# Discrete complex analysis on a convex quadrangulation of the plane

#### M. Skopenkov<sup>12</sup>

<sup>1</sup>Institute for Information Transmission Problems RAS

<sup>2</sup>King Abdullah University of Science and Technology

3d Northern Triangular Seminar, St. Petersburg, April 11, 2011

#### Overview







#### Discrete analytic functions

A graph  $Q \subset \mathbb{C}$  is a *quadrilateral lattice*  $\Leftrightarrow$ each bounded face is a convex quadrilateral. A function  $f: Q \to \mathbb{C}$  is *discrete analytic*  $\Leftrightarrow$  $\frac{f(z_1)-f(z_3)}{z_1-z_3} = \frac{f(z_2)-f(z_4)}{z_2-z_4}$ for each face  $z_1z_2z_3z_4$  with the vertices listed clockwise.









square lattice lsaacs (1940s)

*rhombic lattice* Duffin (1960s) *orthogonal lattice* Mercat (2000s)

# The Dirichlet problem

The **boundary**  $\partial Q$  is the boundary of the outer face of Q (a closed curve hereafter). A *discrete harmonic* function  $f: Q \to \mathbb{R}$  is the real part of a discrete analytic function. The *Dirichlet problem* on Q is to find a discrete harmonic function  $f_{Q,\mu}$ :  $Q \rightarrow \mathbb{R}$ having given boundary values  $u: \partial Q \to \mathbb{R}$ . The *Dirichlet problem* in a domain  $\Omega$  is to find a continuous function  $f_{\Omega,\mu} \colon \mathrm{Cl}\Omega \to \mathbb{R}$ having given boundary values  $u: \partial \Omega \to \mathbb{R}$ and such that  $\Delta f_{\Omega,u} = 0$  in  $\Omega$ .



**Uniqueness Theorem (S., 2011)**. The Dirichlet problem on any finite quadrilateral lattice has a unique solution.

# Convergence theorem

A sequence  $\{Q_n\}$  is *nondegenerate*  $\Leftrightarrow \exists \text{ const} > 0$ :

- Angle(side of a face, diagonal of a face)> const,
- $\bullet \ \ \frac{MinSize}{MaxSize} := \frac{minimal \ edge \ length}{maximal \ edge \ length} > const.$

**Convergence Theorem (S., 2011)**. Let  $\Omega \subset \mathbb{C}$  be a domain bounded by a smooth closed curve  $\partial \Omega$  without self-intersections. Let  $u: \mathbb{C} \to \mathbb{R}$  be a smooth function. Take a nondegenerate sequence of finite orthogonal lattices  $\{Q_n\} \subset \operatorname{Cl}\Omega$  such that  $\operatorname{MaxSize}(Q_n)$ ,  $\operatorname{Dist}(\partial Q_n, \partial \Omega) \to 0$ . Then the solution  $f_{Q_n,\mu}: Q_n^0 \to \mathbb{R}$  of the Dirichlet problem on  $Q_n$  converges to the solution  $f_{\Omega,\mu}: \Omega \to \mathbb{R}$  of the Dirichlet problem in  $\Omega$  uniformly on compact sets. **Remark.** Square lattices: Courant–Friedrichs–Lewy, 1926. *Rhombic lattices*: Chelkak–Smirnov. 2008.

コト ・ 同ト ・ ヨト ・ ヨト

# Energy

The energy of a function  $u: \Omega \to \mathbb{R}$  is  $E_{\Omega}(u) := \int_{\Omega} |\nabla u|^2 dA$ . Denote  $u_k := u(z_k)$  and  $c_{13} := i \frac{z_2 - z_4}{z_1 - z_3}$ . The energy of a function  $u: Q \to \mathbb{R}$  is

$$E(u) := \sum \frac{|c_{13}|^2 (u_1 - u_3)^2 - 2 \mathrm{Im} c_{13} (u_1 - u_3) (u_2 - u_4) + (u_2 - u_4)^2}{\mathrm{Re} c_{13}},$$

where the sum is over all the faces  $z_1z_2z_3z_4$  with the vertices listed clockwise.

**Lemma.** A discrete harmonic function has minimal energy among all the functions with the same boundary values. **Idea of the proof.** A function u is discrete harmonic  $\Leftrightarrow \Delta^Q u = 0$  in  $Q - \partial Q$ , where  $(\Delta^Q u)(z_k) := \partial E(u)/\partial u_k$ . **Corollary:** Uniqueness Theorem.

# Scaling limit

 $B_n/W_n := black/white$  vertices of the bipartite graph  $Q_n$ . Lemma 1. The energies  $E(f_{Q_n,u})$  are bounded. Lemma 2. In any compact set  $K \subset \Omega$  the sequence  $f_{Q_n,u} \colon B_n \cap K \to \mathbb{R}$  is uniformly bounded and equicontinuous. Lemma 3. Some subsequence of the sequence  $f_{Q_n,u} \colon B_n \to \mathbb{R}$  converges to a harmonic function  $f \colon \Omega \to \mathbb{R}$  uniformly on compact sets.

**Lemma 4.** The limit function  $f: \Omega \to \mathbb{R}$  is the solution of the Dirichlet problem on  $\Omega$ .

Proofs. Lemmas 1, 3, 4: via methods of Duffin,
Chelkak–Smirnov, Courant–Friedrichs–Lewy, respectively.
Lemma 2: new approach, known methods do not work.
Corollary: Convergence Theorem.

#### Equicontinuity

I

**Strong Lemma 2**. Fix a compact set  $K \subset \Omega$ . Then

$$|f_{Q_{n,u}}(z) - f_{Q_{n,u}}(w)| = O\left(\ln^{-1/2}\left(1 + |z - w|^{-1}\right)\right)$$

uniformly with respect to any  $z, w \in K \cap B_n$ .

$$\begin{array}{l} \textbf{Proof} \text{ (for a square lattice).} \\ h := \operatorname{MaxSize}(B_n), \quad b := \operatorname{Dist}(K, \partial \Omega), \\ R_m := \operatorname{rectangle} 2mh \times (2mh + |z - w|), \\ f := f_{Q_n,u}, \text{ assume } f(z) \geq f(w) \text{ wlog.} \\ m \leq b/4h \Rightarrow R_m \subset \operatorname{Int}Q_n \text{ for large } n \Rightarrow \\ \exists z_m, w_m \in \partial R_m : f(z_m) \geq f(z), f(w_m) \leq f(w) \Rightarrow \\ \mathbf{E}(f) \geq \sum_{m=0}^{\lfloor b/4h \rfloor} \frac{|f(z_m) - f(w_m)|^2}{8m + 2|z - w|/h} \geq \frac{1}{8} |f(z) - f(w)|^2 \ln\left(1 + \frac{b}{|z - w|}\right). \end{array}$$

#### Physical interpretation



Physical interpretation (gives insight, not used formally):

- The graph B is an alternating-current network in a natural way
- Admittance  $c(z_1z_3) := i \frac{z_2-z_4}{z_1-z_3} \Rightarrow \operatorname{Re} c(z_1z_3) > 0$

• Voltage 
$$V(z_1z_3) := f(z_1) - f(z_3)$$

- Current  $I(z_1z_3) := if(z_2) if(z_4)$
- Energy  $E(f) := \operatorname{Re} \sum_{z_1 z_3} V(z_1 z_3) \overline{I}(z_1 z_3)$ .

#### Meaning of main results

**Theorem 1**  $\Leftrightarrow$  Boundary voltage drops at the initial moment and boundary currents after one quarter of the period uniquely determine all the voltage drops and currents in an alternating-current network at all the moments of time.

**Question**. What is the physical meaning of the boundary condition, which is **the Dirichlet one** at the initial moment and **the Neuman one** after one quarter of the period?

**Theorem 2**  $\Rightarrow$  Distributed direct-current networks can be approximated by lumped direct-current networks.

**Question**. What is the physical meaning of approximation of distributed **direct**-current networks by lumped **alternating**-current networks?

# Application of alternating-current networks

**Theorem (Freiling–Laczkovich–Rinne–Szekeres, 1995)**. For a number c > 0 the following conditions are equivalent:

- a square can be tiled by similar rectangles of side ratio c;
- the number c is algebraic and all its algebraic conjugates have positive real parts.

# Physical proof (Prasolov–S., 2009).

tiling  $\leftrightarrow$  LC network  $\leftrightarrow$  admittance  $A(\omega) \leftrightarrow$  restriction





A(ω/i) ∈ Q(ω)
 Re(ω/i) > 0 ⇔

 $\operatorname{Re} A(\omega/i) > 0$ 

• A(c/i) = 1

conjugates of *c* have positive real parts

Foster's reactance theorem

## Probabilistic interpretation

A random walk on an orthogonal lattice is a random walk on the graph B with transition probabilities proportional to admittances  $c(z_1z_3) := i\frac{z_2-z_4}{z_1-z_3} > 0$ .



**Problem.** Prove that the trajectories of a loop-erased random walk on an orthogonal lattice converge to SLE<sub>2</sub> curves in the scaling limit. **Remark.** Rhombic lattices: Chelkak–Smirnov, 2008.

# Generalizations

**Problem.** Generalize Convergence Theorem to:

- In nonorthogonal quadrilateral lattices;
- sequences of lattices with unbounded ratio of maximal and minimal edge lengths (to involve adaptive meshes for computer science applications);
- discontinuous boundary values (for convergence of discrete harmonic measure, the Green function, the Cauchy and the Poisson kernels);
- domains with rough boundaries (for probabilistic applications);
- o mixed boundary conditions;
- infinite lattices and unbounded domains;
- other elliptic PDE.

## Acknowledgements

# **THANKS!**

M. Skopenkov Discrete complex analysis

< 一型

< ∃ >