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Let X , X1, X2, . . . a sequence of i.i.d. random variables such that E |X |2 < ∞,

E X = 0. Denote

Sk =
k∑

j=1

Xj , k = 1, 2, . . . .

Let ξn(t), t ∈ [0, 1], be a random continuous broken line defined as

ξn(k/n) = Sk/
√

n, k = 1, 2, . . . , n,

and by linear interpolation for t ∈ [(k − 1)/n, k/n]. By the Donsker–Prokhorov

invariance principle, the distribution of ξn( · ) converges weakly (as n →∞) to

the distribution of the standard Brownian motion W (t) in the space C([0, 1]).
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The rate of strong approximation in the invariance principle for sums of

independent random vectors is estimated in two different but closely

connected situations. The estimation of the rate of strong approximation in

the probability invariance principle may be reduced to these problems.
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(A) One have to construct on a probability space a sequence of i.i.d. random

vectors X , X1, X2, . . . (with given distribution, E ‖X‖2
< ∞, E X = 0) and a

sequence of independent Gaussian random vectors Y1, Y2, . . . such that

L(Xj) = L(X ), E Yj = 0, cov Yj = cov X , for j = 1, 2, . . . , n, (1)

and
∥∥

n∑

j=1

Xj −
n∑

j=1

Yj
∥∥ = O(f (n)) or o(f (n))

almost surely, for a sequence f (n) tending to infinity as slow as possible.

d = 1: Strassen (1964, 1967), Breiman (1967),

Csörgő and Révész (1975),

Komlós, Major and Tusnády (KMT) (1975),

Major and (1976. 1978, 1979),

Einmahl (1987, 1989, 2009), Einmahl and Mason (1993).

d > 1: U. Einmahl (1987, 1989, 2009)
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(B) One have to construct on a probability space a sequence of i.i.d. random

vectors X , X1, . . . , Xn (with given distributions) and a sequence of

independent Gaussian random vectors Y1, . . . , Yn so that the quantity

∆n(X , Y ) = max
1≤k≤n

∥∥∥∥
k∑

j=1

Xj −
k∑

j=1

Yj

∥∥∥∥

would be as small as possible with sufficiently large probability.

d = 1: Prokhorov (1956), Skorokhod (1961), Borovkov (1973),

Csörgő and Révész (1975), KMT (1975),

Sakhanenko (1984, 1985, 1989, 2006),

Chatterjee (2008)

d > 1: Gorodetskii (1975), Berkes and Philipp (1979), Philipp (1979),

Borovkov and Sakhanenko (1981), Berger (1982), Einmahl (1987, 1989),

Sakhanenko (2000)
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Strassen (1967) started the study of Problem (A) in the one-dimensional

case. He has shown that there exists a construction such that
∣∣∣∣

n∑

j=1

Xj −
n∑

j=1

Yj

∣∣∣∣ = o(
√

n log log n) a.s. as n →∞, (2)

assuming that there exists finite E X 2 and E X = 0 (see Philipp (1979) for a

multidimensional version of this statement). Strassen (1967) has used in the

construction Skorokhod’s embedding (1961). Major (1978) proved that, for

any sequence {an} of real numbers such that an ↗∞, there exists a

one-dimensional distribution L(X ) with E X2 < ∞ and E X = 0 such that, for

any construction,

P
{

lim sup
n→∞

an (n log log n)−1/2
∣∣∣

n∑

j=1

Xj −
n∑

j=1

Yj

∣∣∣ = ∞
}

= 1.

This confirms the optimality of Strassen’s result (2).
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Improvements and generalizations of relation (2) under additional

assumptions concerning the existence of some moments were obtained in the

papers of Strassen (1967), Breiman (1967), and Csörgő and Révész (1975).

Optimal with respect to order one-dimensional results were obtained in the

papers of KMT (1975) and Major (1976) by the method of dyadic

approximation. In particular, it was shown that if E X = 0 and if the vector X

has finite exponential moment E eλ|X | for some λ > 0, then there exists a

construction such that
∣∣∣∣

n∑

j=1

Xj −
n∑

j=1

Yj

∣∣∣∣ = O(log n) a.s. as n →∞. (3)

The corresponding multidimensional statement was proved by

Einmahl (1989) for sufficiently smooth distributions and by Zaitsev (1998) in

the general case. From results of Bártfai (1966) it follows that the accuracy of

approximation in (3) is the best possible: in (3), it is impossible to replace O

large by o small if the distribution of the vector X is non-normal.
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KMT (1975) has shown that if E X = 0 and E |X |γ < ∞ for some γ > 2, then

there exists a construction such that
∣∣∣∣

n∑

j=1

Xj −
n∑

j=1

Yj

∣∣∣∣ = o(n1/γ) a.s. as n →∞. (4)

The corresponding multidimensional statement was proved by

Einmahl (1989). The case 2 < γ ≤ 3 was investigated earlier by Berger

(1982). It is well known that it is impossible to obtain statement (4) for large γ

if one uses for the construction Skorokhod’s embedding.
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For δ > 0 and x0 > 0, introduce the class H(δ, x0) of nonnegative

nondecreasing functions H : [0,∞) → R1 such that the functions H(x)/x2+δ

and x/ log H(x) are nondecreasing for x ≥ x0. Denote

H =
⋃

δ>0, x0>0

H(δ, x0).

Examples of H ∈ H:

H(x) = c xα, α > 2; H(x) = exp{c xβ}, 0 < β ≤ 1.

Theorem (Zaitsev (2009)). Let H ∈ H and let X be a random vector with

E X = 0, and E H (‖X‖) < ∞. Then there exists a construction such that

P
(

lim sup
n→∞

∥∥∥
n∑

j=1

Xj −
n∑

j=1

Yj

∥∥∥/H−1(n) ≤ C
)

= 1, (5)

where C < ∞ is a non-random quantity depending on d, L(X ) and on the

function H( · ) only.
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It is easy to see that (5) implies that

∥∥∥∥
n∑

j=1

Xj −
n∑

j=1

Yj

∥∥∥∥ = O(H−1(n)) a.s. as n →∞. (6)

This statement generalizes to the multidimensional case the results of

KMT (1975) and Major (1976).

In the one-dimensional case, KMT (1975) have proved the same statement

for functions H from the class H̃(δ, x0), δ > 0, of nonnegative nondecreasing

functions H ∈ H(δ, x0) such that the functions H(x)/x3+δ are nondecreasing

for x ≥ x0. Major (1976) extended the result to functions H from the class

H(δ, x0), δ > 0, such that the functions H(x)/x3 are nonincreasing. Berger

(1982) generalized the result of Major (1976) to the multidimensional case.
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Einmahl (1989) proved the same statement for functions H from the class

H∗(δ, x0), δ > 0, of nonnegative nondecreasing functions H such that the

functions H(x)/x3+δ and
√

x/ log H(x) are nondecreasing for x ≥ x0. Clearly,

there exist functions belonging to H(δ, x0) and not belonging to H∗(δ, x0). For

example, we may mention the functions H(x) = exp
(
λxβ

)
, 1/2 < β ≤ 1,

λ > 0.

Breiman (1967) has shown that the statement of Theorem 1 is optimal in the

following sense: if

E H (‖X‖) = ∞ (7)

in the conditions of Theorem 1, then

P
{

lim sup
n→∞

∥∥∥
n∑

j=1

Xj −
n∑

j=1

Yj

∥∥∥/H−1(n) ≥ 1/4
}

= 1 (8)

for any construction of the i.i.d. Xj and i.i.d. Gaussian Yj with the needed

distributions on the same probability space.
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Note that if the conditions of Theorem 1 are satisfied for H(x) = |x |γ , then

one can ensure the validity of relation (4), which is stronger than (6). On the

other hand, Shao (1989) has shown that for the functions H(x) = exβ

,

0 < β < 1, it is impossible to replace O large by o small in relation (6), at least

for distributions L(X ) such that E e2‖X‖β

= ∞. In this case, (6) turns into

n∑

j=1

Xj −
n∑

j=1

Yj = O((log n)1/β) a.s. as n →∞.

The question on description of the class of functions H ∈ H for which one can

replace O large by o small in relation (6) remains open.
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Sakhanenko (1985) obtained the following result.

Theorem. Let X1, X2, . . . , Xn be independent random variable with E Xj = 0,

j = 1, . . . , n. Let γ > 2 and

Lγ =
n∑

j=1

E |Xj |γ < ∞.

Then there exists a construction such that

E
(
∆n(X , Y )

)γ ≤ c γ2γ Lγ , (9)

where c is an absolute constant.

After the natural normalization, we see that (9) is equivalent to

E
(
∆n(X , Y )/σ

)γ ≤ c γ2γ Lγ/σγ ,

where σ2 = Var
( ∑n

j=1 Xj
)
. It is clear that Lγ/σγ , 2 < γ 6 3, is the well-known

Lyapunov fraction involved in the Lyapunov and Esséen bounds for the

Kolmogorov distance in the CLT.
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It should be mentioned that, in Sakhanenko (1985), it is observed that

inequality (9) implies the well-known Rosenthal inequality (1972).

Lemma. Let X1, . . . , Xn be independent random vectors which have mean

zero and assume values in Rd . Then

E
∥∥∥

n∑

j=1

Xj

∥∥∥
γ

≤ c(γ)
( n∑

j=1

E ‖Xj‖γ +
( n∑

j=1

E ‖Xj‖2
)γ/2)

, for γ > 2. (10)

This multidimensional version of the Rosenthal inequality follows easily from

a result of de Acosta (1981). In the i.i.d. case, the second summand in the

right-hand side of (10) grows faster than the first one as n →∞.

Sakhanenko’s Theorem shows that this growth corresponds to the growth of

moments of sums of Gaussian approximating vectors.
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We formulate the results published in the papers of Zaitsev (1998, 2001,

2006, 2007, 2009) and Götze and Zaitsev (2008, 2009). They can be

considered as multidimensional generalizations and improvements of some

results of Komlós, Major and Tusnády (1975), Sakhanenko (1985) and

Einmahl (1989).

Let Ad (τ), τ ≥ 0, d ∈ N, denote classes of d-dimensional distributions,

introduced in Zaitsev (1986). The class Ad (τ) (with a fixed τ ≥ 0) consists

of d-dimensional distributions V for which the function

ϕ(z) = ϕ(V , z) = log
∫

Rd
e〈z,x〉V{dx} (ϕ(0) = 0)

is defined and analytic for ‖z‖ τ < 1, z ∈ Cd , and
∣∣dud2

v ϕ(z)
∣∣ ≤ ‖u‖τ 〈

D v , v
〉
,

for all u, v ∈ Rd and ‖z‖ τ < 1, where D = cov V , and duϕ is the derivative

of the function ϕ in direction u.
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Below we consider simplest properties of the classes Ad (τ).

In particular, for fixed τ , the class Ad (τ) is closed with respect to convolution:

if F1, F2, . . . , Fn ∈ Ad (τ), then F1 F2 · · ·Fn ∈ Ad (τ).

If L(X ) ∈ Ad (τ) and a ∈ R, then L(a X ) ∈ Ad (|a| τ).

As examples of distributions from Ad (cτ) we can consider distributions

concentrated on the ball Bτ =
{

x ∈ Rd : ‖x‖ ≤ τ
}

and infinitely divisible

distributions with spectral measures concentrated on the ball Bτ . The same

may be said about distributions satisfying multidimensional analogs of

conditions of Bernstein’s inequality.

The class Ad (0) coincides with the class of all d-dimensional Gaussian

distributions.
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The following inequality was proved in Zaitsev (1986) and can be considered

as an estimate of stability of this characterization: if F ∈ Ad (τ), τ > 0, then

π
(
F , ΦF

) ≤ c d2τ log∗(τ−1),

where the notation ΦF is used for the Gaussian distribution whose mean

and covariance operator are the same as those of a distribution F ,

π(F , G) = inf
{
ε > 0 : F

{
X

} ≤ G
{

X ε
}

+ ε, G
{

X
} ≤ F

{
X ε

}
+ ε

}

is the Prokhorov distance. Here X ε =
{

y ∈ Rd : inf
x∈X

‖x − y‖ < ε
}

is the

ε-neighborhood of the set X . Moreover, in Zaitsev (1986) it was established

that for all Borel sets X and all λ > 0

F
{

X
} ≤ ΦF

{
Xλ

}
+ c d2 exp

(
− λ

c d2 τ

)
,

ΦF
{

X
} ≤ F

{
Xλ

}
+ c d2 exp

(
− λ

c d2 τ

)
.
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Theorem 1 (Zaitsev (1998)). Suppose that τ ≥ 1, and X1, . . . , Xn are

random vectors with distributions L(Xk ) ∈ Ad (τ), E Xk = 0, cov Xk = Id ,

k = 1, . . . , n. Then there exists a construction such that

E exp
(c1 ∆n(X , Y )

τ d3 log∗ d

)
≤ exp

(
c2 d5/2 log∗

(
n/τ2)),

where c1, c2 are absolute positive constants.
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Theorem 1 allowed us to remove a logarithmic factor from the result of

Einmahl (1989) and to obtain a multidimensional analog of the KMT result

(1975) for vectors with finite exponential moments. Zaitsev (2001) generalized

Theorem 2 to the case of non-i.i.d. summands with different covariance

operators. In Zaitsev (1998), Theorem 2 was formulated and proved for a

fixed n. This means that the probability space depends on this n. However, a

repeated application of the result for fixed n allows one to get a construction

of the vectors {Xj} and {Yj} such that (1.11) is satisfied for all n

simultaneously on the same probability space. It suffices to take independent

constructions from the formulation of Theorem 2 with fixed n = 22m
,

m = 1, 2, . . ., just as was really done in the KMT paper (1975).
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Let H be the class of non-negative non-decreasing continuous functions

H : [0,∞) → R1 such that (for some δ > 0 and x0 > 0) the functions

H(x)/x2+δ and x/ log H(x) are non-decreasing, for x ≥ x0. The distribution of

a random vector ξ will be denoted below by L(ξ).

Examples: H(x) = c xα, α > 2; H(x) = exp{c xβ}, 0 < β ≤ 1.

We consider the rate of strong approximation assuming that, for some

function H ∈ H, E H (‖Xj‖) < ∞, j = 1, 2, . . . , n. The X1, . . . , Xn will be

generally speaking non-i.i.d., but, for the sake of simplicity, firstly we give the

results in the case of i.i.d. X1, . . . , Xn only.
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Theorem 2 (Zaitsev (2007)). Let H ∈ H and X be a random vector with

E X = 0 and E H (‖X‖) < ∞. Then, for any z > 0 and n ≥ 1, there exists a

construction such that

P
(
∆n(X , Y ) > c3 z

) ≤ c4 n
H(z)

, (11)

where c3 and c4 are positive quantities depending only on L(X ) and on the

function H( · ).

Theorem 3 (Zaitsev (2009)). Let H and X satisfy the conditions of

Theorem 2. Then there exists a construction such that (1) is satisfied for all

j = 1, 2, . . ., and

P
(

lim sup
n→∞

∥∥∥
n∑

j=1

Xj −
n∑

j=1

Yj

∥∥∥/H−1(n) < C
)

= 1.

where C < ∞ is a non-random quantity depending only on d, L(X ) and on

the function H( · )
Zaitsev (Steklov Institute, St Petersbourg) 20 / 29



Theorems 2 and 3 generalize to the multidimensional case the results of

Komlós, Major and Tusnády (1975–1976). Einmahl (1989) proved the same

statements for the functions H from the class H̃ of non-negative

non-decreasing continuous functions H such that the functions H(x)/x3+δ

and
√

x/ log H(x) are non-decreasing, for x ≥ x0. Clearly, there exists a lot of

functions belonging to H and not belonging to H̃. For example, we may

mention the functions H(x) = exp
(
λxβ

)
, 1/2 < β ≤ 1, λ > 0.
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Theorem 4 (Zaitsev (1998)). Let H and X satisfy the conditions of

Theorem 2, and the function x/ log(H(x)/LH) be non-decreasing for x > u,

where LH = n E H (‖X‖) and

u = C1 H−1(C2 LH), (12)

with some constants C1 ≥ 1 and C2 ≥ 1, where H−1( · ) is the inverse

function for H. Then, for any n ≥ 1, there exists a construction such that

P
(
∆n(X , Y ) > c5 z

) ≤ c6 n
H(z)

, (13)

for any z > 0, where c5 and c6 are positive quantities depending only on C1,

C2, L(X1) and on the function H( · ).
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The conditions of Theorem 4 are satisfied, for example, for the function

H ∈ H such that the function H(x)/xγ is non-increasing for some γ > 2.

Then, in the proof of Corollary 2 of Zaitsev (2006), it was shown that one can

take u = H−1(eγLH) in (12).

Another example is given by H(x) = exp
(
λxβ

)
, λ > 0, 0 < β < 1. In this case

one can take u = (1− β)−1/β H−1(LH) in (12).
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Theorem 5 (Götse and Zaitsev (2008, 2009)). Assume that γ > 2 and X is a

random vector with E X = 0, E ‖X‖γ
< ∞ and cov X = I, the identity

operator. Then, for any n ≥ 1, there exists a construction such that

E
(
∆n(X , Y )

)γ ≤ c7 A n E ‖X‖γ
, (14)

where

A = A(γ, d) = max
{

d11γ , d
γ(γ+2)

4 (log∗ d)
γ(γ+1)

2
}
, (15)

and c7 is a positive constant depending only on γ.

Corollary 1. Let X satisfy the conditions of Theorem 5. Then there exists a

construction such that (1) is satisfied for all j = 1, 2, . . ., and

E
(
∆n(X , Y )

)γ ≤ c8 A n E ‖X‖γ
, (16)

for all n ≥ 1, where A is defined in (15) and c8 is a positive constant

depending only on γ.
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Theorem 6 (Götse and Zaitsev (2008)). Suppose that X1, . . . , Xn are

independent Rd -valued random vectors with E Xj = 0, j = 1, . . . , n. Let

γ ≥ 2 and

Lγ =
n∑

j=1

E ‖Xj‖γ
< ∞.

Assume that there exist a positive integer s and a strictly increasing

sequence of non-negative integers m0 = 0, m1, . . . , ms = n satisfying the

following conditions. Let

ζk = Xmk−1+1 + · · ·+ Xmk , cov ζk = Bk , k = 1, . . . , s,

and assume that, for all v ∈ Rd and k = 1, . . . , s,

w2 ‖v‖2 ≤ 〈
Bk v , v

〉 ≤ C1 w2 ‖v‖2
,

where

w = C2 L1/γ
γ / log∗ s,

with some positive constants C1 and C2.
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Suppose that the quantities

λk,γ =

mk∑

j=mk−1+1

E ‖Xj‖γ , k = 1, . . . , s,

satisfy, for some 0 < ε < 1,

C3 dγ/2 sε (log∗ s)γ+3 max
1≤k≤s

λk,γ ≤ Lγ ,

with a positive constant C3. Then there exists a construction such that

E
(
∆n(X , Y )

)γ ≤ c9
(
ε−1 d11 log∗ d

)γ Lγ ,

where c9 is a positive quantity depending on γ, C1, C2 and C3 only.
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Theorem 7. (Zaitsev (2001)). Suppose that τ ≥ 1, D > 0 and X1, . . . , Xs

are independent random vectors with E Xj = 0, j = 1, . . . , s. Assume that

there exists a strictly increasing sequence of non-negative integers

m0 = 0, m1, . . . , ml = s satisfying the following conditions. Write

ζp = D
(
Xmp−1+1 + · · ·+ Xmp

)
, p = 1, . . . , n,

and suppose that (for all p = 1, . . . , n) L(ζp) ∈ Ad (τ) and the covariance

operators cov ζp = Bp satisfy for all u ∈ Rd

C2
1 ‖u‖2 ≤ 〈Bpu, u〉 ≤ C2

2 ‖u‖2

with some positive constants C1 and C2 which do not depend on p. Then

there exists a construction such that

E exp
(c10 D ∆s(X , Y )

τ d9/2 log∗ d

)
≤ exp

(
c11 d7/2 log∗(n/τ2)

)
,

where c10, c11 are positive quantities depending on C1, C2 only.
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