+1

j (x) +
∑
j′ 6=j

λjj′f
k
j′(x), x > hkj , (43)

fkj (x) = Gj(x), x ≤ hkj , (44)

and next we proceed as in the perpetual case.



Theorem. Under some additional assumptions let for k = N and
for some j a set of functions f̃kl∗ with j 6= l be given. Then for the
same j and k = N − 1 we have:
1) function ukj =

∑
j′ 6=j λjj′f

k
j∗ + ∆−1

k fk+1
j∗ − (qkj − Lj)Gj is a

non-decreasing and

ukj (−∞) < 0 < ukj (∞) =∞, (45)

2) function m̃k
j = Ek+

j ukj is an increasing continuous function and
satisfies (45),
3) equation m̃k

j (x) = 0 has a unique zero at the point hkj∗,

4) the hitting time of (−∞, hkj∗], τ
−
hkj∗

is the optimal stopping time

for the process xj(t),
5) Carr’s approximation to the option price fkj in the state j is

given by fkj∗ = (qkj )−1Ek−j I(hkj∗,∞)m̃
k
j +Gj = f̃kj∗ +Gj

6) function f̃kj∗ = fkj∗ −Gj is a positive non-decreasing function

and satifies (45). In addition f̃kj∗(∞) =∞, f̃kj∗(x) = 0 when

x < hkj∗ and f̃kj∗ increases on [hkj∗,∞).



Algorithm. Denote by fkj∗, h
k
j∗ option price and optimal stopping

boundary at tk. At k = N we set fNj∗(x) = 1− eαyjex and

hNj∗ = −αyj . For a fixed k < N calculate

mk
0j = −Ek+

j (qkj − Lj)Gj

and set fk0,j = Gj , h
k
0,j = hNj∗. Then for n = 1, 2, . . .

1) moving from x1 = xmax down with the chosen step ∆x

calculate the values of functions

mk
j,n = Ek+

j

∑
j 6=j′

λjj′f
k
j,n−1 + ∆−1

k fk+1
j∗

 ,

m̃k
j,n = mk

j,n +mk
0,j ,

2) functions m̃k
j,n are increasing, we stop calculation as soon as

m̃k
j,n(xi) < 0, or xi < xmin and set hkj,n = xi−1, i−j = i− 1.



3) moving from xi−j
= hkj,n up with step ∆x calculate the values of

functions
fk0jn = (qkj )−1Ek−j I(−∞,hkj,n](−m

k
0j),

fk1jn = (qkj )−1Ek−j I(hkj,n,∞)m
k
j,n,

fkj,n = fk1j,n + fk0j,n

and fkj,n(x) = Gj(x) for x ≤ xi−j = hkj,n.



American put option price with finite maturity time T = 0, 5 with
parameters:
r = 0, 09, ρ = −0, 2, κ1 = 1, 58, θ1 = 0, 03, σ1 = 0, 2, K = 100

Figure: American put option price F1(t, s) = F (t, s, v)|v=0.09



Figure: American put option price F2(t, v) = F (t, s, v)|s=100



Figure: Free boundary S∗(t, v) Figure: Free boundary S∗
1 (t) with

different v
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