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We consider the Heston model when the stock dynamics is given
by a system of stochastic equations

dS(9) = S)[rdY + /o(9)diy ()], S(t)=s>0, (1)

dv(9) = k1(61 —v(9))d9 + o1/ v(0)dw2 (), v(t) =v > 0. (2)

Here 11 (1), w2(9) € R! are F;-measurable Wiener processes,
defined on a probability space (€2, F, P) with a filtration F;,
E[dw (9)dwa(9)] = pdd, while r, k1, 81 o1 and correlation
coefficient p are given constants, |p| < 1.

For simplicity we assume that P is a martingale measure.



The price F(t,s,v) of an American option with a contract function
®(s) is given by

F(t,s,0) = sup Eysofe " T700(S(n))}, (3)
T€7-[t,T]

where i, 1) is a set of stopping time 7 € [t,T] with respect to F;.
In particular a contract function for a put option has the form
P(s) = [K — s]+ = max(K — s,0), constant K > 0.

An alternative definition

F(t,s,v) = sSup Et,s,v{e_r(TS* ) (K —S(rs)l+},  (4)
S*(1,v),T€[t,T]

where 75+ is the first exit time when the process S hits the optimal
execution boundary S*(9,v), ¥ € [t,T] allows to include explicitly
an unknown function S*(¢,v) to be defined in a process of
solution.



This explains the possibility to describe F' (¢, s,v) for a put option
as a solution of a free boundary value problem for a parabolic
equation

oF
F=K—s, §+£1F—TF<O 0<s<S*tv), (5)
oF N
F>K-—s, E—i—L’lF—TF—O S*(t,v) <s<oo, (6)
where L7 is a linear operator acting as follows
oF OF 1, 0°F 1 , O°F O*F
L1F = rsa +r1(61— )8——1—* s%v 52 —+= alva 3 +psalv8 50

(7)

Boundary conditions at s = S*(t,v) are stated as a continuity
condition for F'(t,s,v) and its derivative in s and

OF

F(t, 8% (t,0),0) = [K=8"(50))+, S-(t57(8,0),0) = —1. (8)



A substitution
s= K™, Kf(t,z,y) = F(t,s,v), Ke(z,y) =(s), (9)

leading to dimensionless variables allows to reduce the problem
(5)-(6) to a problem with constant (in x) coefficients and eliminate
mixed derivatives.



Lemma. Assume that stochastic processes S(9), v(19)
(0 <t <9 <T) are governed by the system
dS(¥) = S()[rdd + /v(9)dun (9)], S(t) =s, (10)
dv(¥) = k1(01 — v(9))d9 + o1/ v(F)dwa(F), v(t) =v, (11)
where w1 (t), wa(t) are correlated Wiener processes and
E[dwq(t)dws(t)] = pdt. Then processes X (1), y(1}) defined by
S(09) = exp(X (9) + ay(¥)), v(¥) = (1 + a?0?)y(V) satisfy
stochastic equations
AX(0) = a(y(@)dd + VD dwn(9), X(t) =z, (12)
dy(V) = k(0 — y(9)dd + o/y(D)dwa(9), y(t) =y,  (13)
where w1 (t), wa(t) are independent Wiener processes,
¥y
2(1 = p?)’
o= —F~ oc=01V1—p2, K=k, 0=0,(1-)p%.

(13)

aly) =r—ar(f —y) - (14)



The above considerations show that (5) and (6) are reduced to

Z{Jrﬁf—rf:O, (t,z,y) €C, (16)
%+Lf—rf<0, (toy) €&, (17)

where C, € are given by

{f(t,:):,y) =1—e"  if h(t,y) > x, thatis z € &, (18)

ft,z,y) >1—e*T  if h(t,y) < z, thatis x € C,

h(t,y) is an unknown function to be defined in the process of
solution the problem and KeMPv)+au(?) — (9 ).

o8 VL or
2 0y’

and a(y) is given by (14).



Perpetual American put option

A price f(x,y) of a perpetual American put option with a contract
function ¢(z,y) in dimensionless coordinates is determined by a
relation

f(@,y) = sup Bayle™o(@(r), y())] (20)

In this case the function f(¢,z,y) = f(x,y) does not depend on ¢
and satisfies the boundary problem

(‘C - T‘)f(l',y) =0, x> h(y)’ (21)
flay) = (1 - ), o <h(y), (22)

9 a
f(hay) =1- eh—i-ay’ %f(may)h:h = 7eh+ y7 (23)

where operator £ has the form (19).



After discretization in y-space we reduce equation (21) to a free
boundary value problem for a system of parabolic equations

1 02 9]
Qyj@fj(ﬂf)w%(yj)%fj(ﬂf)—(Jj(fU)fj(x)JrZ Ajkfr(@) =0, > hy,
kAj
J (24)
fi(@) = (L= etom) o <hy. (25)
where gj =7+ Aj, Aj =34, Ajk, or
(@5 — L) f5 =D e ful), (26)
k#j
LJ’ = a(yj)ax + %aga (27)

g =0, if [j — K > 1, (28)






Introduce a function f; = f; — G, Gj(x) =1 — ¥
We construct a solution of (26) by a system of successive
approximations.

Set fl(x) =0 and for n =1,2,... f(x) satisfy equations

(¢ — L) fj'(x) = F}~ (), x> hj,
f]”(x) =0, z<h},
where
Fi Y a) =Y i (@) + gj(@)
k#j
and

gj(x) = Zk;éj AjkGr(z) = (g5 — L) Gj(z) = Zk;éj AjkGr —

g9;(z)

To obtain numerical results for the price of the option we apply a

method based on the Wiener-Hopf factorization developed in

[1]-[4].



Theorem. Forn=1,2,... B

1) the functions F;‘_l(a:) =D ket N fi (@) + g5,

v;‘_l(:):) = EfF]TL_l(:U) are non-decreasing and have a unique zero
at the point © = h7, hence h7 is a root of the equation

v?_l(a:) =0,
2) 7j is an optimal stopping time,

3) fi'(@) = qj_lgj_f(h;l,oo)vf_l(ﬂﬁ)r

4) £(@) = () + G,

5) the function f}'(x) is non-dereasing and vanishes when x < h7,
where

EFulw) = 5*/ e Vu(z + y)dy,

=—B; / u(z +y)dy,

B, 5]7 are positive and negative roots of the characteristic
equation

%52 +a(y;)B —q; =0.



Algorithm. Calculate
N B; —1 .
mo(#) = £F (g;(2)) = 45(E) "G5 (2) = (1 - B+) |
J
Set f]O(ZL') = Gj(x). Thenforn=1,2,...
1) moving from x; = xyax down with the chosen step A,,
calculate the values of fuctions
-1

my (x) = & (zk# AT (x)) and

vji(x) = mi ;(x) —mo ().
2) functions v () are increasing, we stop calculation as soon as
U;L_l(x) <0, or z; < Tmin, and set h} = x;_1, iy =i1— 1
3) moving from z,- = h7 up with step A, calculate the values of

J

functions
F35(@) = 0765 oo pgymo (@) = €% @1 — vl
fij(z) = q;lgff(h;,oo)mij(x),
f]"(ag) — fﬁj(:p) + f&j(x) when z >z, = h?,
J

and f1'(z) = Gj(x) for x < w;— = h.

J
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Figure: Perpetual American put option price F'(s,v) and optimal
stopping boundary S*(v) in Heston model. Parameters K = 100,
6=0,1,7=0,05 k=2, 0, =0,03,01=0,2, p=-0,2.
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American put option with finite maturity time

Then we consider American put option with finite maturity

fltz,y) >1 =™, x> h(t,y),
Of(t,z,y)+ Lz, y) —rft,z,y) <0, x<h(ty),
f(t,a:,y) = (1 - e$+ay)+7 r < h(t7y)a
0
f(tv h, y) =1- eh—l—ay’ %f(ta x, y)|$:h(t,y) = _eh—i—ay’

where operator £ has the form (19).
Given a maturity date T" we divide the period [0, 7] into N

subperiods 0 < tp <t <--- <t <--- <ty ="7T and apply the

Carr randomization technique.



We use the time derivative 0, f approximation by
f(tk+1,$,y)7f(tk71',y)

Ay
in the case of a perpetual American option.

As a result the discretized form of (35)-(38) has the form

@) = @) 1 o? 0
: x)Ak = 5 gz i (@) + aly) g 1 (@)=

—qi(@) (@) + ) Apwfi(x) =0, x> h,
k#j

f;‘(x):(l—eﬁayj), r<hj, n<N,
f]zv(x):(l—e"j*ayj)% n = N.

Introduce q}“ = A,:l +¢; and Gj(z) =1 — e*¥ie” then

(0 = L @) = AT @)+ 30 N fi @), > I,

i
f(x) = Gj(x), = <h,

and next we proceed as in the perpetual case.

and apply the same discretization in y-space as

(40)

(41)
(42)

(43)

(44)



Theorem. Under some additional assumptions let for k = N and
for some j a set of functions fl]i with j # | be given. Then for the
same j and k = N — 1 we have:

1) function ué“ = Zj’;éj )\jj/f]]-c* + A fk—H ( — Lj)Gj is a
non-decreasing and

u?(—oo) <0< u?(oo) = 00, (45)

5k+u§ is an increasing continuous function and

2) function m]
satisfies (45),
3) equation ﬁl?( x) = 0 has a unique zero at the point h*

4) the hitting time of (—oo, h]*] Thf*

I
is the optimal stopping time

for the process x(t),
5) Carr'’s approximation to the option price ff in the state j is

given by . = (a)) "€} L ooy + Gy = [ + G

6) functlon k = ]k* — G Is a positive non-decreasing function
and satifies (45) In addition 7“ " (00) = o0, Njk*(x) =0 when

z < hé?* and f] increases on [hf*, 00).



Algorithm. Denote by J’-‘“*,h?* option price and optimal stopping

boundary at t;. At k = N we set fﬁ(x) =1—eie" and
hﬁ = —ayj. For a fixed k < N calculate

mi; = =& (¢ — L;)G;

and set fé“j = Gjy, h’gj = hﬁ. Then forn=1,2,...
1) moving from 1 = Zyax down with the chosen step A,
calculate the values of functions

k. _ ck+ k —1 pk+1
mb = EF S N AT

J#5'
~k _ .k k
Mjn = M + Mg ;5
2) functions fnfn are increasing, we stop calculation as soon as

Thin(l‘l) < 0, or x; < Tmin and set h;‘-’;n =1, Z; =1—1.



k

3) moving from z,- = h7,
J )

up with step A, calculate the values of

functions
1 ck— k
f(?jn = (qﬁ 15]' I(—oo,h;?m](_moj)’

1 eok—
ffjn:(qf) 15]' I(h’“ oo)m?,n’

o
k k k
in = fijn+ fojn

and f¥ () =G(z) forx < x.— = hF .
J (> J,m

I,
]7 ]



American put option price with finite maturity time 7' = 0,5 with
parameters:

r=0,09, p=—0,2, k1 = 1,58, 6; = 0,03, o, = 0,2, K = 100

Bt 5)

200

250 05 t
5

Figure: American put option price F(t,s) = F(t, s,v)|y=0.09




Figure: American put option price F5(t,v) = F(¢,5,v)|s=100



Figure: Free boundary S*(t,v)
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Figure: Free boundary S} (t) with
different v
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