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Let X1,X2, . . . be a sequence of i.i.d. random variables with
discrete distribution. We consider the set Sn of the first n samples
and let the r.v. Kn = |Sn| be its size.
Kn is the number of distinct values among the first n samples.

Since values of Xj ’s are of no importance for us, without loss of
generality we may arrange them so that P[Xj = xi ] = pi and

p1 ≥ p2 ≥ · · · > 0,
∑

i
pi = 1.

One can also admit that the underlying distribution has a
continuous part, but all samples from continuous distribution are
different a.s. and it is simple to analyze. So we always suppose
that the distribution of Xj ’s is purely discrete and its support is
infinite. In this case Kn →∞ as n→∞, so it is possible (and
interesting) to investigate its behaviour in the limit.
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It is convenient to model this construction by a sequence of the
i.i.d. random variables uniformly distributed on the unit interval
[0, 1] divided into subintervals of lengths p1, p2, . . . :

p1 p2 p3 p4 p5 . . .

0 p1 p1 + p2 . . . 1
��AA
U1

��AA
U2

��AA
U3

��AA
U4

M1,4 = 2 M2,4 = M3,4 = 0 M4,4 = M5,4 = 1 M6,4 = · · · = 0
I1,4 = 1 I2,4 = I3,4 = 0 I4,4 = I5,4 = 1 I6,4 = · · · = 0

I Mi ,n—the number of samples that get into i-th subinterval
among the first n samples;

I Ii ,n = 1Mi,n>0—the indicator of the event “i-th subinterval is
hit by at least one sample among the first n samples”.

Obviously, ∑
i
Mi ,n = n,

∑
i
Ii ,n = Kn.

Yuri Yakubovich On the variance of sample size



Introduction
The problem and main results

Examples
Proofs

Samples from discrete distributions
Model by uniform samples in the unit interval
Poissonization
The mean and variance of sample set size

It is convenient to model this construction by a sequence of the
i.i.d. random variables uniformly distributed on the unit interval
[0, 1] divided into subintervals of lengths p1, p2, . . . :

p1 p2 p3 p4 p5 . . .

0 p1 p1 + p2 . . . 1
��AA
U1

��AA
U2

��AA
U3

��AA
U4

M1,4 = 2 M2,4 = M3,4 = 0 M4,4 = M5,4 = 1 M6,4 = · · · = 0
I1,4 = 1 I2,4 = I3,4 = 0 I4,4 = I5,4 = 1 I6,4 = · · · = 0

I Mi ,n—the number of samples that get into i-th subinterval
among the first n samples;

I Ii ,n = 1Mi,n>0—the indicator of the event “i-th subinterval is
hit by at least one sample among the first n samples”.

Obviously, ∑
i
Mi ,n = n,

∑
i
Ii ,n = Kn.

Yuri Yakubovich On the variance of sample size



Introduction
The problem and main results

Examples
Proofs

Samples from discrete distributions
Model by uniform samples in the unit interval
Poissonization
The mean and variance of sample set size

It is convenient to model this construction by a sequence of the
i.i.d. random variables uniformly distributed on the unit interval
[0, 1] divided into subintervals of lengths p1, p2, . . . :

p1 p2 p3 p4 p5 . . .

0 p1 p1 + p2 . . . 1
��AA
U1

��AA
U2

��AA
U3

��AA
U4

M1,4 = 2 M2,4 = M3,4 = 0 M4,4 = M5,4 = 1 M6,4 = · · · = 0
I1,4 = 1 I2,4 = I3,4 = 0 I4,4 = I5,4 = 1 I6,4 = · · · = 0

I Mi ,n—the number of samples that get into i-th subinterval
among the first n samples;

I Ii ,n = 1Mi,n>0—the indicator of the event “i-th subinterval is
hit by at least one sample among the first n samples”.

Obviously, ∑
i
Mi ,n = n,

∑
i
Ii ,n = Kn.

Yuri Yakubovich On the variance of sample size



Introduction
The problem and main results

Examples
Proofs

Samples from discrete distributions
Model by uniform samples in the unit interval
Poissonization
The mean and variance of sample set size

Poissonization is a standard procedure in such problems. It can be
described in several alternative but equivalent ways:

I Consider not a fixed number of uniform sample points
U1, . . . ,Un but a random number U1, . . . ,UN(n) where N(n)
has the Poisson distribution with parameter n;

I Consider the system in continuous time and add uniform
samples U1,U2, . . . with random independent exponentially
distributed delays with mean 1, and stop at the time n;

I Consider the points of the Poisson point process (PPP) of
intensity n on [0, 1] instead of n uniform samples.

We use indices for the fixed n version and brackets notation for the
Poissonized version (Kn vs K (n) etc).
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The Poissonized version has many advantages:

I The PPP representation shows that for each n > 0, Mi (n)
form the sequence of independent r.v.’s having the Poisson
distribution with mean npi .

I The indicators Ii (n) are independent Bernoulli r.v.’s with
success probability 1− e−npi .

I No need for the normalization
∑

i pi = 1: by a linear time
change one can renormalize this sum, so just its finiteness is
needed.

I Additive structure:
I (p′

i ) and (p′′
i )—two sequences with finite sums;

I (pi ) = (p′
i ) ∪ (p′′

i )—union as multisets;
I K ′(n), K ′′(n) and K (n)—the corresponding numbers of

different samples in the Poissonized settings

then

K (n)
d
= K ′(n) + K ′′(n), K ′(n), K ′′(n) independent.
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We are interested in the mean and variance of the number of
different values in the first n samples. Let us introduce

Φn = E[Kn], Vn = Var[Kn]

and the Poissonized analogs

Φ(n) = E[K (n)], V (n) = Var[K (n)]

The formulas become particularly simple after Poissonization:

Φ(n) := E[K (n)] =
∑

i
(1− e−npi ),

V (n) := Var K (n) =
∑

i
(e−npi − e−2npi ) = Φ(n)− Φ(2n).

We shall not use formulas for Φn and Vn but one can write them
down.
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Growth of Kn
Boundedness of Vn
Convergence to a limit

Since there are infinitely many possible values, Kn →∞ a.s. as
n→∞, and so does its mean: Φn →∞. It is also known that
Kn/E[Kn]→ 1 as n→∞ in probability (Bahadur, 1960) and even
a.s. (Karlin, 1967).

The next question is whether the variance Vn increase to infinity or
not. This question is particularly interesting because it is known
that if Vn →∞, n→∞, then Kn−Φn√

Vn
⇒ N , the standard normal

distribution (Karlin, 1967; Dutko, 1984; LLT by Hwang and
Janson, 2006).
This is easy to see for the Poissonized version of the problem.
Then K (n) is a sum of independent r.v.’s with Bernoulli
distributions and the asymptotic normality follows, say, by
application of Lindeberg’s theorem. De-Poissonization requires
some work which was done by Dutko in 1984.
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So the interesting case is when Vn does not tend to ∞. Two
alternatives are possible: either Vn oscillates unboundedly or it
remains bounded as n→∞. Introduce

v := lim sup
n→∞

Vn, v := lim inf
n→∞

Vn.

We propose the following criterion for boundedness of Vn:

Theorem 1. The boundedness of V (t) is equivalent to the
existence of an integer k such that

lim supj

pj+k

pj
≤ 1

2
.

Moreover, this inequality implies v ≤ k . If for any k

lim inf j
pj+k

pj
≥ 1

2

then v =∞.
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Growth of Kn
Boundedness of Vn
Convergence to a limit

If Vn remains bounded, it is interesting whether it converges to a
limit as n→∞. It can be also checked in terms of “lagged ratio”:

Theorem 2. The limit limn Vn = v exists if and only if

limj
pj+k

pj
=

1

2
,

and in this case v = k .

This has an unexpected corollary:
If Vn converges to a finite limit, this limit is a positive integer.

This can be extended by considering the case when the distribution
has just finitely many atoms. In this (not very interesting) case
Kn → const a.s. so its variance converges to zero.
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Two geometric sequences
General geometric sequence
Regularly varying probabilities

Let pj form the geometric sequence with the common ratio 1/2,
that is pj = 1/2j .
Then the Poissonized variance can be calculated as follows:

V (t) = lim
m→∞

m∑
j=1

(e−t/2j−e−2t/2j ) = lim
m→∞

−e−2t/21
+e−t/2m = 1−e−t

due to massive cancellation.

(The last term makes the main
contribution!)
Hence V (t)→ 1 as t →∞ in accordance with Thm. 2 because
the lagged ratio pj+1/pj = 1/2.
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Let the common ratio be 1/4, that is pj = 3/4j .
Then the Poissonized variance can be calculated as follows:

V (t) = lim
m→∞

vm(t); vm(t) =
m∑
j=1

(e−3t/4j − e−6t/4j ).

Partial sums vm(t) satisfy the recursion

vm+1(2t) = −e−3t − vm(t) + e−6t/4m+1
.

Take t and m = m(t) sufficiently large, then e−6t/4m+1 ' 1, e−3t is

small. If tj = 4j

3 ln 2 then j-th summand (e−3t/4j − e−6t/4j ) = 1/4
is maximal. Summation of 5 summands around it gives
vm(tj) > 0.501 (m ≥ j + 2). Hence vm(2tj) ' vm+1(2tj) < 0.499
and V (t) oscillates. Actual amplitude of the oscillation is about
0.028 in this case.
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Archibald, Knopfmacher, Prodinger (2006): If pj = cqj , then

Vn = log1/q 2 + δV (log1/q n) + o(1), n→∞,

where
δV (x) = δE (x + log1/q 2)− δE (x)

and δE is periodic with period 1 and has zero mean.

So Vn converges iff log1/q 2 is integer, and it is the limit.
Thm. 2 extends this to “asymptotically geometric probabilities”.
Karlin (1967) erroneously claimed that the variance converges for
any geometric probabilities. Our motivation for study this question
was, in particular, in the necessity to puzzle out this contradiction.
It turns out that Karlin’s sufficient condition for the convergence of
Vn is in fact necessary and sufficient, and produces the correct
criteria log1/q 2 ∈ Z.
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Suppose that the following regular variation assumption holds: for
y > 0

max{j : pj ≥ 1/y} ∼ yγ`(y), y →∞,

where 0 < γ ≤ 1 and ` is a slowly varying function.
(This case was considered by Karlin (1967)).
Then the inequality pj+k(j)/pj ≤ 2/3 implies k(j)→∞ as j →∞.

So lim inf
pj+k

pj
≥ 1

2 for any fixed k and Thm. 1 implies that

Vn →∞ and Kn has asymptotically normal distribution.
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We prove the statements for Poissonized version of the process,
and then show how de-Poissonization can be done.
It is convenient to introduce the counting measure

ν(dx) =
∑

j
δpj (dx)

and the function

∆ν(x) = ν((x/2, x ]) = #{j : x/2 < pj ≤ x}.

It turns out that bounds on “lagged ratio” pj+k/pj and variance of
K (t) can be expressed in terms of ∆ν(x) for small x , providing an
easy way to establish connections between them.
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Lemma 1. For a fixed integer k ≥ 1 the bound

∆ν(x) ≤ k

for sufficiently small x > 0 holds if and only if

pj+k

pj
≤ 1

2

holds for sufficiently large j .

Proof.

∆ν(x) ≤ k ⇒ 2pj+k ≤ pj . Take x = pj :

0 xx/2

pj−1pj+1 pj. . .pm ︸ ︷︷ ︸
≤ k
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Lemma 2. The variance V (t) can be represented as

V (t) = t

∫ ∞
0

e−tx∆ν(x) dx .

Proof. Recall the definition and rewrite it:

∆ν(x) = #{j : x/2 < pj ≤ x} =
∑

j
1{pj≤x<2pj}.

Hence

t

∫ ∞
0

e−tx∆ν(x) dx = t

∫ ∞
0

e−tx
∑

j
1{pj≤x<2pj} dx

= t
∑

j

∫ 2pj

pj

e−txdx =
∑

j
(e−tpj − e−2tpj ) = V (t).
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Proof of Thm. 1:
First part: lim supj pj+k/pj ≤ 1/2 ⇒ v ≤ k .

I Suppose k = 1; otherwise divide the sequence (pi ) into k
subsequences (pj+ki ), j = 1, 2, . . . , k , and use additivity;

I Then ∆ν(x) ≤ 2 for x close to 0:
for any ε > 0 pj+1/pj ≤ (1 + ε)/2 for large j , and
pj+2/pj < 1/2

0 pjpj+1pj+2

pj (1+ε)
2

pj+1(1+ε)
2 2pj+1

pj
22pj+2

∆ν(x)
0
1
2

I Moreover, λ({x ∈ [pj+1, pj ] : ∆ν(x) = 2}) ≤ εpj .
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I Let D(x) =
∫ x

0 ∆ν(y) dy . It is well defined, D(0) = 0 and
D(x) ≤ x + εx .

I Since ε > 0 is arbitrary, lim supx↓0 D(x)/x ≤ 1.

I Then integration by parts gives

V (t) = t

∫ ∞
0

e−txdD(x)

= t2

∫ ∞
0

e−txD(x) dx

=

∫ ∞
0

ye−y
D(y/t)

y/t
dy

and by Fatou’s lemma

v = lim sup
t→∞

V (t) ≤
∫ ∞

0
ye−y lim sup

t→∞

D(y/t)

y/t
dy ≤ 1.
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Second part: v ≤ M ⇒ ∃k : lim sup
pj+k

pj
≤ 1

2 .

Due to the special structure:

V (t) =
∑
j

(e−pj t − e−2pj t) ≥
∑

pj∈(x/2,x]

(e−pj t − e−2pj t)

≥ ∆ν(x) min
p∈[x/2,x]

(e−pt − e−2pt).

Minimum is separated from zero: if z = e−xt/2 then

min
p∈[x/2,x]

(e−pt−e−2pt) =

{
z2 − z4 0 ≤ z ≤

√
5−1
2

z − z2
√

5−1
2 ≤ z ≤ 1

}
≥
√

5−2 > 0.

Hence ∆ν(x) ≤ 2M√
5−2

for small x , and the claim follows from

Lemma 1.
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Proof of Thm. 2:
Recall that D(x) =

∫ x
0 ∆ν(x)dx . Lemma 2 allows to write

V (t) = t

∫ ∞
0

e−tx∆ν(x)dx .

So V (t)→ v ⇔
∫∞

0 e−txdD(x) ∼ v/t (t →∞).
By Karamata’s Tauberian theorem this is equivalent to

lim
x↓0

D(x)/x = v . (∗)

Similarly as above pj+k/pj → 2, j →∞ iff

lim
x→0

|u ∈ (0, x ] : ∆ν(x) 6= k |
x

= 0.

This is equivalent to (*).
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Let Kr (t) =
∑

j 1Mj (t)=r be the number of values that occur
exactly r times in the Poissonized model.
Its mean Φr (t) = E[Kr (t)] = tr

r !

∫∞
0 x re−txν(dx).

The following estimates hold:

Φn − Φ(n) = O

(
Φ2(n)

n

)
, Vn − V (n) = O

(
Φ1(n)2 + Φ2(n)

n

)
.

The first follows from the inequality
0 ≤ e−nx − (1− x)n ≤ nx2e−nx :

0 ≤ Φ(n)− Φn =

∫ ∞
0

(e−nx − (1− x)n)ν(dx) ≤ 2

n
Φ2(n).

The second requires a bit more sophisticated but elementary
analysis.
One can show that lim sup Φr (t) ≤ 2ev .
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Thank you!

Yuri Yakubovich On the variance of sample size


	Introduction
	Samples from discrete distributions
	Model by uniform samples in the unit interval
	Poissonization
	The mean and variance of sample set size

	The problem and main results
	Growth of Kn
	Boundedness of Vn
	Convergence to a limit

	Examples
	Proofs
	Two lemmas
	Proof of Theorem 1
	Proof of Theorem 2
	De-Poissonization


