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The classical problem

Xy, -, X, are independent centered r.v. with finite variances.
Then

p(S,, N)=sup[P(S, <x)-P(N <x)|<Cg,

S, =(X,+..+X,) o), o(n)’=> EX,

N iIs a standard normal r.v., C = const,

n 3
Zk=1E| Xk| 1 -
g, = =— — Lyapunov's fraction.
o(n)
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E
Bounds for the constant C
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general case I.1.d. case
Esseen, 1942: C<175
Bergstrom, 1949: C<48
Takano, 1951: C<2,031

Zolotarev, 1965-1967:

C<1322 C<1,301

C <0,9051 C <0,8197
Van Beek, 1972: C <0,7975
Shiganov, 1982: C <0,7915 C <0,7655
Shevtsova, 2006: C <0,7056
Tyurin, 2009: C <0,6379 C <0,5894

C <0,5606 C <0,4785
Korolev, Shevtsova, 2010: C <0,5600 C<0,4784
Tyurin, 2010: C <0,5600 C<0,4784
Tyurin, 2010: C <0,5591 C<0,4774

It is known (Esseen, 1956), that C >0,409...



.
Ideal metrics C,

For arbitrary f eCU P (R), reN, define

M_(f):=sup

X#Y

fED0o)— A (y)
X—Y '

Let
G (X,Y)=sup{[Ef (X)—Ef (Y)|: f e/}, r=12,..,

where F, is the set of all real bounded functions with M _(f) <1.

r

¢, has an important alternative representation

LX) =35(X,Y) = [ P(X <0 =P(Y <x)] dx.
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s
Ideal metrics C,

Now suppose r = k + s, where k is integer, s — from (0,1]. Then

U0 19()

S

M, (f):=sup
X#Y ‘X—y‘

As before,
G (X,Y)=sup{|Ef (X)—Ef (Y)|: f e F;}.

where F, is the set of all real bounded functions with M _(f) <1.

r

If 0 <r<1,then { can be expressed as

C(X,Y) =inf{E‘)2 —\f\r . Law(X ) = Law(X), Law(Y ) = Law(Y )}
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Ideal metrics

These metrics satisfy two conditions:

= regularity, I.e.

C,(X+Z,Y+2Z)<( . (X,Y)
for arbitrary X, Y, Z such that Z is independent of X, Y.
= homogeneity (of the order r), i.e.

g (eX,cY) <[c| ¢, (X,Y),

where X, Y are arbitrary r.v., c is a real number.
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Zero bias transformation

Let W be centered r.v. with finite nonzero variance 2.

W* has W-zero biased distribution if
EWf (W) = o°Ef '(W¥)

for each real differentiable function f, such that I.h.s. is defined.

Law(W) = Law(W*) iff W is normal.
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.
Zero bias transformation

Zero bias transformation was introduced by Goldstein and Reinert
In 1997. It was used to estimate the convergence rate in CLT.

It was used in combination with Stein’s method and allowed to
reformulate the problem. Instead of

sup{|Ef W)—Ef(N)|: f e 7}

one can consider

sup{|Ef (W) —Ef W*)|: f e F7*}.
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e
Zero bias transformation of a normed sum

Let X,, ..., X, be i.i.d. r.v. with EX, =0, Var X; = 1. X;"is
Independent from X,, ..., X, and has X;-zero biased distribution.

Then

(X1+...+ an* Law X "+ X,
Jn Jnooo

AS a result one has

E R
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Zero bias transformation of a normed sum

Example: distribution functions of S, and S *

Page = 10



F
Stein’s method

W — centered r.v., VarwW =1, N —standard normal r.v., f—real function.

2 2

h(w) = evi Vjv(f (w) —Ef (N))e‘Xde

satisfies Stein’s equation
h'(w) —wh(w) = f (w) —Ef (N).
Putting w=W and taking expectations from both sides yields
| Ef (W) —Ef (N) [H ER'(W) —EWh(W) |5 EN'(W) —ER' (W) |<
< MZ(h)Cl(VV 9W *)

J2x

M, (h) < {ZMl(f),4 Mz(f),% Ms(f)} (Raic, 2003).
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Stein’s method

| Ef (W) —Ef (N) [ M, (h)¢, (W, W),

M (h)<{2|v| (), FM ()3 Iy (f)}
27

LW, N) <26 WW9), G, W, N) < LW W)
Cs(\N,N)S%Q(\N,W*).
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Theorem

Let W be a centered r.v. with VarW =1, then

with equality when W has a 2-point distribution.

Moreover, for S, and &, as defined before

G, (S,,S,*) < %gn.
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Quasiconvex functions

G — convex subset of a linear space

0,2

g: G — R —convex

g(av, + 1-a)v,) <ag(vy) + L—x)g(v,)

e

0,5 g(X)O — X4 0),(5

1A
0,8

0,64

g — quasiconvex

0,21

oo, +(-a)v,) smax{g(v) g(v,)} T T T
g(x) = sin(x)*
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.-
Quasiconvex functions

A quasiconvex function defined
on a polytope attains its supremum at
one of the vertices

Example

f(x,y)=x?+y? defined on a rectangle
[-5,5]%[-5,5]

f(x,y)=x2+y?
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.
Quasiconvex functions

(S,p) — metric space
Finite signed measures

Q = {all finite signed measures on B(S)}

D = {discrete probability measures on B(S)} Probability

measures

Q with traditional operations is a linear space
and D is a convex subset of Q.

n

Ef (Xy.. X)) = [ fdPy ..dP,
Rn
f: R —>R" Py, ,...,Py —distributions of r.v. X, ..., X.
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Reduction theorem

hy, ..., h,—real functions on S
K:=~{,ueD,<hi,,u>=0,i=1,...,m} <f,,u>:=jfd,u
S
D; = {j-point distributions}, D_; =D, U...UD;,
K;={ueKND,,} j=12,..

For every quasiconvex function g: K— R

supg(u) = sup g(u).

uek JZES
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.
Extremal property of 3-point distributions

Take hy(x) =x, h, (X)=x?— 1. Then K is the set of discrete distributions
corresponding to a centered r.v. with unit variance.

G (W, W#) = J Py (o0, X1) =Ry (=00, X])| dx
IS a convex function of PW.

EW[ =j| X | B (dx)

IS linear w.r.t. P,,. Nonnegative convex functlon / positive linear function =
= guasiconvex. Hence C,W,W*)/E , when considered as a function of
the distribution P, Is quasiconvex.

sup{¢,(W,W*)/ E\W\3 :EW =0, VarW =1} can be obtained by examining
2- and 3-point distributions.
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.
Extremal property of 2-point distributions

It turned out that for every centered r.v. W with VarW = 1 that takes
3 different values holds the inequality

1 3
G, W) < ZEWY
For r.v. W that takes 2 different values one has

1
(;1(\N,W*)=§E\W\3.
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Estimates in metrics &,

CW,N)<26,W,W*), C,(W,N)< @Q(\N,W*),

cs(\N,N)sécloN,W*)

U assmsza

27

G N) <& G5 N)s—-=¢

Cg(Sn,N)Ség.
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E
Theorem

Let W be a centered r.v. with VarW = 1. Let d(x) be a nondecreasing
concave function on x > 0 with d(+0) = 0.

Define
7, (X,Y) =inf {Ed (IX =Y 1): Law(X ) = Law(X), Law(¥) = Law(Y)}
One has

7y (W, W*) <Ed (W ).

In particular, forO<r<1

E |W |2+r
1+r

G (W, W) <
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Estimates in metrics &, ;

Suppose now, that E|X,|?* is finite for some 0 < 6 < 1.

Stein’s method in combination with the zero bias
technique allows to establish the estimate

E | X |2+5
S,N)< L X
C2+5( i ) (1+ 5)(2+5)n5’2
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.
Zero biasing and characteristic functions

Theorem

Let f(s) be the characteristic function of centered r.v. W with unit
variance, f (s) — characteristic function of W*. Then

SZ

OB U170 IHOBINO] sexp(zjds, teR.

Here ¢(t) = exp(-t4/2).

Remark

f'(t) = Eiwe™ =iEW cos(tW)—EW sin(tW) =
= —itE sin(tW™*) —tE cos(tW*) = —tf " (t).
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L.
Zero biasing and characteristic functions

Let X,, ..., X, be i.i.d. r.v. with EX, =0, Var X; =1. X;"is
independent from X,, ..., X, and has X;-zero biased distribution.

Then

(X1+...+ an* Law X "+ X,

Jn NG

Denote f,(t) and f,"(t) respectively characteristic functions of X,

and X,”. Then
, t )\ t St
wo-so-4(3) (4[5 4(5)

£, — £, <[t X)),

Page = 24



Zero biasing and characteristic functions
0,10 ‘

0,06

0,04

0,02

estimate for oy4(t), €= 0,25
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I
Conclusion

= Optimal estimates for the proximity between a distribution and its
zero bias transformation.

= Sharp estimates of the convergence rate in terms of ideal metrics C,
where 1 <r <3.

» Sharp estimates for the proximity of characteristic functions.

» New estimates allowed to prove that in general case C <0.5591.
And in the case of i.i.d. r.v. C <0.4774.
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