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• Painlevé property
• Discrete Painlevé equations
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The Schlesinger system and isomonodromic de-
formations of bundles with connections on Rie-
mann surfaces

Dmitry V. Artamonov

Abstract. Some representation of a pair ”a bundle with a connection” on a
Riemann surface, based on a representation of a surface as a factor of an
exterior of a unit disk, is introduced. In this representation isomonodromic
deformations of bundles with logarithmic connections are described by some
modification of the Schlesinger system on a Riemann sphere (typically this
modification is just the ordinary Schlesinger system) plus some linear system.

Mathematics Subject Classification (2000). Primary 34G56; Secondary 32G08,
32G34.

Keywords. The Schlesinger system, isomonodromic deformations, Riemann
surfaces.

1. Introduction

Consider a linear fuchsian system on a Riemann sphere: dydz =
∑n
i=1

Bi

z−ai y. Let us
change positions of singularities ai in such a way that the monodromy is preserved
and singularities do not confluence. Then the residues Bi become functions of ai.
If one considers only the so called Schlesinger deformations (for typical fuchsian
systems all their deformations are Schlesinger), these function are exactly solutions

of the Schlesinger system dBi = −∑n
j=1, i 6=j

[Bi,Bj ]
ai−aj d(ai − aj).

Take a Riemann surfaces of positive genus instead of the Riemann sphere. In
this case it is natural to consider the deformations of bundles with connections.
Also it is natural to allow to change the complex structure on the surface.

This work was completed with the support of the grant MK-4270.2011.1.
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The isomonodromic deformations on Riemann surfaces were considered for
example in [1],[2],[3]. The general case was considered by Krichever [2]. His ap-
proach is based on the fact that all holomorphic vector bundles are meromorphi-
cally trivial. But the equations of isomonodromic deformations from [2] differ much
from the Schlesinger system..

In the case of genus 1 another approach is known: the elliptic Schlesinger sys-
tem (see [1],[3]). This system of equations describes isomonodromic deformations
on a torus and it looks like an ordinary Schlesinger system.

The problem of generalizing of the Schlesinger system to higher genus sur-
faces was posed in [1]. It will be proved that in the case of Riemann surfaces the
isomonodromic deformations can be described by the Schlesinger system plus some
collection of linear equations.

2. The space of parameters T̃ .

Let M be a Riemann surface of genus g > 1. Let us fix some initial point x0 in M .

Definition 1. The space T̃ of parameters of deformations is defined as follows. Let
T be the Teichmuller space with n marked points a1, ..., an, where ai 6= aj for

i 6= j. Then T̃ is the universal covering of T .

Definition 2. The space T̃1, on which the isomonodromic families of pairs ”a bundle
with a connection” are defined, is constructed as follows. Let T1 be the Teichmuller

space with (n+ 1) marked points z, a1, ..., an, where ai 6= aj for i 6= j. Then T̃1 is
the universal covering of T1 taken by variables ai.

There exists a mapping T̃1 → T̃ , which forgets the marked point z. Let τ ∈ T̃ .

Denote as T̃1 |τ the preimage of τ under the mapping T̃1 → T̃ .
Only the local equations of isomonodromic deformations will be written. That

is why we shall sometimes omit taking if the universal covering.
The deformed objects are pairs ”a bundle with a connection” (not a form =

a system of linear equations = a connection in a trivial bundle as in the case of
genus 0).

3. The description of bundles with connections on a Riemann
surface.

The surface is represented as a factor of an exterior of a unit disk by an action
of a fuchsian group. A fundamental polygon U with 4g vertices (g is a genus of a
surface) is chosen in such a canonical way that one of its vertices is identically ∞.
The singularities become points in this polygon.

The deformed objects, bundles with connections (E,∇) on the Riemann sur-
face, are described by the following data:
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1. A form ω on a Riemann Sphere. This form is of type ω = (Ck

zk
+ ....C1

z +∑
i
Bi

z−ai )dz. All its singularities, except 0, belong to the fundamental polygon
U . The 0 is a regular singularity.

2. A collection of nondegenerate matrices Sx1
0,x

i
0
, i = 2, ..., 4g, where the symbols

xi0 denote the vertices of the fundamental polygon.

The form ω is constructed as follows. Take an inverse image of a pair (E,∇)
on a surface under factorization U → M and get some pair (EU ,∇U ) on a fun-
damental polygon U . Continue this pair to a bundle with a connection on the
Riemann sphere. Take a meromorphic trivialization of this bundle, which is holo-
morphic in C \ {0}. The connection in this bundle is defined by a form with a
regular singularity in zero. This is the form ω. For typical monodromy and typical
positions of singularities, the trivialization can be chosen in such a way that the
form is written just as ω = (C1

z +
∑n
i=1

Bi

z−ai )dz.

Define matrices Sx1
0x

i
0
. All vertices x10, ..., x

4g
0 of the polygon are glued to x0

under factorization U → M . A bundle with a connection (EU ,∇U ) is an inverse
image of the bundle with connection (E,∇). There exist operators, that identify
stalks EUx1

0
, EUxi

0
of the bundle EU over the vertices x10 and xi0. The matrix Sx1

0,x
i
0

is the matrix of this operator.
The procedure of construction of the form and the matrices is noncanonical.

Different forms and matrices can give equivalent bundles with connections on a
surface. We shall in fact consider not bundles with connections but the data,
described above.

4. The isomonodromic deformations.

In this section (E,∇) is a logarithmic connection. Let (E1,∇1) be a pair on T̃1. For

τ ∈ T̃ denote as (E1,∇1) |τ the restriction of a bundle and a connection (E1,∇1)

to the subspace T̃1 |τ .

Definition 3. An isomonodromic family is a pair (E1,∇1) on T̃1, such that the
following holds

1. the pair (E1,∇1) has singularities on hypersurfaces z = ai (i.e. hypersurfaces

in T̃1, which are preimages of hypersurfaces z = ai in T1).

2. for all τ ∈ T̃ the pairs (E1,∇1) |τ have the same monodromy.

Such a family describes a deformation of a pair (E,∇) on the marked Rie-
mann surface corresponding to τ0, with singularities corresponding to marked
points of τ0, if (E1,∇1) |τ0= (E,∇).

Definition 4. A family (E1,∇1) is a Schlesinger family if the following holds. When
the point in the Teichmuller space is fixed in some neighborhood of a hypersurface
z = ai the connection ∇1 is given in local coordinates by a form of type Bi

ζ−ai d(ζ−
ai)+h(ζ, ai), here h(ζ, ai) is some holomorphic form, Bi are holomorphic functions
of ai.
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Proposition 5. For every logarithmic initial pair (E,∇) at t0 ∈ T̃ there exists a

unique its continuation to a Schlesinger isomonodromic family (E1,∇1) on T̃1.

Now let us write the equations of Schlelinger isomonodromic deformations.
For each τ ∈ T close to τ0 take a pair (E1,∇1) |τ and consider the corresponding
form and matrices. Let us write the equations describing the resulting family of
forms and matrices.

Proposition 6. The equations of the isomonodromic deformations of ω are the
following:

dBi = −∑n
j=1,i6=j

[Bi,Bj ]
ai−aj d(ai − aj) + ∂C1

∂ai
dai, i = 1, ..., n

∂C2

∂ai
−∂C1

∂ai
ai = −[Bi, C1], ..., ∂Cl+1

∂ai
−∂Cl

∂ai
ai = −[Bi, Cl], ...,−∂Ck

∂ai
ai = −[Bi, Ck]

In the typical case, when Cl = 0 for l > 1, in the notations a0 = 0, B0 =
C1 = −∑n

i=1Bi this system turns into an ordinary Schlesinger system dBi =

−∑n
j=0, i 6=j

[Bi,Bj ]
ai−aj d(ai − aj).

Adding equation, that describe how the matrices Sx1
0,x

i
0

are changing, we get
the main result.

Theorem 7. In terms of the data presented in the section 3, the Schlesinger iso-
modromic deformation locally are described as follows:

1. The vertices xi0 of the fundamental polygon are changing according to the
change of a point in the Teichmuller space.

2. The coefficients of the form ω = (Ck

zk
+ ... + C1

z +
∑
i
Bi

z−ai )dz satisfy the
equations listed in the Proposition 6. In the typical case Cl = 0, l > 0 in
notations a0 = 0, B0 = −∑n

i=1Bi this is just the Schlesinger system dBi =

−∑n
j=0, i 6=j

[Bi,Bj ]
ai−aj d(ai − aj).

3. The matrices Sx1
0,x

i
0

are isomonodromic families of solutions of the equation

dSx1
0z

= ωSx1
0z

at the point z = xi0.
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Asymptotic Classification of Solutions
to 3rd and 4th Order Emden-Fowler Type
Differential Equations

Irina Astashova

Abstract. For n = 3 and 4, k > 1, asymptotic classification of all solutions to
the equation

y(n) + p(x) |y|k−1y = 0

is obtained. For n = 3 existence of a solution with any prescribed domain is
proved.

Mathematics Subject Classification (2000). 34C15, 34E10.

Keywords. asymptotic classification, nonlinear differential equations.

1. Introduction

For n = 3 and 4, k > 1, by using topological methods, asymptotic classification of
all solutions to the equation

y(n) + p(x) |y|k−1y = 0 (1.1)

is obtained. For n = 3 existence of a solution with any prescribed domain is proved.

Remark 1.1. A similar result for the equation (1.1) with n = 2 was described in
[1] and [3].

Remark 1.2. Asymptotic behavior of solutions to (1.1) near the bounds of domain
is obtained in [2].

The work was partially supported by the Russian Foundation for Basic Researches (Grant 11-
01-00989) and grant AVP RNP 2.1.1/13250.
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2. Results

2.1. Asymptotic classification

Theorem 2.1. (See figure 1.) Suppose n = 3, k > 1, and p(x) is a globally defined
positive continuous function with positive limits p∗ and p∗ as x→ ±∞. Then any
non-trivial non-extensible solution to (1.1) is either

1)-2) a Kneser solution on a semi-axis (b,+∞) satisfying

y(x) = ±C3k(p(b)) (x− b)− 3
k−1 (1 + o(1)) as x→ b+ 0,

y(x) = ±C3k(p∗) x−
3

k−1 (1 + o(1)) as x→ +∞,

where

C3k(p) =

(
3(k + 2)(2k + 1)

p (k − 1)3

) 1
k−1

;

or 3) an oscillating, in both directions, solution on a semi-axis (−∞, b) sat-
isfying, at its local extremum points,

|y(x′)| = |x′|−
3

k−1+o(1)
as x′ → −∞,

|y(x′)| = |b− x′|−
3

k−1+o(1)
as x′ → b+ 0;

or 4)-5) an oscillating near the right boundary and non-vanishing near the
left one solution on a bounded interval (b′, b′′) satisfying

y(x) = ±C3k(p(b′)) (x− b′)− 3
k−1 (1 + o(1)) as x→ b′ + 0,

and, at its local extremum points, |y(x′)| = |b′′ − x′|− 3
k−1+o(1)

as x′ → b′′ − 0.

y

xO

1

2

3

4

5

3y’’’ + y  = 0

Figure 1

y

xO

3

2

1

y   + y  = 0IV 3

Figure 2
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Theorem 2.2. (See figure 2.) For n = 4, k > 1, and p(x) ≡ p0 > 0, any non-trivial
non-extensible solution to (1.1) is either

1)-2) an oscillating, in both directions, solution on a semi-axis (−∞, b) or

(b,+∞) satisfying, at its local extremum points, |y(x)| � |x− b|− 4
k−1 ;

3) or an oscillating, in both directions, solution on a bounded interval (b′, b′′)

satisfying, at its local extremum points, |y(x)| � min {x− b′, b′′ − x}− 4
k−1 .

Theorem 2.3. (See figure 3.) For n = 4, k > 1, and p(x) ≡ p0 < 0, any non-trivial
non-extensible solution to (1.1) is either

1)-4) a Kneser solution on a semi-axis (−∞, b) or (b,+∞) satisfying

y(x) = ±C4k(p0) (x− b)− 4
k−1 (1 + o(1)) as x→ b,

y(x) = ±C4k(p0) x−
4

k−1 (1 + o(1)) as x→ ±∞,
where

C4k(p) =

(
4(k + 3)(2k + 2)(3k + 1)

p (k − 1)4

) 1
k−1

;

5) or a globally defined oscillating solution with arbitrary period;
6)-9) or a solution on a bounded interval (b′, b′′) satisfying, with independent

signs ±,

y(x) = ±C4k(p0) (x− b′)− 4
k−1 (1 + o(1)) as x→ b′ + 0,

y(x) = ±C4k(p0) (b′′ − x)−
4

k−1 (1 + o(1)) as x→ b′′ − 0;

10)-13) or a solution on a semi-axis (−∞, b) or (b,+∞) satisfying

y(x) = ±C4k(p0)) |x− b|− 4
k−1 (1 + o(1)) as x→ b

and oscillating at ±∞ with non-zero finite upper and lower limits.

y

xO

1

2

3

4

5

6

7

8

9

10

11

12

13

IV 3y   - y  = 0

Figure 3
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2.2. Existence of solution with prescribed domain

Definition. A solution y(x) has a resonance asymptote x = x∗ if

lim
x→x∗

y(x) = +∞, lim
x→x∗

y(x) = −∞.

Theorem 2.4. Suppose n = 3, k > 1, the function p(x) is continuous and

0 < p∗ ≤ p(x) ≤ p∗. (2.1)

Let y(x) be a solution of (1.1) defined on [x0, x
∗) with the resonance asymptote

x = x∗. Then the position of the asymptote x = x∗ depends continuously on y(x0),
y′(x0), y′′(x0).

Theorem 2.5. Suppose n = 3, k > 1, the function p(x) is continuous and condition
(2.1) holds. Then for any finite x∗ < x∗ there exists a non-extensible solution y(x)
of (1.1) defined on (x∗, x∗) with the vertical asymptote x = x∗ and the resonance
asymptote x = x∗.

Corollary 2.6. Suppose n = 3, k > 1, the function p(x) is continuous and condition
(2.1) holds. Then for any x∗ ∈ R there exists a Kneser solution of (1.1) having
the vertical asymptote x = x∗ and tending to 0 as x→ +∞.

Corollary 2.7. Suppose n = 3, k > 1, the function p(x) is continuous and condition
(2.1) holds. For any x∗ ∈ R there exists a non-extensible solution y(x) of (1.1)
having the resonance asymptote x = x∗ and tending to 0 as x→ −∞.

Theorem 2.8. Suppose n = 3, k > 1, the function p(x) is continuous and condition
(2.1) holds. Then for any finite or infinite x∗ < x∗ there exists a non-extensible
solution y(x) of (1.1) with domain (x∗, x∗).
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On rational canonical parametrization of iso-
monodromic deformation equations phase space

Mikhail V. Babich

Abstract. I propose the transparent geometric model that makes possible to
present the set of the rational Darboux coordinates on the phase space of the
Isomonodromic Deformation equation.

In the foundation of the construction lie an observation that for the
matrix from the orbit the projections of the kernel and image to the cor-
responding complementary coordinate subspaces are conjugated each other
with respect to the canonical structure of the orbit.

Keywords. Standard Jordan form, momentummap, Lie-Poisson-Kirillov-Kostant
form, rational symplectic coordinates.

Let us consider the deformation of the Fuchs equation

d

dz
Ψ =

M∑

k=1

Ak

z − zk Ψ; Ak ∈ sl(N,C); z, zk ∈ C. (1)

It is known that the isomonodromic deformation of this equation may be
associated with some Hamiltonian system defined on the space that we denote by
OJ1×OJ2×· · ·×OJM //SL(N,C). This space is the quotient of the product of the
several coadjoint orbits OJk := ∪g∈SL(N,C)gJ

kg−1 3 Ak over the diagonal action

of SL(N,C) intersected by the subspace
∑M

k=1A
k = 0.

It is known that both the orbit OJ and OJ1×OJ2×· · ·×OJM //SL(N,C) are
the symplectic manifolds equipped with the canonical symplectic forms ωJ and ω =∑

k ωJk . First of all we will introduce the birational Darboux parametrization of
OJ . The birationality means that the transformations (in both directions) between
the set of the matrix elements of A ∈ OJ and the set of the canonical coordinate
functions in question are given by the rational functions.

Let us built a set of the canonical coordinates on the orbits OJk . It is the
heart of the construction.
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We get the coordinates as the result of the following iterative process. Let
us put in any order the eigenvalues of J : λ1, λ2, . . . , λnmax , where the eigenvalues
corresponding to Jordan blocks are written several times, in accordance with the
maximal size of the blocks corresponding to the eigenvalue. Let us define the
iteration Aj−1 → Aj :

Aj−1 =

(
I 0
pj I

)(
λj qj
0 Aj

)(
I 0
pj I

)−1

, A0 := A,

where the columns of (Ipj)
T form the basis of the eigenspace ker(Aj−1 − λjI). It

can be proved that

the process is correctly defined on the Zariski-open subset of the orbit and de-
fine the rectangular matrices pj , qj, which matrix elements (pj)st, (qj)ts are canon-
ically conjugated with respect to the Lie-Poisson-Kirillov-Kostant form on the orbit
OJ .

The coordinates I have presented are similar to the cylindrical coordinates
introduced by Archimedes on a sphere (it is an orbit of O(3)) for the calculation of
its area. Namely. The family of p-coordinates has a group nature, they parameterize
some Abelian subgroups of triangular matrices, it is an analog of the longitude.
The conjugated q-coordinates form another family. These coordinates are invariant
with respect to the action of the corresponding Abelian subgroups on OJ . They
are an analog of the projection of the sphere on the diameter connecting the North
and the South poles. It is important for us that the matrix elements depend on
the coordinates from the q-family linearly.

Let us consider the isomonodromic deformations of the Schlesinger type:

dAk + [Ak, dRR−1 +
∑

i 6=k

Aid log(zk − zi)] = 0. (2)

Matrix-function R = R(z1, . . . , zM ) is the normalization matrix. It is the value of
the isomonodromic fundamental system of the solutions (1) in the infinity R :=
Ψ(z|z=∞, z1, . . . zM ).

The fixation of the normalization R is equivalent to the fixation of the section
of OJ1×· · ·×OJM → OJ1×· · ·×OJM //SL(N,C). We will fix this section explicitly
in terms of the constructed coordinates on OJ1 × · · · × OJM .

If the dimension of OJ1 ×OJ2 × · · · ×OJM //SL(N,C) is enough high we can
normalize (2) by setting equal to constant values the coordinates from the special
subset pnorm1 , pnorm2 , . . . , pnormN2−1 from the set of all pki , and the special choice of the

values of the coordinates qΣ
i conjugated pnormi provides the necessary restriction∑M

k=1A
k = 0.
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The dependence Ak on the coordinates qki is linear, consequently the solution

of the linear equations
∑M

k=1A
k = 0 is given by the rational functions qΣ

i =
qΣ
i (p̂, q̂), where by p̂, q̂ we denote the sets of all the coordinates without pnormi and
qΣ
i . They are removed from the sets.

The coordinates pnormi conjugated to qΣ
i are equal to constants, consequently

the symplectic form ω is equal to
∑

i dp̂i ∧ dq̂i.

Functions p̂, q̂ form the set of the birational canonical coordinates.

Example. Let two matrices-residues in (1), say AM and AM−1 have one-
dimensional eigenspaces only, and at least one eigenspace of AM−2, say ker(AM−2−
λM−2
N I) is one-dimensional too. We present the matrices AM , AM−1, AM−2 for

this case:

AM =




λM1 qΣ
1 . . . qΣ

N−1

0 λM2 . . . qΣ
N−1+N−2

...
...

. . .
...

0 0 . . . λMN


 ,

AM−1 =




λM−1
1 0 . . . 0

qΣ
N(N−1)/2+1 λM−1

2 . . . 0
...

...
. . .

...

qΣ
N(N−1)/2+N−1 qΣ

N(N−1)/2+N−1+N−2 . . . λM−1
N



,

AM−2 =




(A′N−2
)11 + qΣ

N(N−1)+1 (AN−2)12 . . . (AN−2)1N

(AN−2)21 (A′N−2
)22 + qΣ

N(N−1)+2 . . . (AN−2)2N

...
...

. . .
...

(AN−2)N1 (AN−2)N2 . . . (AN−2)NN




It is important that the values (A′N−2
)ii, i = 1, . . . , N − 1 and (AN−2)NN from

the diagonal do not depend on the variables qΣ
j , and all the matrix elements of

AN−2 do not depend on qΣ
j , j ≤ N(N − 1).

We can see that the equation
∑
Ak = 0 just fix the values of all qΣ

i : to get
(
∑
Ak)jj = 0, j < N we fix qΣ

i , i > N(N − 1); after that we fix qΣ
i , i ≤ N(N − 1)

to vanish off-diagonal entries of the equality
∑
Ak = 0 using the freedom to set

upper- and lower- triangular parts of AM and AM−1. The last term (
∑
Ak)NN is

equal to zero automatically because all the matrices are traceless.

We note that it is a case of a general position for JM , JM−1JM−2, and we
do not put any restrictions on the structure of all other matrices Jk, k < M − 2.
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Exact simple solutions to PVI

Alexander B. Batkhin and Natalia V.Batkhina

Abstract. We use the method for computing exact solutions of the sixth
Painlevé equation (PVI) in the form of finite sums of power functions with
rational power exponents. This method is essentially uses algorithms of Power
Geometry for computing power expansions of solutions to an ordinary differ-
ential equation and computer algebra. New exact solutions were obtained.

1. Description of the method

Knowledge of the exact solutions of the equation PVI for definite values of equa-
tion’s parameters 𝛼, 𝛽, 𝛾, 𝛿 is valuable for applications. Some elementary exact
solutions in the form of algebraic functions were obtained with the help of Bäcklund
transformations (see [1, § 48]). The modification of method for computing exact
solutions, proposed in [2] for finding of exact solutions to N. Kovalewski equations,
is used by authors. This method is based on fitting of two power series expansions
near the origin and at infinity and getting conditions on the coefficients of ex-
pansions in the form of system of algebraic equations. It is possible to get the
exact solution in the form of finite sum of power functions with rational degrees
by solving this system of equations. The modification of the method consists in
the fact that, using the form of asymptotic expansions of solutions to the equation
PVI at the origin and at infinity, the general form of exact solution is composed.
After substituting such solution into the equation PVI one can obtain the system
of algebraic equations for unknown coefficients of exact solution and parameters
of the equation. The obtained system is solved with the help of computer algebra
system using Gröbner basis [3].

The choice of the form of the exact solution is determined with the help of
Power Geometry algorithms (see [4, Ch. 1]). One can write the equation PVI as
sum of differential monomials then compute the support and the polygon of this
sum (see Fig. 1 taken from [4]). There are only four pairs of power expansions at

This work was partially supported by RFBR grant No 11-01-00023.



18 A. B.Batkhin and N. V.Batkhina

the origin and at infinity that suitable for matching procedure:

q2

q1Q1

Q2

Q3

Q4

Γ
(1)
1

Γ
(1)
2

Γ
(1)
3

Γ
(1)
4

0 1

1

Fig. 1

1. the edge Γ
(1)
4 and the edge Γ

(1)
3 ;

2. the vertex 𝑄0 and the vertex 𝑄2;
3. the vertex 𝑄0 and the edge Γ

(1)
3 ;

4. the edge Γ
(1)
4 and the vertex 𝑄2.

The power expansion of a solution at the
origin is a power series of increasing power
exponents and power expansion of a solu-
tion at infinity is a power series of decreas-
ing power exponents. Therefore the match-
ing condition may be fulfilled if the initial
expansion term of the expansion at the ori-
gin will be less then initial expansion term
of the expansion at infinity. The initial ex-
pansion terms of expansions corresponding
to the edges Γ

(1)
4 and Γ

(1)
3 have power ex-

ponents equal to 0 and 1. The asymptotic
expansions corresponding to the edges 𝑄4

and 𝑄2 were computed in Theorem 2.2.1
and in § 5.1 [4] and are of the form

𝒜0 : 𝑐𝑟𝑥
𝑟 +

∑︁
𝑐𝑠𝑥

𝑠, 0 < Re 𝑟 < 1, 𝑠 ∈ {𝑟 + 𝑙𝑟 +𝑚(1 − 𝑟)},

𝒜∞ : 𝑐𝑟𝑥
𝑟 +

∑︁
𝑐𝑠𝑥

𝑠, 0 < Re 𝑟 < 1, 𝑠 ∈ {𝑟 − 𝑙𝑟 −𝑚(1 − 𝑟)},
where 𝑙,𝑚 > 0, 𝑙+𝑚 > 0, 𝑙,𝑚 ∈ Z. Then the exact solutions should be sought in
the form

𝑦(𝑥) =
𝑙∑︁

𝑘=0

𝑎𝑘𝑥
𝑘/𝑙, 𝑙 ∈ N. (1)

2. Results
If all 𝑎𝑘 − 0 for 𝑘 = 1, . . . , 𝑙 − 1 then (1) gives the linear solution of the equation
PVI. The following table summaries the families of linear solutions for different
values of parameters of the equation PVI.

Sol. Parameters Notes
𝛼 𝛽 𝛾 𝛿

𝑎𝑥+ 1 1/2 − (𝑎+1)2

2 0 𝑎− 𝑎2/2 𝑎 – parameter
𝑎𝑥+ 1 − 𝑎 𝛾/𝑎2 −1/2 𝛾 1/2 − 𝛾(1 − 1/𝑎)2 𝑎, 𝛾 – parameters
𝑥+ 𝑏 1/2 − (𝑏+1)2

2
(𝑏−1)2

2 1/2 𝑏 – parameter
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Here we present the list of solutions of the form (1) for 𝑙 = 2, . . . , 6. There
is an elementary solution 𝑦 = 𝑎𝑥𝑛, 𝑛 ∈ C to the equation PVI for 𝛼 = 𝛽 = 0,
𝛾 = 𝑛2/2, 𝛿 = 𝑛(2−𝑛)/2, therefore we list only those solutions of the form (1) for
which at least more then one coefficient 𝑎𝑘 ̸= 0.

𝑙 = 2 Parameters Coefficients
Sol. No 𝛼 𝛽 𝛾 𝛿 𝑎0 𝑎1 𝑎2

2-1 1/2 0 1/8 −5/8 1/2 ±1/2 0
2-2 1/8 −9/8 1/2 0 1 ±1 1
2-3 1/2 0 3/8 9/8 0 ±1/2 1/2
2-4 2 0 3/8 9/8 1/4 ±1/2 1/4

𝑙 = 3 Parameters Coefficients
Sol. No 𝛼 𝛽 𝛾 𝛿 𝑎0 𝑎1 𝑎2 𝑎3

3-1 1/18 −2/9 0 1/2 0 −1 −1 0
3-2 2/9 −1/18 1/2 0 0 1/2 1/2 0
3-3 2/9 −1/18 1/2 0 0 −1/2(1 + 𝑧0) 𝑧0/2 0
3-4 1/2 0 2/9 −7/18 1/3 1/3 1/3 0
3-5 1/2 0 2/9 −7/18 1/3 −1/3(1 + 𝑧0) 𝑧0/3 0
3-6 1/2 0 8/9 5/18 0 1/3 1/3 1/3
3-7 1/2 0 8/9 5/18 0 −1/3(1 + 𝑧0) 𝑧0/3 1/3
3-8 1/18 −8/9 0 1/2 1 1 1 1
3-9 1/18 −8/9 0 1/2 1 −1 − 𝑧0 𝑧0 1

where 𝑧0, is the root of the equation 𝑧2 + 𝑧 + 1 = 0. Solutions 3-4 and 3-6 are
connected by the Bäcklund transformation 𝑇4 : 𝑦4(𝑥;𝛼, 𝛽,−𝛿 + 1/2,−𝛾 + 1/2) =
𝑥𝑦(1/𝑥;𝛼, 𝛽, 𝛾, 𝛿).

𝑙 = 4 Parameters Coefficients
Sol. No 𝛼 𝛽 𝛾 𝛿 𝑎0 𝑎1 𝑎2 𝑎3 𝑎4

4-1 9/32 −1/32 1/2 0 0 1/3 1/3 1/3 0
4-2 9/32 −1/32 1/2 0 0 ±1/3 0 ±1/3 0
4-3 1/32 −9/32 0 1/2 0 ∓𝑖 1 ±𝑖 0
4-4 1/2 0 9/32 −9/32 1/4 ±1/4 1/4 ±1/4 0
4-5 1/2 0 9/32 −9/32 1/4 ∓𝑖/4 −1/4 ±𝑖/4 0
4-6 1/2 0 25/32 7/32 0 ±1/4 1/4 ±1/4 1/4

Solutions 4-4 and 4-6 are connected by the Bäcklund transformation 𝑇4 as men-
tioned above.
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𝑙 = 5 Parameters Coefficients
Sol. No 𝛼 𝛽 𝛾 𝛿 𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5

5-1 8/25 −1/50 1/2 0 0 1/4 1/4 1/4 1/4 0
5-2 8/25 −1/50 1/2 0 0 𝐴1 𝑧30/4 𝑧20/4 𝑧0/4 0
5-3 1/50 −8/25 0 1/2 0 −1 −1 −1 −1 0
5-4 1/50 −8/25 0 1/2 0 𝐵1 𝑧31 𝑧21 𝑧1 0
5-5 1/2 0 8/25 −11/50 1/5 1/5 1/5 1/5 1/5 0
5-6 1/2 0 8/25 −11/50 1/5 𝐶1 𝑧30/5 𝑧20/5 𝑧0/5 0

where 𝑧0 is the root of the equation 𝑧4+𝑧3+𝑧2+𝑧+1 = 0, 𝐴1 = − 1
4−𝑎2−𝑎3−𝑎4,

𝐶1 = −1/5−𝑎2−𝑎3−𝑎4 and 𝑧1 is the root of the equation 𝑧4−𝑧3 +𝑧2−𝑧+1 = 0,
𝐵1 = 1 − 𝑎2 − 𝑎3 − 𝑎4.

𝑙 = 6 Parameters Coefficients
Sol. No 𝛼 𝛽 𝛾 𝛿 𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6

6-1 1
72 − 25

72 0 1
2 0 ±1 1 ±1 1 ±1 0

6-2 1
72 − 25

72 0 1
2 0 −(1 + 𝑧0) −𝑧0 1 1 + 𝑧0 𝑧0 0

6-3 1
72 − 25

72 0 1
2 0 1 − 𝑧1 𝑧1 −1 1 − 𝑧1 𝑧1 0

6-4 1
2 0 25

72 − 13
72

1
6 ±1/6 1

6 ± 1
6 1/6 ±1/6 0

6-5 1
2 0 25

72 − 13
72

1
6 − 1+𝑧0

6
𝑧0
6

1
6 − 1+𝑧0

6 𝑧0/6 0

6-6 1
2 0 25

72 − 13
72

1
6

1−𝑧1
6 − 𝑧1

6 − 1
6

𝑧1−1
6 𝑧1/6 0

where 𝑧0 is the root of the equation 𝑧2 + 𝑧 + 1, 𝑧1 is the root of the equation
𝑧2 − 𝑧 + 1.

Solution 3-1 can be obtained from elementary solutions 𝑦 = 𝑥4/3 or 𝑦 =
𝑥1/3 by the Bäcklund transformations 𝑇8 : 𝑦8(𝑥;−𝛿 + 1/2,−𝛾,−𝛽,−𝛼 + 1/2) =
𝑦(𝑥;𝛼, 𝛽, 𝛾, 𝛿) and 𝑇9 : 𝑦9(𝑥; 𝛾, 𝛿 − 1/2, 𝛼, 𝛽 + 1/2) = 𝑦(𝑥;𝛼, 𝛽, 𝛾, 𝛿), correspond-
ingly. The same transformations connect the solution 5-3 with elementary solutions
𝑦 = 𝑥6/5 and 𝑦 = 𝑥1/5, correspondingly. It is possible that some other solutions
among mentioned above may be obtained from the known elementary solutions
of the equation PVI by the Bäcklund transformations but the authors does not
known anything about it.

3. Final remarks

Solutions 3-4, 3-8, 4-4 and 5-5 can be written as the sum of finite geometrical
progression and then can be generalized for the case of any power exponents. The
direct substitution shows that the function 𝑦 = 𝑏(𝑥 − 1)/(𝑥𝑏 − 1) is the exact
solution of the equation PVI for 𝛼 = 1/2, 𝛽 = 0, 𝛾 = (1 − 𝑏)2/2, 𝛿 = −(2 + 𝑏)2/2.

The authors express their gratitude to prof. A. D. Bruno for the fruitful ideas,
without which this work would not be held.
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On the Malgrange isomonodromic deformations
of non-resonant meromorphic connections

YuliyaP.Bibilo and RenatR.Gontsov

Abstract. Movable singularities of the equations governing the Malgrange
isomonodromic deformation of a non-resonant rank 2 meromorphic connec-
tion are studied: we describe the theta-divisor of the deformation and estimate
orders of movable poles of the equations in the case of irreducible monodromy.

Mathematics Subject Classification (2000). Primary 34M56; Secondary 34M40.

Keywords. Holomorphic vector bundle, meromorphic connection, irregular sin-
gularity, isomonodromic deformation, theta-divisor, Painlevé property.

1. Introduction

Consider a meromorphic linear system on the Riemann sphere C, i. e., a system of p
linear ordinary differential equations with singularities a0

1, . . . , a
0
n ∈ C and possibly

∞. By a conformal mapping one can always arrange that all the singularities are
in the complex plane only. This means that one can reduce the system to the form

dy

dz
= B(z) y, B(z) =

n∑

i=1

ri+1∑

j=1

B0
ij

(z − a0
i )j

, (1.1)

where y(z) ∈ Cp, B0
ij are (p× p)-matrices and

∑n
i=1B

0
i1 = 0, to ensure that ∞ is

not a singular point.
The non-negative integers r1, . . . , rn are called the Poincaré ranks of the sin-

gularities a0
1, . . . , a

0
n respectively. One can assume that the Poincaré ranks r1, . . . , rm

are positive and rm+1 = . . . = rn = 0 (that is, the singular points a0
m+1, . . . , a

0
n

are Fuchsian) for some 0 6 m 6 n.
We consider the non-resonant case. This means that the leading term B0

i,ri+1

of each non-Fuchsian singularity a0
i , i = 1, . . . ,m, has p distinct eigenvalues.

This work is supported by the Russian Foundation for Basic Research (RFBR-11-01-00339) and
RF President programmes (NSh-8508.2010.1, MK-4270.2011.1).
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The system (1.1) can be thought of as a meromorphic connection ∇0 (more
precisely, as an equation for horizontal sections with respect to this connection) on
a holomorphically trivial vector bundle E0 of rank p over C. In a neighbourhood
of each (non-resonant) irregular singularity a0

i the local connection form ω0 =
−B(z)dz of ∇0 is formally equivalent to the 1-form

ωΛ0
i

=

ri+1∑

j=1

Λ0
ij

(z − a0
i )j

dz,

where Λ0
i1, . . . ,Λ

0
i,ri+1 are diagonal matrices and the leading term Λ0

i,ri+1 are con-

jugated to B0
i,ri+1.

One should note that formally equivalent systems in a neighbourhood Oa0
i

of

an irregular singularity a0
i are not necessary holomorphically or meromorphically

equivalent. The system (1.1) has in Oa0
i

a formal fundamental matrix of the form

Ŷ (z) = F̂ (z)(z − a0
i )−Λ0

i1eQ(z), Q(z) =

ri∑

j=1

Λ0
ij

j
(z − a0

i )−j ,

where F̂ (z) is an invertible formal Taylor series in (z − a0
i ). One can cover Oa0

i

by a set of sufficiently small sectors S1, . . . , SN such that in each Sk there exists

a unique fundamental matrix Yk(z) = Fk(z)(z − a0
i )−Λ0

i1eQ(z) of the system with

Fk(z) having F̂ (z) as asymptotic series in Sk. In every intersection Sk ∩ Sk+1

the fundamental matrices Yk(z), Yk+1(z) are connected by a constant matrix Ck:
Yk+1(z) = Yk(z)Ck, which is called a Stokes’ matrix. If a0

i is a non-resonant sin-
gularity, then two formally equivalent systems are holomorphically equivalent in
Oa0

i
if and only if they have the same sets of Stokes’ matrices.

Further we will focus on the deformations of the system (1.1) (of the pair
(E0, ∇0)) that allow the local formal equivalence class

ωΛi =

ri+1∑

j=2

Λij

(z − ai)j
dz +

Λ0
i1

z − ai
dz, i = 1, . . . ,m,

to vary in the sense that the diagonal matrices Λi2, . . . ,Λi,ri+1 vary in a neighbour-
hood of Λ0

i2, . . . ,Λ
0
i,ri+1 with Λ0

i1 held fixed. Thus for the set Λi = {Λi2, . . . ,Λi,ri+1}
of ri diagonal matrices we denote by ∇Λi

the meromorphic connection on the holo-
morphically trivial vector bundle of rank p over Oai

whose 1-form is ωΛi
.

2. The Malgrange isomonodromic deformation of the pair (E0,∇0)

First we describe in more details the deformation space. For k ∈ N let us denote
by Zk the subset of the space Ck whose points have pairwise distinct coordinates.
Then Zn will be the space of pole locations and

Ci = Cp × . . .× Cp

︸ ︷︷ ︸
ri−1

×Zp, i = 1, . . . ,m,
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will be the space of local formal equivalence classes at the pole ai. Define the
deformation space D as the universal cover

D = Z̃n × C̃1 × . . .× C̃m
of the Cartesian product Zn × C1 × . . .× Cm.

One has the standard projections

a = (a1, . . . , an) : D → Zn,

Λi = (Λi2, . . . ,Λi,ri+1) : D → Ci, i = 1, . . . ,m.

For t ∈ D we denote by ai(t) the i-th coordinate of the image of t under the first
projection and by Λi(t) the image of t under the second one. Denote then by t0

the base point of the deformation space D corresponding to the system (1.1) (to
the initial connection ∇0), i. e., a(t0) = (a0

1, . . . , a
0
n), Λi(t

0) = (Λ0
i2, . . . ,Λ

0
i,ri+1).

Consider also the singular hypersurfaces

Yi = {(z, t) ∈ C×D | z = ai(t)} ⊂ C×D, i = 1, . . . , n.

Now consider the fibre bundle Mi → Ci, whose fiber over each point Λi ∈ Ci
is the moduli space of local holomorphic equivalence classes of connections that are
all formally equivalent to the connection ∇Λi

. A point of this fiber (a holomorphic
equivalence class of connections) is determined by a corresponding set of Stokes’
matrices. Let σ0

i ∈Mi denote the holomorphic equivalence class of the connection
∇0|O

a0
i

∼ ∇Λ0
i

and let σi denote the unique (local) horizontal section of the fibre

bundle Mi → Ci such that σi(Λ
0
i ) = σ0

i .
There exists [1, Th. 3.1] (see also [2, Th. 2.9]) the Malgrange isomonodromic

deformation (E,∇) of the pair (E0,∇0), that is, the rank p holomorphic vector
bundle E over C×D and integrable meromorphic connection ∇ on E with a simple
type ri singularity over Yi, i = 1, . . . , n, satisfying the following properties:

1) the restriction of (E,∇) to C× {t0} is equivalent to (E0,∇0);
2) the restriction of ∇ to C×{t} is formally equivalent to the local connection

∇Λi(t) near z = ai(t);
3) the latter restriction belongs to the local holomorphic equivalence class

σi(Λi(t)) ∈Mi.
According to the Malgrange-Helminck-Palmer theorem (see [2, §3]) the set

Θ = {t ∈ D | E|C×{t} is non-trivial }
is either empty or Θ ⊂ D is an analytic subset of codimension one. Thus the Mal-
grange isomonodromic deformation of the pair (E0,∇0) determines an isomon-
odromic deformation

dy

dz
=
( n∑

i=1

ri+1∑

j=1

Bij(t)

(z − ai(t))j
)
y, Bij(t

0) = B0
ij ,

of the system (1.1) for t ∈ D(t0), where D(t0) is a neighbourhood of the point t0 in
the space D. The matrix functions Bij(t), holomorphic in D(t0), can be extended
meromorphically to the whole space D having Θ as a polar locus.
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3. Specificity of meromorphic 2× 2-connections

The polar locus Θ (which is called the Malgrange Θ-divisor) possesses a local de-
scription analogous to that of the Θ-divisor for the Schlesinger equation governing
isomonodromic deformations of Fuchsian systems (see [3]).

Now let us consider the two-dimensional case (p = 2). Suppose that the initial
system has at most m = 2 irregular (non-resonant) singularities and they are of
Poincaré rank 1. Thus we consider the system of the form

dy

dz
=

(
B0

12

(z − a0
1)2

+
B0

22

(z − a0
2)2

+

n∑

i=1

B0
i1

z − a0
i

)
y. (3.1)

Theorem 3.1. Let the monodromy of the system (3.1) be irreducible and let (E,∇)
be the Malgrange isomonodromic deformation of the system (3.1). Consider any
point t∗ ∈ Θ such that E|C×{t∗} ∼= O(1)⊕O(−1).

Then in a neighbourhood D(t∗) of t∗ the Θ-divisor is given as a zero set of
an irreducible holomorphic function τ , and the matrix functions Bij(t) have poles
of at most second order along D(t∗) ∩Θ.

The latter means that τ2(t)Bij(t) are holomorphic matrix functions in D(t∗).

Remark 3.2. For example, the Painlevé III and V equations can be described in
terms of isomonodromic deformations satisfying the above theorem (see details in
[4, Ch. 5, §§4,5]): for PIII one has m = n = 2 and for PV one has m = 1, n = 3. If
t∗ ∈ Θ and E|C×{t∗} ∼= O(k)⊕O(−k), then the estimate 2k 6 m+ n− 2 holds [5]

when the monodromy of a connection is irreducible. Thus 2k 6 2 and hence k = 1
in both cases.
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The sixth Painlevé transcendent
as a generator of uniformizable orbifolds

Yurii V. Brezhnev

1. Algebraic solutions of P6 and uniformization theory

The sixth Painlevé transcendent

P6 : yxx =
1

2

(
1

y
+

1

y − 1
+

1

y − x

)
y2x −

(
1

x
+

1

x− 1
+

1

y − x

)
yx

+
y (y − 1)(y − x)

x2(x− 1)2

{
α− β x

y2
+ γ

x− 1

(y − 1)2
−
(
δ − 1

2

) x(x− 1)

(y − x)2

}

is known to be a rich source of nontrivial algebraic solutions y = f(x) and genera
of these solutions, as genera of corresponding algebraic curves F (x, y) = 0, may
be made as great as is wished. The relation of such solutions to the uniformization
theory is based on the ℘-representation of the P6:

−π
2

4

d2z

dτ2
= α℘′(z|τ) + β℘′(z − 1|τ) + γ℘′(z − τ |τ) + δ℘′(z − 1− τ |τ) (1)

obtainable via the transcendental change (x, y) 7→ (z, τ) (Painlevé (1906), Manin–
Babich–Bordag (1996)):

x =
ϑ44(τ)

ϑ43(τ)
, y =

1

3
+

1

3

ϑ44(τ)

ϑ43(τ)
− 4

π2

℘(z|τ)

ϑ43(τ)
. (2)

Thus, knowledge of z(τ)-dependence leads to a parametric representation for so-
lution y = f(x) and, in particular, to parametric representation of algebraic solu-
tions. In their full generality these dependencies are known for the Picard–Hitchin
class of solutions. For example, Picard’s case α = β = γ = δ = 0 corresponds to
z = Aτ + B. In Hitchin’s case α = β = γ = δ = 1

8 the dependence z(τ) is more
complicated (obtainable through Okamoto’s transformations) but parametric form
of solution is, however, found to be very compact

yPic = −ϑ
2
4(τ)

ϑ23(τ)

θ22
θ21
, yHit =

ϑ24(τ)

ϑ23(τ)

{
π
ϑ22(τ) ·θ2θ3θ4
θ′1 + 2πAθ1

− θ22
}

1

θ21
, (3)
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where θ’s are understood to be equal to θk(Aτ+B|τ) with arbitrary constants A, B
and θ′1 := θ′1(Aτ+B|τ). Purely algebraic solutions correspond to Aτ+B = ν

N τ+ µ
N

with integral ν, µ, and N .
Uniformizing functions are known to be determined in terms of the auxiliary

2nd order linear Fuchsian ODEs Ψyy = 1
2Q(x, y)Ψ, where Q, as a rational function

of x and y, contains all the information about corresponding Riemann surface
R (or orbifold T). Since the function x = χ(τ) in (2) is the very well-known

one and its Fuchsian Γ(2)-equation Ψ′′ = − 1
4
x2−x+1
x2(x−1)2 Ψ is also known, we obtain

nontrivial (solvable) Fuchsian equations for the second uniformizing function y(τ).
Manipulations with Fuchsian equations themselves are not convenient because
we constantly handle the multivalued functions-inversions; the ratios like τ =
Ψ1(x)/Ψ2(x). For this reason we invert the standard Schwarz derivative {τ, x}
into the ‘reverse’ object [x, τ ] = −{τ, x} and work with the autonomous ODEs

[y, τ ] = Q(x, y), where [y, τ ] :=

...
y

ẏ3
− 3

2

ÿ2

ẏ4
, (4)

defining uniformizing single-valued functions and other single-valued objects.

2. On the general solution to equation (1)

Complete structure of the analytic continuations (a connection problem) of arbi-
trary solutions to P6 is the subject matter of the series works by D. Guzzetti (see,
e. g., [1]). Analyzing these results, it would appear reasonable that the ramifica-
tion structure of all (not necessarily algebraic) solutions to the P6-equation in the
vicinity of critical points is described by a function series of the kind

y = A+R
[
(x− e)a lnn(x− e)

]
+ · · · ,

where e = {0, 1}, a ∈ C, n ∈ Z, and R[. . .] is a rational function of its argument. In
the language of uniformizing Painlevé substitution (2) this point is self-suggested:
in the upper (τ)-half-plain H+ the x-function has an exponential behavior in the
neighborhood of the points x = {0, 1,∞}:

x
τ→0
= 0+16 exp

(
π

iτ

)
+· · · , x

τ→∞
= 1−16eπiτ+· · · , x

τ→1
=

1

16
exp

(
π i

τ − 1

)
+· · ·

(the uniformizing τ -parameter itself is defined up to a fraction-linear transforma-
tion). It follows (the conjecture) that the y-function has also the single-valued
character about each of the branch-point pre-images:

y(τ) = A+B (τ − τo)n exp
( −aπi
τ − τo

)
+ · · · , y(τ) = A+Bτneaπiτ + · · · . (5)

as τ → τo ∈ R or, respectively, τ → +i∞. For example, all asymptotics appear-
ing in [1] fit this behavior. We can therefore rewrite Eqs. P6 and (1) in form of
modification of purely ‘algebraic’ uniformizing Schwarz–Fuchs 3rd order ODE (4):

[y, τ ] = Ay−4x +By−3x + Cy−2x +Dy−1x + E, (6)
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where (A,B,C,D,E) are certain rational functions of x, y and quadratic polyno-
mials in parameters (α, β, γ, δ) (explicit expressions are too cumbersome to display
here). Because of outstanding character of P6, this equation may be treated as a
generator of ‘infinite genus curves’. In the case of algebraic solutions the right hand
side of Eq. (6) becomes a rational function Q(x, y), that is (4). We conjecture that
all the Painlevé solutions to Eq. (6) are the globally single-valued analytic func-
tions with the structure (5) and the domain of their existence is a half-plain (under
suitable normalization of τ). It is known that solutions to the lower Painlevé equa-
tions P1...5 (under an appropriate modification [2]) are the single-valued functions
on C. In this respect, the pass from P6-equation over C\{0, 1,∞} to the H+ and
uniformization theory related to the coverings of a three punctured Γ(2)-orbifold
becomes very natural.

3. Calculus: Abelian integrals and affine (analytic) connections

Insomuch as we have not only τ -representations for the scalar (i. e. automorphic)
functions on R’s but rules for differential computations with theta-functions of ar-
bitrary arguments [3] we can close the differential apparatus on orbifolds T whose
compactifications are corresponding Painlevé R’s. This includes the additively au-
tomorphic functions (Abelian integrals), differentials, and covariant differentiation,
say, of 1-differentials ∇ = ∂τ −Γ(τ). The latter leads to necessity to introduce the
geometric connection object Γ(τ), which transforms according to the standard rule

Γ̃(τ̃)dτ̃ = Γ(τ)dτ − d ln dτ̃
dτ under SL2(R)-transformations and respects the factor

topology of H+
/
π1(T). The characteristic feature of the (complex) 1-dimensional

case (orbifolds and Riemann surfaces) is that it is completely described by the
invariant 3rd order ODE (4). Therefore closed collection of data for the theory
is given by the set

{
y(τ), ẏ(τ), ÿ(τ)

}
if, however, the automorphism group of the

generator y(τ) coincides with π1(T). In general, automorphisms of the field gen-
erators are not bound to coincide with π1(T) since the choice of the pair (x, y)
is not unique. It is found however that the set of Painlevé orbifolds coming from
Picard–Hitchin’s curves (3) is not the case: Auty(τ) ∼= π1(T). In this regard the
many Painlevé curves (we suggest that all) stand out majority of classical modu-
lar equations originated from purely group-algebraic considerations related to the
group PSL2(Z) or some its subgroups. By this means the expression

Γ(τ) =
d

dτ
ln ẏ(τ) + arbitrary (Abelian) 1-differential

provides a general form of the sought-for connection on Painlevé T. We can nor-
malize this Γ(τ) to have only first order poles (residues) and, integrating the
transformation law above, one can see that the sum of such residues is invariant

∫

∂R
Γ̃(τ̃)dτ̃ =

∫

∂R
Γ(τ)dτ = (2g − 2) · 2π i;

it depends only on genus and, in effect, is equal to the number of zeroes of a
holomorphic differential u̇(τ). Varying the holomorphic differentials u̇k(τ) we can
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impart the simpler from to the connection

Γ(τ) =
d

dτ
ln u̇(τ) +

g∑

k=1

u̇k(τ)

and build the elementary Γ with a single pole (if genus g > 1 then the analytic
connection does always have a singularity). So we have the set of invariant ob-
jects

{
y(τ), ẏ(τ), Γ(τ)

}
since functions x(τ), y(τ) are completely at hand. The

remarkable fact is that affine (analyitc) connection on an arbitrary T satisfies an

autonomous ODE Ξ(
...
Γ, Γ̈, Γ̇,Γ) = 0 and there is an algorithm how to derive it.

For completeness we should involve into analysis the integrals of closed 1-forms
on our T’s and R’s, if only because there are exact 1-forms whose integrals lead to
the scalar objects. On the other hand, uniformization of any higher genera curves
is reduced to uniformization of zero genus orbifolds and the latter form towers
and hierarchies. In the Painlevé uniformizing theory, in one way or another, many
classical and nonclassical zero genus known orbifolds appear [3]. In turn they are
related to nonzero genus curves which may cover elliptic ones, i. e. tori. We thus
obtain a possibility to construct explicitly Abelian integrals if they come from an
elliptic cover. Here is a good example along these lines.

The Chudnovsky orbifold defined by the Fuchsian equation (z3−z)Ψ′′+(3z2−
1)Ψ′+ zΨ = 0 is related, through the Halphen transformation (zero genus elliptic
cover) z = ℘(u), to the Fuchsian equation on the lemniscatic torus ℘′2 = 4℘3−4℘.
Correlating these facts we derive the nice τ -representation for the everywhere finite
object u and analog of (4)—the uniformizing Schwarz equation:

[u, τ ] = −2℘(2u) , u(τ) =
1

2

ϑ3(τ)

ϑ2(τ)
· 2F1

(
1

2
,
1

4
;
5

4

∣∣∣ϑ
4
3(τ)

ϑ4
2(τ)

)

(the check is a good exercise). This is a first explicit and analytic τ -representation
for an additively automorphic function (Abelian integral u = ℘−1(z)) on an orbifold
(Riemann surface) of a negative curvature −1. Under suitable cover this u(τ) may
produce the τ -representation for u-integrals on higher genus curves; examples of
the analogous ODEs and their solutions can also be obtained. All of them can be
related to the Painlevé curves.
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Comm. Pure Appl. Math. (2002), LV(10), 1280–1363.

[2] Gromak, V. I., Laine, I. & Shimomura, S. Painlevé Differential Equations in the
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Plane Power Geometry for single ODE
and Painlevé equations

Alexander D. Bruno

Power Geometry (PG) gives algorithms for calculation of asymptotic forms
and asymptotic expansions of solutions to one equation (algebraic, ordinary differ-
ential and partial differential) and to system of such equations. Here we consider
such asymptotic expansions of solutions to single ordinary differential equation
(ODE) which can be calculated by algorithms of planar Power Geometry, and we
point out some applications to Painlevé equations.

1. General ODE
1. 1. Statement of the problem. Let x be independent and y be dependent variables,
x, y ∈ C. A differential monomial a(x, y) is a product of an ordinary monomial
cxr1yr2 , where c = const ∈ C, (r1, r2) ∈ R2, and a finite number of derivatives of
the form dly/dxl, l ∈ N. A sum of differential monomials f(x, y) =

∑
ai(x, y) is

called the differential sum.
The main problem. Let a differential equation be given

f(x, y) = 0, (1)

where f(x, y) is a differential sum. As x→ 0, or as x→∞, for solutions y = ϕ(x)
to the equation (1), find all expansions of the form

y = crx
r +

∑
csx

s, cr = const ∈ C, cr 6= 0, (2)

where cs are polynomials in lnx, and power exponents r, s ∈ C, ωRe r > ωRes.
Here and below ω = −1, ifx→ 0, ω = 1, ifx→∞.

The procedure to compute expansions (2) consists of two steps: computation
of the first approximations

y = crx
r, cr 6= 0 (3)

and computation of further expansion terms in (2).
1. 2. Computation of truncated equations. To each differential monomial a(x, y),
we assign its (vector) power exponent Q(a) = (q1, q2) ∈ R2 by the following rules:
Q(cxr1yr2) = (r1, r2); Q(dly/dxl) = (−l, 1); when differential monomials are
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multiplied, their power exponents must be added as vectors Q(a1a2) = Q(a1) +
Q(a2).

The set S(f) of power exponents Q(ai) of all differential monomials ai(x, y)
present in the differential sum f(x, y) is called the support of the sum f(x, y).
Obviously, S(f) ∈ R2. The convex hull Γ(f) of the support S(f) is called the
polygon of the sum f(x, y). The boundary ∂Γ(f) of the polygon Γ(f) consists
of the vertices Γ

(0)
j and the edges Γ

(1)
j . They are called (generalized) faces Γ

(d)
j ,

where the upper index indicates the dimension of the face, and the lower one is its
number. Each face Γ

(d)
j corresponds to the truncated sum

f̂
(d)
j (x, y) =

∑
ai(x, y) over Q(ai) ∈ Γ

(d)
j ∩ S(f).

Example. Consider the third Painlevé equation

f(x, y)
def
= −xyy′′ + xy′

2 − yy′ + ay3 + by + cxy4 + dx = 0, (4)

assuming the complex parameters a, b, c, d 6= 0. Here the first three differential
monomials have the same power exponent Q1 = (−1, 2), then Q2 = (0, 3), Q3 =
(0, 1), Q4 = (1, 4), Q5 = (1, 0). They are shown in Fig. 1 in coordinates q1, q2.
Their convex hull Γ(f) is the triangle with three vertices Γ

(0)
1 = Q1, Γ

(0)
2 = Q4,

Γ
(0)
3 = Q5, and with three edges Γ

(1)
1 , Γ

(1)
2 , Γ

(1)
3 . The vertex Γ

(0)
1 = Q1 corresponds

to the truncation f̂ (0)1 (x, y) = −xyy′′ + xy′2 − yy′, and the edge Γ
(1)
1 corresponds

to the truncation f̂ (1)1 (x, y) = f̂
(0)
1 (x, y) + by + dx.

q2

−1 0 1
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Let the plane R2
∗ be dual to the plane R2 such that for P = (p1, p2) ∈ R2

∗
and Q = (q1, q2) ∈ R2, the scalar product 〈P,Q〉 def

= p1q1 + p2q2 is defined. Each
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face Γ
(d)
j in R2

∗ corresponds to its own normal cone U
(d)
j formed by the outward

normal vectors P to the face Γ
(d)
j . For the edge Γ

(1)
j , the normal cone U

(1)
j is the

ray orthogonal to the edge Γ
(1)
j and directed outward the polygon Γ(f). For the

vertex Γ
(0)
j , the normal cone U

(0)
j is the open sector (angle) in the plane R2

∗ with
the vertex at the origin P = 0 and limited by the rays which are the normal cones
of the edges adjacent to the vertex Γ

(0)
j .

Example. For the the equation (4), the normal cones U
(d)
j of the faces Γ

(d)
j

are shown in Fig. 2.
Thus, each face Γ

(d)
j corresponds to the normal cone U

(d)
j in the plane R2

∗
and to the truncated equation

f̂
(d)
j (x, y) = 0. (5)

Theorem 1. If the expansion (2) satisfies the equation (1), and ω(1,Re r) ∈
U

(d)
j , then the truncation y = crx

r of the solution (2) is the solution to the trun-
cated equation f̂ (d)j (x, y) = 0.

Hence, to find all truncated solutions y = crx
r to the equation (1), we need

to compute: the support S(f), the polygon Γ(f), all its faces Γ
(d)
j , and their normal

cones U
(d)
j . Then for each truncated equation f̂ (d)j (x, y) = 0, we need to find all

its solutions y = crx
r which have one of the vectors ±(1,Re r) lying in the normal

cone U
(d)
j .

1. 3. Types of expansions of solutions Any truncated equation (5) is quasihomo-
geneous, and it is not difficult to find all its power solutions of the form (3). For
each such solution, we can compute its characteristic polynomial ν(k), roots kj of
which with ωRe kj < ωRe r are critical numbers [1]. If the truncated solution (3)
has no critical numbers then the initial equation (1) has a solution of the form (2)
where cs are constants. Such solutions belong to

Type 1. Power expansions. For them |Im s/Re s| < const. If the order κ of
the characteristic polynomial ν(k) equals to the maximal order n of the derivatives
in equation (1) then the expansion (2) converges [1–4]. If κ < n then the power
expansion (2) can be continued by an exponential expansion of type 6 (see below)
as a solution to equation (1). There are other following types of expansions of form
(2) for solutions to equation (1).

Type 2. cr is a constant, but cs are polynomials in log x (power-logarithmic
expansions).

Type 3. cr and cs are power series in decreasing powers of log x (complicated
expansions). The truncated solution (3) has its characteristic polynomial λ(k).
Absence of critical numbers is sufficient for existence of the expansion [5].

Type 4. r and s are real, but cr are series in powers of xi, and cr contains
finite number of such terms (half-exotic expansions).

Type 5. r, s and cs are as in type 4, but cr is a sum of infinitely many powers
of xi and they are bounded from one side (exotic expansions).
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Types 4 and 5 differ from types 1 and 2 by the form of cr(x) and absence
of restriction |Im s/Re s| < const. In all expansions of types 1–5 the truncated
solution y = crx

r is a solution of the truncated equation (5) and can be easily
found. Expansions of types 1–5 and algorithms of their computation were described
in [1, 2]. Now we introduce new type.

Type 6. Exponential expansions

y = b0(x) + Ceϕ(x) +
∞∑

k=2

bk(x)Ckekϕ(x), (6)

where b0(x), bk(x) and ϕ′(x) are power expansions, C is an arbitrary constant. To
the initial part b0(x)Ceϕ(x) there corresponds its characteristic polynomial µ(k).
Absence of critical numbers kj is enough for existence of the expansion (6).

2. Painlevé equations Pl

Supports of Painlevé equations P1, P2, P3, P4, P5, P6 are shown in Fig. 3 for
generic case. Expansions of solutions of type 1 exist for all P1–P6; of types 2-
5 exist only for P3, P5, P6; and of type 6 exist only for P1–P5 and only near
infinity [2, 5–11]. Some other applications of Power Geometry see in [12–16].
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Space Power Geometry for an ODE
and Painlevé equations

Alexander D. Bruno

Abstract. Here we explain algorithms of the space Power geometry (PG) for
one ordinary differential equation (ODE). The algorithms allow to calculate
such asymptotic forms of solutions of the ODE, which cannot be calculated by
algorithms of the plane PG [1]. We apply that approach to Painlevé equations
𝑃𝑙. It appears that 𝑃1 – 𝑃5 have elliptic asymptotic forms of solutions and
𝑃2, 𝑃4, 𝑃5 have also periodic asymptotic forms and all their families are two-
parameter. Similar (but more complicated) approach and results see in [2–4].

1. Space Power Geometry

Let 𝑥 be independent and 𝑦 be dependent variables, 𝑥, 𝑦 ∈ C. A differential mono-
mial 𝑎(𝑥, 𝑦) is a product of an ordinary monomial 𝑐𝑥𝑟1𝑦𝑟2 , where 𝑐 = const ∈ C,
(𝑟1, 𝑟2) ∈ R2, and a finite number of derivatives of the form 𝑑𝑙𝑦/𝑑𝑥𝑙, 𝑙 ∈ N. The
sum of differential monomials 𝑓(𝑥, 𝑦) =

∑︀
𝑎𝑖(𝑥, 𝑦) is called the differential sum.

As 𝑥→ ∞ we consider the ODE

𝑓(𝑥, 𝑦) = 0, (1.1)

where 𝑓(𝑥, 𝑦) is a differential sum. To each differential monomial 𝑎(𝑥, 𝑦), we as-
sign its (vector) power exponent Q(𝑎) = (𝑞1, 𝑞2, 𝑞3) ∈ R3 by the following rules:
Q(𝑐𝑥𝑟1𝑦𝑟2) = (𝑟1, 𝑟2, 0); Q(𝑑𝑙𝑦/𝑑𝑥𝑙) = (0, 1, 𝑙); power exponent of the prod-
uct of differential monomials is the sum of power exponents of factors 𝑄(𝑎1𝑎2) =

𝑄(𝑎1) + 𝑄(𝑎2). The set S̃(𝑓) of power exponents Q(𝑎𝑖) of all differential mono-
mials 𝑎𝑖(𝑥, 𝑦) present in the differential sum 𝑓(𝑥, 𝑦) is called the support of the
sum 𝑓(𝑥, 𝑦). Obviously, S̃(𝑓) ⊂ R3. The convex hull Γ(𝑓) of the support S̃(𝑓) is
called the polyhedron of the sum 𝑓(𝑥, 𝑦). The boundary 𝜕Γ(𝑓) of the polyhedron
Γ(𝑓) consists of the vertices Γ(0)

𝑗 , the edges Γ(1)
𝑗 and the faces Γ(2)

𝑗 . They are called
(generalized) faces Γ(𝑑)

𝑗 , where the upper index indicates the dimension of the face,
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and the lower one is its number. Each face Γ
(𝑑)
𝑗 corresponds to the space truncated

sum 𝑓
(𝑑)
𝑗 (𝑥, 𝑦) =

∑︀
𝑎𝑖(𝑥, 𝑦) over Q(𝑎𝑖) ∈ Γ

(𝑑)
𝑗 ∩ S̃(𝑓).

Example. Consider the third Painlevé equation

𝑓(𝑥, 𝑦)
𝑑𝑒𝑓
= −𝑥𝑦𝑦′′ + 𝑥𝑦′2 − 𝑦𝑦′ + 𝑎𝑦3 + 𝑏𝑦 + 𝑐𝑥𝑦4 + 𝑑𝑥 = 0, (1.2)

assuming the complex parameters 𝑎, 𝑏, 𝑐, 𝑑 ̸= 0. Here the first two differential
monomials have the same power exponent Q1 = (1, 2, 2), then Q2 = (0, 2, 1),
Q3 = (0, 3, 0), Q4 = (0, 1, 0), Q5 = (1, 4, 0), Q6 = (1, 0, 0). They are shown
in Fig. 1 in coordinates 𝑞1, 𝑞2, 𝑞3. Their convex hull Γ(𝑓) has 5 two-dimensional
faces Γ(2)

𝑗 . The far face Γ(2)
1 , spanned by Q1, Q5,Q6, corresponds to the truncation

𝑓
(2)
1 = −𝑥𝑦𝑦′′ + 𝑥𝑦′2 + 𝑐𝑥𝑦4 + 𝑑𝑥 = 𝑥(−𝑦𝑦′′ + 𝑦′2 + 𝑐𝑦4 + 𝑑). (1.3)

Fig. 1 Fig. 2

Thus, each face Γ
(𝑑)
𝑗 corresponds to the truncated equation

𝑓
(𝑑)
𝑗 (𝑥, 𝑦) = 0. (1.4)

Let N𝑗 = (𝑛1, 𝑛2, 𝑛3) be the external normal to two-dimensional face Γ
(2)
𝑗 .

We will consider only normals with 𝑛1 > 0, so we can assume that 𝑛1 = 1.
If the face Γ

(2)
𝑗 has the normal N𝑗 = (1, 0, 0) then the corresponding trunca-

tion 𝑓 (2)𝑗 = 𝑥𝑞1𝑔(𝑦), where 𝑔(𝑦) contains 𝑦 and its derivatives but does not contain
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𝑥. In that case the full sum 𝑓(𝑥, 𝑦) can be written as

𝑓(𝑥, 𝑦) = 𝑥𝑞1𝑔(𝑦) + 𝑥𝑞1−𝛾ℎ(𝑥, 𝑦),

where 𝛾 > 0 and ℎ(𝑥, 𝑦) is a differential sum (see (1.3)).

Remark 1.1. If 𝑦(𝑥) is a solution to the equation 𝑔(𝑦) = 0 with the property

0 < 𝜀 < |𝑦(𝑥)|, |𝑦′(𝑥)|, . . . , |𝑦(𝑛)| < 𝜀−1, (1.5)

then 𝑦(𝑥) is the asymptotic form of the solutions to the full equation (1.1). Here
𝜀 is a small number.

Let the power transformation of variables 𝑥, 𝑦 → 𝑢, 𝑣 :

𝑦 = 𝑥𝛼𝑣, 𝑢 = 𝑥𝛽 , (1.6)

transforms 𝑓(𝑥, 𝑦) into 𝑓*(𝑢, 𝑣).

Theorem 1.2. Let the face Γ
(2)
1 of Γ(𝑓) have the normal N𝑗 = (1, 𝑛2, 𝑛3) with

𝑛3+1 > 0, then the power transformation (1.6) with 𝛼 = 𝑛2, 𝛽 = 𝑛3+1 transforms
the truncation 𝑓

(2)
𝑗 (𝑥, 𝑦) of 𝑓(𝑥, 𝑦) into the truncation

𝑓
*(2)
𝑗 (𝑢, 𝑣) = 𝑢𝑞1𝑔(𝑣) (1.7)

of 𝑓*(𝑢, 𝑣), corresponding to the face Γ*(2)
𝑗 of Γ(𝑓*) with the normal N*

𝑗 = (1, 0, 0).
Here 𝑓*(2)𝑗 (𝑢, 𝑣) equals to 𝑓 (2)𝑗 (𝑥, 𝑦) after substitution

𝛽𝑙 𝑢[𝛼+𝑙(𝛽−1)]/𝛽 𝑑𝑙𝑣/𝑑𝑢𝑙 (1.8)

instead of 𝑦(𝑙) = 𝑑𝑙𝑦/𝑑𝑥𝑙.

So, if 𝑣 = 𝜙(𝑢) is a solution to the equation 𝑔(𝑣) = 0 and |𝜙(𝑢)| is bounded
from zero and infinity as 𝑦 in (1.5), then the initial equation 𝑓(𝑥, 𝑦) = 0 has a
solution with asymptotic form

𝑦 ∼ 𝑥𝛼𝜙(𝑥𝛽), 𝑥→ ∞. (1.9)

2. Painlevé equations 𝑃𝑙

2.1. Equation 𝑃1

𝑓(𝑥, 𝑦)
𝑑𝑒𝑓
= −𝑦′′ + 3𝑦2 + 𝑥 = 0. (2.1)

The support S̃(𝑓) consists of three points Q1 = (0, 1, 2), Q2 = (0, 2, 0), Q3 =

(1, 0, 0). They lie in a plane with normal N = (1, 1/2, 1/4). Here 𝑓 = 𝑓
(2)
1 , i.e. the

truncated equation (1.4) coincides with the initial equation (1.1). We make the
power transformation (1.6) with 𝛼 = 1/2, 𝛽 = 5/4. According to Theorem 1.2 and
(1.8), equation (2.1) gives an equation with the truncation

𝑓
*(2)
1 (𝑢, 𝑣) = − (5/4)

2
𝑢(1/2+2/4)(4/5)𝑣 + 3𝑢4/5𝑣2 + 𝑢4/5 =

= 𝑢4/5
[︀
−(5/4)2𝑣 + 3𝑣2 + 1

]︀ 𝑑𝑒𝑓
= 𝑢4/5𝑔(𝑣).
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Here and below �̇� = 𝑑𝑣/𝑑𝑢. Equation 𝑔(𝑣) = 0 has the first integral

�̇�2 = 2(4/5)2(𝑣3 + 𝑣 + 𝐶0), (2.2)

where here and below 𝐶0 is an arbitrary constant. If the discriminant −4 − 27𝐶0

of the polynomial 𝑣3 + 𝑣 + 𝐶0 is not zero then solutions to the equation (2.2) are
elliptic functions 𝑣 = 𝜙(𝑢). Thus, 𝑃1 has solutions with asymptotic forms (1.9),
i.e. 𝑦 = 𝑥1/2𝜙(𝑥5/4). These asymptotic forms were found by Boutroux [5] and were
studied in a lot of publications.

2.2. Equation 𝑃2

𝑓(𝑥, 𝑦)
𝑑𝑒𝑓
= −𝑦′′ + 2𝑦3 + 𝑥𝑦 + 𝑎 = 0, (2.3)

where 𝑎 is the complex parameter. The support S̃(𝑓) consists of four points Q1 =
(0, 1, 2), Q2 = (0, 3, 0), Q3 = (1, 1, 0), Q4 = 0; see Fig. 2. Their convex hull Γ(𝑓)
is a tetrahedron. It has 4 faces with external normals N1 = (0, 0,−1), N2 =
(−1, 0, 0), N3 = (1, 1/2, 1/2), N4 = (1,−1, 1/2). Two of them N3 and N4 have
𝑛1 > 0.

First we consider Γ
(2)
3 with the truncated equation

𝑓
(2)
3 (𝑥, 𝑦)

𝑑𝑒𝑓
= −𝑦′′ + 2𝑦3 + 𝑥𝑦 = 0. (2.4)

After transformation (1.6) with 𝛼 = 1/2, 𝛽 = 3/2, using (1.8), we obtain the
truncated equation

𝑓
*(2)
3 (𝑢, 𝑣) = −(3/2)2𝑢(1/2+2·1/2)·2/3𝑣 + 2𝑢𝑣3 + 𝑢𝑣 =

= 𝑢
[︀
−(3/2)2𝑣 + 2𝑣3 + 𝑣

]︀ 𝑑𝑒𝑓
= 𝑢 𝑔(𝑣) = 0.

Equation 𝑔(𝑣) = 0 has the first integral

�̇�2 =
4

9

(︀
𝑣4 + 𝑣2 + 𝐶0

)︀
. (2.5)

If the discriminant of the right hand part is different from zero, the equation (2.5)
has elliptic solution 𝑣 = 𝜙(𝑢). So the equation 𝑃2 has solution with asymptotic
forms (1.9), i.e. 𝑦 ∼ 𝑥1/2𝜙(𝑥3/2).

Now we consider Γ
(2)
4 with truncated equation

𝑓
(2)
4 (𝑥, 𝑦)

𝑑𝑒𝑓
= −𝑦′′ + 𝑥𝑦 + 𝑎 = 0. (2.6)

After transformation (1.6) with 𝛼 = −1, 𝛽 = 3/2 using (1.8), we obtain the
truncated equation

𝑓
*(2)
4 (𝑢, 𝑣)

𝑑𝑒𝑓
= −(3/2)2 𝑢(−1+2·1/2)·2/3𝑣 + 𝑣 + 𝑎

𝑑𝑒𝑓
= 𝑔(𝑣) = 0.

It has the first integral

�̇�2 = (4/9)(𝑣2 + 2𝑎𝑣 + 𝐶0). (2.7)
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if the discriminant 𝑎2 − 𝐶0 ̸= 0 then equation (2.7) has periodic solution (with a
complex period) 𝑣 = 𝜙(𝑢), which gives asymptotic forms (1.9), i.e. 𝑦 ∼ 𝜙(𝑥3/2)/𝑥,
for solutions to equation 𝑃2.

2.3. Equation 𝑃3

See (1.2) and Fig. 1. Among faces Γ(2)
𝑗 only one face Γ

(2)
1 with truncated equation

(1.3) has external normal N = (𝑛1, 𝑛2, 𝑛3) with 𝑛1 > 0. It is 𝑁1 = (1, 0, 0), so
𝛼 = 0, 𝛽 = 1 and we do not need to make the transformation (1.6). Equation (1.3)
has the first integral

𝑦′2 = 𝑐𝑦4 + 𝐶0𝑦
2 − 𝑑.

If 𝐶2
0 + 4𝑐𝑑 ̸= 0, then solutions to the equation are elliptic functions 𝑦 = 𝜙(𝑥),

which gives asymptotic forms 𝑦 ∼ 𝜙(𝑥) for solutions of equation (1.2). Compare
with [6].

2.4. Equation 𝑃4

𝑓(𝑥, 𝑦)
𝑑𝑒𝑓
= −2𝑦𝑦′′ + 𝑦′2 + 3𝑦4 + 8𝑥𝑦3 + 4(𝑥2 − 𝑎)𝑦2 + 2𝑏 = 0. (2.8)

The support S̃ has 6 points and the polyhedron Γ(𝑓) is a tetrahedron about
similar to Fig. 2. It has 4 faces Γ(2)

𝑗 with normals N1 = (0, 0,−1), N2 = (−1, 0, 0),
N3 = (1, 1, 1), N4 = (1,−1, 1). Only two of them have external normal vector
N = (𝑛1, 𝑛2, 𝑛3) with 𝑛1 > 0. Namely, N3 = (1, 1, 1) and N4 = (1,−1, 1).

First consider Γ
(2)
3 . It corresponds to the truncated equation

𝑓
(2)
3 (𝑥, 𝑦)

𝑑𝑒𝑓
= −2𝑦𝑦′′ + 𝑦′2 + 3𝑦4 + 8𝑥𝑦3 + 4𝑥2𝑦2 = 0. (2.9)

After power transformation (1.6) with 𝛼 = 1, 𝛽 = 2, we obtain the truncated
equation

𝑓
*(2)
3 (𝑢, 𝑣)

𝑑𝑒𝑓
= −2 · 4𝑢(1+2+1)/2𝑣𝑣 + 4𝑢2�̇�2 + 3𝑢2𝑣4 + 8𝑢2𝑣3 + 4𝑢2𝑣2

= 4𝑢2[−2𝑣 + �̇�2 + (3/4)𝑣4 + 2𝑣3 + 𝑣2]
𝑑𝑒𝑓
= 4𝑢2𝑔(𝑣) = 0.

(2.10)

Equation 𝑔 = 0 has the first integral

�̇�2 = 𝑣4/4 + 𝑣3 + 𝑣2 + 𝐶0𝑣.

If the discriminant differs from zero, i.e. 𝐶0 ̸= 0, 𝐶0 ̸= 8/27, then the last equa-
tion has elliptic solutions 𝑣 = 𝜙(𝑢) and initial equation 𝑃4 has solutions with
asymptotic forms 𝑦 ∼ 𝑥𝜙(𝑥2).

Now consider Γ
(2)
4 with truncated equation

𝑓
(2)
4 (𝑥, 𝑦)

𝑑𝑒𝑓
= −2𝑦𝑦′′ + 𝑦′2 + 4𝑥2𝑦2 + 2𝑏 = 0. (2.11)

After power transformation (1.6) with 𝛼 = −1, 𝛽 = 2, we obtain the truncated
equation

𝑓
*(2)
4 (𝑢, 𝑣)

𝑑𝑒𝑓
= −2 · 4𝑣𝑣 + 4�̇�2 + 4𝑣2 + 2𝑏

𝑑𝑒𝑓
= 𝑔(𝑣) = 0.

It has the first integral
�̇�2 = 𝑣2 + 𝐶0𝑣 − 𝑏/2. (2.12)
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If the discriminant 𝐶2
0 + 2𝑏 ̸= 0, then the equation (2.12) has periodic solutions

𝑣 = 𝜙(𝑢) and 𝑃4 has solutions with asymptotic forms 𝑦 = 𝜙(𝑥2)/𝑥.

2.5. Equation 𝑃6

The polyhedron Γ for 𝑃6 has not an appropriate face Γ
(2)
𝑗 having external normal

vector N𝑗 = (𝑛1, 𝑛2, 𝑛3) with 𝑛1 > 0 and 𝑛1 + 𝑛3 > 0. So 𝑃6 has not periodic and
elliptic asymptotic forms of solutions [7].
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Lotka–Volterra equations in three and four di-
mensions satisfying the Kowalevski-Painlevé prop-
erty

Pantelis A. Damianou

Abstract. We examine a class of Lotka-Volterra equations in three and four
dimensions which satisfy the Kowalevski-Painlevé property. We restrict our
attention to Lotka-Volterra systems defined by a skew symmetric matrix. We
obtain a complete classification of such systems. The classification is obtained
using Painlevé analysis and more specifically by the use of Kowalevski ex-
ponents. The imposition of certain integrality conditions on the Kowalevski
exponents gives necessary conditions. We also show that the conditions are
sufficient. In the four dimensional case we also examine the Liouville integra-
bility of the systems.

Mathematics Subject Classification (2000). 34G20, 34M55, 37J35.

Keywords. Lotka-Volterra Equations, Kowalevski Exponents, Painleve Anal-
ysis.

The Lotka-Volterra model is a basic model of predator-prey interactions.
The model was developed independently by Alfred Lotka (1925), and Vito Volterra
(1926). It forms the basis for many models used today in the analysis of population
dynamics. In three dimensions it describes the dynamics of a biological system
where three species interact.

The most general form of Lotka-Volterra equations is

ẋi = εixi +

n∑

j=1

aijxixj , i = 1, 2, . . . , n . (1)

We consider Lotka-Volterra equations without linear terms (εi = 0), and
where the matrix of interaction coefficients A = (aij) is skew-symmetric. The spe-
cial case of Kac-van Moerbeke system (KM-system) was used to describe popula-
tion evolution in a hierarchical system of competing individuals. The KM-system
has close connection with the Toda lattice. The Lotka-Volterra equations were
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studied by many authors in its various aspects, e.g. complete integrability [7] Pois-
son and bi-Hamiltonian formulation ([5], [10], [12], [16]), stability of solutions and
Darboux polynomials ([9], [18]). In [11] we examined such Lotka-Volterra equa-
tions in three dimensions satisfying the Kowalevski-Painlevé property. The basic
tools for the required classification are, the use of Painlevé analysis, the exami-
nation of the eigenvalues of the Kowalevski matrix and other standard Lax pair
and Poisson techniques. The Kowalevski exponents are useful in establishing in-
tegrability or non-integrability of Hamiltonian systems; see [1], [2], [6], [14], [15],
[17], [19], [21]. The first step is to impose certain conditions on the exponents, i.e.,
we require that all the Kowalevski exponents be integers for every solution of the
indicial equation. This gives a finite list of values of the parameters satisfying such
conditions. This step requires some elementary number theoretic techniques as is
usual with such type of classification.

The second step is to check that the leading behavior of the Laurent series
solutions agrees with the weights of the corresponding homogeneous vector field
defining the dynamical system. In our case the weights are all equal to one and
therefore we must exclude the possibility that some of the Laurent series have
leading terms with poles of order greater than one. To accomplish this step we use
old-fashioned Painlevé Analysis, i.e., Laurent series. The application of Painlevé
analysis and especially of the ARS algorithm (see [3], [4], [7], [8], [15]) is useful
in calculating the Laurent solution of a system and check if there are (n− 1) free
parameters.

In this classification of Lotka-Volterra systems we discover, as expected, some
well known integrable systems like the open and periodic Kac-van Moerbeke sys-
tems and systems associated with simple Lie algebras.

We also have to point out that our classification is up to isomorphism. In
other words, if one system is obtained from another by an invertible linear change
of variables, we do not consider them as different. Modulo this identification we
obtain only six classes of solutions.

The Lotka-Volterra system can be expressed in hamiltonian form as follows:
Define a quadratic Poisson bracket by the formula

{xi, xj} = aijxixj , i, j = 1, 2, . . . , n . (2)

Then the system can be written in the form ẋi = {xi, H}, where H =
∑n
i=1 xi.

The Louville integrability in the three-dimensional case can be easily established.

In dimension three the system is defined by a matrix of the form

A =




0 a b
−a 0 c
−b −c 0


 ,

where a, b, c are constants. We use the notation (a, b, c) to denote this system. It
turns out that the Lotka-Volterra systems which posses the Kowalevski-Painlevé
property fall either into two infinite families or four exceptional cases:
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Theorem 1. The Lotka-Volterra equations in three dimensions satisfy the Kowalev-
ski–Painlevé property if and only if (a, b, c) is in the class of

(l2) (1, 0, 1)

(l3) (1,−1, 1)

(l4) (1,−1, 2)

(l6) (1,−2, 3)

(lλ) (1, 1, λ) λ ∈ Z \ 0.

(l0) (1, 1 + µ, µ) µ ∈ R.

In the four dimensional case, the situation is much more complicated than in
the three dimensional case. The system is not automatically Liouville integrable.
We distinguish two different cases. First, the case where the Poisson bracket is
of rank 2. Then we have two Casimirs and therefore in this case the system is
integrable (since the Hamiltonian is a constant of motion). The interesting case is
when the rank is full, i.e. four. In the classification of the systems which satisfy the
Painleve-Kowalevski condition we obtained over 100 such cases. For example, there
are 117 cases which satisfy this condition in the case of full rank. The analysis of
Kowalevski exponents indicate that these systems should be integrable. We analyze
some of these examples and show their integrability. Special cases include the KM
system (Volterra lattice) and some systems associated with simple and affine Lie
algebras.
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About Parametric Weakly Nonlinear ODE
with Time-reversal Symmetries

Nataliya Dilna and Michal Fečkan

Abstract. We show the existence of periodic and symmetric solutions of para-
metric weakly nonlinear ODE possessing time-reversal symmetries. Local as-
ymptotic behaviours of these solutions are established as well. Concrete ex-
amples are presented to illustrate the general theory.

Mathematics Subject Classification (2000). Primary 34C14, 34D20; Secondary
34C15.

Keywords. Periodic solution, symmetric systems, stability of solution, para-
metric equations.

1. Introduction

We consider in [3] the systems of differential equations under symmetric as-
sumptions. More concretely, we consider a weakly nonlinear ordinary differential
equation of the form

ẋ = εf(x, µ, t), x ∈ Rn, t ∈ R (1.1)

with parameters ε ∈ R, µ ∈ Rk, where ε is small, and with a C∞-smooth function
f : Rn+k+1 → Rn symmetric in x, i.e. it holds

Af(x, µ, t) = −f(Ax, µ,−t− τ) , (1.2)

where A : Rn → Rn is a regular linear map, τ ∈ R is fixed and, moreover, function
f is T -periodic on t, i.e. it holds

f(x, µ, t) = f(x, µ, t+ T ). (1.3)

Note condition (1.2) represents such a kind of symmetry for (1.1).

The first author was supported in part by the Štefan Schwarz Fund and by the Grants VEGA-

SAV 2/0124/10 and APVV-0134-10.

The second author was supported in part by the Grants VEGA-MS 1/0098/08, VEGA-SAV
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On the other hand, there are several papers [6, 9, 11] studying ODE with
symmetries when (1.2) is replaced with the following assumption

Af(Ax, µ, t) = −f(x, µ,−t− τ) . (1.4)

Moreover, most of these papers suppose additional condition A2 = I, and then
(1.4) is called as property E. Furthermore, clearly property E is our assumption
(1.2) with A2 = I. Consequently, our results are generalizations of some earlier
results for weakly nonlinear ordinary differential equations with property E.

Without loss of generality, we suppose

Af(x, µ, t) = −f(Ax, µ,−t) (1.5)

instead of (1.2). We introduce a vector space

X :=
{
x ∈ C1(R,Rn+1) | x(t) = Ax(−t)∀t ∈ R

}
. (1.6)

Definition 1.1. By a symmetric solution x of equation (1.1) we mean x ∈ X
satisfying this equation.

The main goal of this paper is to find symmetric and periodic solutions (see
Section 2) for equation (1.1) and to study their asymptotic properties (see Section
3). The results presented in this note are also generalizations of achievements for
anti-periodic problems with A = −I [1], and continuations of [5]. Doubly sym-
metric solutions of reversible systems are studied in [8]. Symmetric properties of
periodic solutions of nonlinear nonautonomous ordinary differential equations are
studied also in [2]. We can also apply numerical methods from [10] for computation
of symmetric solutions of (1.1). More results on periodic solutions in dynamical
systems and ordinary differential equations are presented in [4, 7].

Furthermore, when in addition, f is odd in x, i.e. it holds f(−x, µ, t) =
−f(x, µ, t) , then we extend our result to the study of antisymmetric and periodic
solutions of (1.1), i.e. satisfying −x(−t) = Ax(t)∀t ∈ R instead of x ∈ X.

2. Existence of symmetric and periodic solutions

If x(t) is T -periodic and satisfying condition Ax(t) = x(−t) then we get
x(T/2) = x(−T/2) = Ax(T/2) , so

x(T/2) ∈ ker(I−A) . (2.1)

On the other hand, if x(η, ε, µ, T/2) ∈ ker(I−A) then x(η, ε, µ,−T/2) = x(η, ε, µ, T/2) ,
so x(η, ε, µ, t) is T -periodic. Consequently, in order to find symmetric and periodic
solutions of (1.1), we have to study the following equation

F (η, µ, ε) := Sx(η, ε, µ, T/2) = 0 , (2.2)

where I− S : Rn → ker(I−A) is a A-invariant projection, i.e. AS = SA. Let

V := ker(I− S); p := dimV = n− dim ker(I−A) .
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Since F (η, µ, 0) = Sη = 0, we solve equation 1
εF (η, µ, ε) = 0, ε 6= 0. Now we

suppose that
m := dim ker(I−A) + k ≥ p. (2.3)

2.1. The case ker(I−A) = {0}
Then S = I and by (2.3), m = k ≥ p = n. Now we can prove the following

result.

Theorem 2.1. If there exists µ0 ∈ Rk such that
∫ T/2

0

f(0, µ0, s) ds = 0 and

∫ T/2

0

Dµf(0, µ0, s) ds : Rk → Rn is onto . (2.4)

Then there is a decomposition Rk = X1 ⊕ X2 with dimX1 = n and constants
ε0 > 0, δ01 > 0, δ02 > 0 along with a unique C∞-smooth function µ1(µ2, ε) ∈
X1, ε ∈ (−ε0, ε0), |µ2 − µ0

2| < δ02 such that µ1(µ0
2, 0) = µ0

1 for µ0 = (µ0
1, µ

0
2) ∈

X1 × X2 with the following properties: For any |µ1 − µ0
1| < δ01, |µ2 − µ0

2| < δ02
and 0 < |ε| < ε0, equation (1.1) has a T -periodic and symmetric solution if and
only if µ1 = µ1(µ2, ε), moreover this solution is unique, so that it is given by
x(0, ε, µ1(µ2, ε), µ2, t) and thus it is located near 0 in Rn.

Next we have the following result.

Theorem 2.2. Assume ker(I− A) = ker(I− A2) = {0}. Then x(t) = 0 is the only
symmetric solution of (1.1) for any ε 6= 0 small.

Proof. By (1.5) we obtain A2f(0, µ, t) = f(0, µ, t) and so f(0, µ, t) ∈ ker(I− A2).
Hence f(0, µ, t) = 0 and the proof is finished. �

Moreover, we got result on the case ker(I−A) 6= {0}.

3. Asymptotic properties of symmetric and periodic solutions

3.1. The case A = −I
Theorem 3.1. Suppose n = 1 in Theorem 2.1. If in addition

∫ T

0

Dxxf(0, µ0, t)dt 6= 0 ,

then the T -periodic and symmetric solution x(0, ε, µ1(µ2, ε), µ2, t) is a saddle-node.

The next theorem is on the case n > 1.

Theorem 3.2. Suppose n > 1. Let the assumptions of Theorem 2.1 be satisfied. If
in addition

B :=
1

2

∫ T

0

Dxxf(0, µ0, t)dt

has a negative eigenvalue with eigenvector x0 such that <σ(B) > 0 for B :=
2QBx0 · |[x0]⊥ with the orthogonal projection Q : Rn → [x0]⊥ then the T -periodic
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and symmetric solution x(0, ε, µ1(µ2, ε), µ2, t) has a local saddle-node dynamics.
Hence it is unstable.

Also we got results on the case A 6= −I.
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On Dependence of the First Eigenvalue of
the Sturm – Liouville Problem with Dirichlet
Boundary Conditions on Parameter of Integral
Condition

Svetlana Ezhak

Abstract. Estimates of the first eigenvalue λ1 of the Sturm-Liouville problem
with Dirichlet boundary conditions and integral condition to the potential are
obtained.

Mathematics Subject Classification (2000). 34L15.

1. Introduction

Consider the Sturm — Liouville problem:

y′′(x)−Q(x)y(x) + λy(x) = 0, (1.1)

y(0) = y(1) = 0, (1.2)

where Q(x) is a non-negative bounded function on [0, 1] such that
∫ 1

0

Qα(x)dx = 1, α 6= 0. (1.3)

A function y(x) is called a solution of problem (1.1)− (1.2) if it’s defined on
[0, 1], it satisfies condition (1.2), its derivative y′(x) is absolutely continuous, and
equation (1.1) holds almost everywhere on (0, 1).

We estimate the first eigenvalue λ1 of this problem for different values of α.

Remark 1.1. The Dirichlet problem for the equation y′′(x)+λq(x)y(x) = 0, where
q(x) is a non-negative bounded summable function on [0, 1] satisfying (1.3), was
considered in [1].

The author was partially supported by the grant AVP RNP 2.1.1/13250.
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Consider the functional

R[Q, y] =

∫ 1

0
y′2(x)dx+

∫ 1

0
Q(x)y2(x)dx

∫ 1

0
y2(x)dx

. (1.4)

According to the variation principle

λ1 = inf
y(x)∈H1

0 (0,1)
R[Q, y],

where H1
0 (0, 1) is a function space, defined on (0, 1), satisfying (1.2) and having

the generalized derivative of the first order, with the norm

‖y(x)‖H1
0 (0,1)

=

(∫ 1

0

(y2(x) + y′2(x))dx

)1/2

.

Put

mα = inf
Q(x)∈Aα

λ1, Mα = sup
Q(x)∈Aα

λ1,

where Aα is the set of the non-negative bounded on [0, 1] functions such that∫ 1

0
Qα(x)dx = 1.

2. Results

Theorem 2.1. 1. If α > 1, then mα = π2, Mα < ∞, and there exist functions
u(x) ∈ H1

0 (0, 1) and Q(x) ∈ Aα such that

inf
y(x)∈H1

0 (0,1)
R[Q, y] = R[Q, u] = Mα.

2. If α = 1, then m1 = π2, M1 = π2

2 + 1 + π
2

√
π2 + 4, and there exist functions

u(x) ∈ H1
0 (0, 1) and Q(x) ∈ Aα such that

inf
y(x)∈H1

0 (0,1)
R[Q, y] = R[Q, u] = M1.

3. If 0 < α < 1, then mα = π2, Mα =∞.
4. If α < 0, then mα > π2, Mα =∞, and there exist functions u(x) ∈ H1

0 (0, 1)
and Q(x) ∈ Aα such that

inf
y(x)∈H1

0 (0,1)
R[Q, y] = R[Q, u] = mα.

3. Proofs of some results

Proof. 1) Note that mα ≥ π2 for any α, α 6= 0.
2) Suppose α > 1. Consider the functional

G[y] =

∫ 1

0
y′2(x)dx+

(∫ 1

0
|y(x)|pdx

)2/p

∫ 1

0
y2(x)dx

, p =
2α

α− 1
(3.1)
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Using Hölder inequality and (1.3), we obtain

inf
y(x)∈H1

0 (0,1)
R[Q, y] ≤ inf

y(x)∈H1
0 (0,1)

G[y]. (3.2)

Denote m = m(α) = inf
y(x)∈H1

0 (0,1)
G[y]. From (3.2) we have Mα ≤ m. To prove

Mα = m, we need the following lemma:
Lemma. Suppose α > 1 (p = 2α

α−1 > 2), and m = infy(x)∈H1
0 (0,1)

G[y]. Then

there exists function u(x) ∈ H1
0 (0, 1), which is positive on (0, 1), satisfies the equa-

tion

u′′(x)− up−1(x) +mu(x) = 0, (3.3)

and the conditions

u(0) = u(1) = 0, (3.4)
∫ 1

0

up(x)dx = 1, (3.5)

such that m = G[u].
Here m is the solution of system of the equations





∫H
0

du√
mH2−mu2− 2

pH
p+ 2

pu
p

= 1
2 ,

∫H
0

up(x)du√
mH2−mu2− 2

pH
p+ 2

pu
p

= 1
2 .

and H = maxx∈[0,1] u(x).

We prove thatMα = m. We havem = G[u] =

∫ 1

0
u′2(x)dx+ (

∫ 1

0
|u(x)|pdx)2/p

∫ 1

0
u2(x)dx

,

where u(x) satisfies (3.3) and (3.4)− (3.5).
On the other hand,

Mα = sup
Q(x)∈Aα

λ1 = sup
Q(x)∈Aα

inf
y(x)∈H1

0 (0,1)
R[Q, y] ≤ m.

Since u(x) ∈ H1
0 (0, 1) and u

2
α−1 (x) ∈ Aα, substituting these values for y(x) and

Q(x) in R[Q, y], we receive

R[u
2

α−1 , u] =

∫ 1

0
u′2(x)dx+

∫ 1

0
u

2
α−1 (x)u2(x)dx

∫ 1

0
u2(x)dx

=

=

∫ 1

0
u′2(x)dx+ (

∫ 1

0
up(x)dx)2/p

∫ 1

0
u2(x)dx

= G[u] = m.

Thus we have the pair of functions Q(x) and y(x), so that the functional R[Q, y]
is equal to m. Hence Mα = m.

3) Suppose α = 1. Consider

L[y] =

∫ 1

0
y′2(x)dx+ maxx∈[0,1] y2(x)

∫ 1

0
y2(x)dx

. (3.6)
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We have inf
y(x)∈H1

0 (0,1)
R[Q, y] ≤ inf

y(x)∈H1
0 (0,1)

L[y].

Let’s prove that M1 = π2

2 + 1 + π
2

√
π2 + 4.

Consider the functions

Q∗(x) =





0, 0 < x < τ,
γ, τ < x < 1− τ,
0, 1− τ < x < 1,

y∗(x) =





sin
√
γx, 0 < x < τ,

sin
√
γτ, τ < x < 1− τ,

sin
√
γ(1− x), 1− τ < x < 1,

where τ = π
2
√
m

, γ = π2

2 + 1 + π
2

√
π2 + 4.

Note that y∗(x), (y∗(x))′ are continuous on [0, 1], y∗(0) = y∗(1) = 0. The
function Q∗(x) satisfies (1.3). Thus y∗(x) is the first eigenfunction for problem
(1.1)− (1.2)− (1.3) with the potential Q(x) = Q∗(x), and γ is the first eigenvalue.
Then γ ≤M1 = supQ(x)∈Aα λ1. Since L[y∗] = γ, we have infy(x)∈H1

0 (0,1)
L[y] ≤ γ.

Thus we have a sequence of inequalities:

γ ≤M1 = sup
Q(x)∈Aα

λ1 = sup
Q(x)∈Aα

inf
y(x)∈H1

0 (0,1)
R[Q, y] ≤

≤ sup
Q(x)∈Aα

inf
y(x)∈H1

0 (0,1)
L[y] = inf

y(x)∈H1
0 (0,1)

L[y] ≤ γ.

Hence M1 = γ, and M1 is attained at the function Q∗(x). �

Remark 3.1. Note that we proved that the constant M1 = π2

2 + 1 + π
2

√
π2 + 4

is the accurate estimate of λ1 from above. In [2] for M1 only the result M1 ≤
π2

2 + 1 + π
2

√
π2 + 4 was formulated. The result Mα <∞ for α > 1 is also obtained

in [2].

Remark 3.2. The results 3)–4) were proved in [3].
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Phase shift for some special solution
Korteweg–de Vries equation

Rustem N.Garifullin

Abstract. The aim of this work is to find the phase shift of special solution of
Kortevege-de Vries equation in Whitham zone. It is done without using any
averaging method. We use a complimentary condition of Kortevege-de Vries
equation and a fifth order ordinary equation.

Mathematics Subject Classification (2000). Primary 37K10; Secondary 76L05.

Keywords. nondissipative shock waves, phase shift, Korteweg-de Vries equa-
tion.

1. Introduction

In this work we investigate a special solution u(t, x) of Kortevege-de Vries equation

ut + uux + uxxx = 0. (1.1)

This solution simultaneously is a solution to the following ordinary differential
equation (ODE)

(
uxxxx +

5uxxu

3
+

5u2x
6

+
5u3

18

)′

x

− 2u+ xux − 3t(uxxx + uux)

6
= 0 (1.2)

which is obtained as a combination of stationary parts of two symmetries of KdV
equation. One of them is the fifth order higher (generalized) symmetry of the KdV
equation,

uτ5 =

(
uxxxx +

5uxxu

3
+

5u2x
6

+
5u3

18

)′

x

(1.3)

and the second one is classical dilation symmetry

uτr = 2u+ xux − 3t(uxxx + uux). (1.4)

The equation (1.2) may be called as first high analog of Painleve I equation.

This work was completed with the support of RFBR 10-01-91222, 10-01-00186.
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This solution plays the main role in the problem of nondissipating shock
waves [1, 2, 3]. In [1] the asymptotic behavior of these simultaneous solutions
in the zone of undamped oscillations is given by quasisimple wave solutions to
Whitham equations. But the phase shift was not found there. In this work we find
the asymptotic behavior of these solutions including the phase shift by method
suggested in [4].

2. Evaluation of phase shift

We are aimed at constructing asymptotics of the solution in the zone of undamped
oscillations, when t → ∞. Following familiar techniques, we change the variables
by

u = t U(t, s), s =
x

t2
.

Then equations (1.1) and (1.2) take the form

t−5Usss + tUt − 2sUs + UUs + U = 0,

t−10Usssss +
1

6
t−5(20UsUss + (10U + 3)Usss) +

1
6 (5U2 − s+ 3U)Us − 1

3U = 0.

(2.1)

We now look for a solution U of the system in the form of asymptotic series

U = U0(ϕ, s) + t−7/4U1(ϕ, s) + t−7/2U2(ϕ, s) + . . . , (2.2)

where U0, U1 and U2 are 2π -periodic in the fast variable ϕ. This latter is assumed
to be of the form

ϕ = t5/2f(s) + n(s),

where by n(s) is meant precisely the phase shift.
For the unknown function U0 we get the nonlinear system

(f ′)2∂3ϕU0 +
(

5f
2f ′ − 2s+ U0

)
∂ϕU0 = 0,

(f ′)4∂5ϕU0 +
1

6

(
20∂ϕU0∂

2
ϕU0 + (10U0 + 3)∂3ϕU0

)
(f ′)2 +

1
6 (5U2

0 − s+ 3U0)∂ϕU0 = 0,

and nonhomogeneous linear systems for unknown functions U1, U2, which are omit-
ted.

From the compatibility condition of the equations for U0 we obtain a second
order equation

(f ′)2∂2ϕU0 +
1

2
U2
0 −2U0s+

5

2
s+12s2 +

5

4
(−24s+2U0−3)

f

f ′
+

75

4

f2

(f ′)2
= 0. (2.3)

From this equation we can write:

(f ′∂ϕU0)2 = 2sU2
0 −

1

3
U3
0 −sU0(24s+5)+(24s+3−U0)

5U0f

2f ′
− 75U0f

2

2(f ′)2
+

25

4
b(s).

(2.4)
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Here b(s) is an arbitrary function (constant of integration).
From the compatibility condition of the equations for U1 we obtain a system

of the first order nonlinear equations for functions

a(s) = 5/2f/f ′, b(s),

which are omitted. From the compatibility condition of the equations for U2 we
obtain the equation of the next form:

∂ϕU0(n′′′ +A1n
′′ +A2n

′) + ∂3sU0 +B1∂
2
sU0∂sU0 +B2∂

2
sU0 +

B3(∂sU0)3 +B4(∂sU0)2 +B5∂sU0 +B6 = 0,
(2.5)

where

Ai = Ai(s, f, a, b), Bi = Bi(U0, s, f, a, b)

some functions.

-0.05-0.1-0.15-0.2-0.25-0.3-0.35-0.4

0

-1

Figure 1. The numerical simulation for the function U(t, z) cor-
responding to t = 19

From (2.5) we can immediately get:

n′′′ +A1n
′′ +A2n

′ = 0. (2.6)

The common solution of (2.6) have the form:

n(s) = C1 + C2n1(s) + C2n2(s). (2.7)

By using numerical experiments we finally found

n(s) = π.
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We observe the difference between numerical and asymptotic solutions and found
that it decreases as t−5/2 for this value of n(s). On figure 1 one can observe
numerical solutions for function U(t, z) for t = 19.
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On Fuchsian reduction of differential equations

ValentinaA.Goloubeva

Abstract. The historical review and present results of the multidimensional
Fuchsian theory and also exposition of some results concerning Fuchsian re-
duction of certain nonlinear equations are given.
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equation, central elements of the algebra.

At the end of fifties of XX century I.M. Gelfand studied and delivered a
course on the quantum electrodynamics and the theory of elementary particles
and stated the problem generalizing the well known Riemann-Hilbert problem:

Construct some system of partial differential equations of hypergeometric
type for the Feynman integral which is a term of some of finite order of the series for
scattering matrix of quantum electrodynamics. The notion of the hypergeometric
type partial differential equation was not known.

This statement was based on the ramification properties of such integrals on
the Landau varieties investigated in some particular cases in the physical papers.

The first publication of this hypothesis was done by T. Regge in 1965 in the
volume of Proceedings of the Conference ”Battelle Rencontres” (1965). T. Regge
was known with this hypothesis by O. Parasyuk who at this time actively worked
in Moscow in the vicinity of N.N. Bogolyubov and I.M. Gel’fand,

However, from the beginning of the XX century there were known hyperge-
ometric funcfions of two variables of Appell and Kampe de Feriet. R, Gérard try
to study their properties which were very similar to the properties of the Gauss
ordinary hypergeometric function and even to solve the multidimensional local
Riemann-Hilbert problem, but this dream was not realized because he made the
mistake,

These investigations were continued by V.A. Golubeva who obtained the sys-
tems of partial differential equations of Fuchsian type for hypergeometric functions
of two variables of Appell and Kampe de Feriet and obtained the commutation

This work was completed with the support of our the grants NSh-8508.2010.1, RFFI 08-01-00342-.



On Fuchsian reduction of differential equations 59

relations between the coefficients of these equations. The definition of multidimen-
sional Fuchsian type equations was given.

The partial differential equations for certain terms of the series for the S-
matrix were obtained by V. Golubeva. These equations were of the Fuchsian type.
The method of their derivation was based on Ph. Griffiths algebraic-geometric
theorem on reduction of order of pole of rational differential form. This method
often gives not Fuchsian system, but some Fuchsian reduction permits to obtain
global Fuchsian system.

The next step in investigation of ramification properties of Feynman inte-
grals was the V. Enolskii paper who obtained the local expansion of the Feynman
integral in the vicinity of the ordinary point of its Landau variety,

After the construction the first series of the multidimensional Fuchsian sys-
tems the question was stated whether there are the other objects satisfying the
partial differential equations of Fuchsian type. So the first multidimensional Fuch-
sian systems were obtained. The next problem was to find a sufficiently reach
class of physical models which can be described by equations of Fuchsian type.
Happiness, the physicists prepared such models in the conformal field theory. The
well known Knizhnik-Zamolodchikov equation appeared the equation of Fuchsian
type whose singular locus is the set of hyperplanes in Cn turned out to be the
reflection hyperplanes of Weyl group of An type and with the coefficients belong-
ing to the tensor power of the corresponding Lie algebra An. This equation was
investigated in details (see, for ex. Chr. Kassel, 1995). It was natural to state
the problem of construction and investigation of the the equation of Knizhnik-
Zamolodchikov type with other symmetry algebras. For ex., such equation with
symmetries corresponding to the Lie algebra Bn was presented in A. Leibman’s
paper (1994) who using the Casimir element of the second order obtained the in-
tegrability relations for this equations and gave the solutions of this relations. He
considered only the one-parametric case of the model. However, for the charac-
terization of the models with symmetries described by the Lie algebra of Bn it is
necessary to use two parameters. At the present time the problem of construction
two-parametric Knizhnik-Zamolodchikov equation of Bn type is not solved. Using
the higher Casimir element it is possible to construct Knizhnik-Zamolodchikov
equations of some other types but not two-parametric.

It is necessary to note that the coefficients of Knizhnik-Zamolodchikov equa-
tions can be not only elements of (tensor products)of algebras, but also elements
of other nature, for ex. knots and links. The application of central elements such
as Casimir and Capelli elements of higher order for generation of new Knizhnik-
Zamolodchikov equations is very perspectively.

The contemporary statement of the multidimensional problem analogues to
the Riemann-Hilbert-Gelfand-Regge problem looks in the following manner:

In Cn the arrangement of hyperplanes is given being the reflection hyper-
planes of Weyl group of one of the types Bn, Cn, Dn, G2, F4, E6, etc.. To construct
the equations of the Knizhnik-Zamolodchikov type with singular locus on the given
arrangement.
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Note. In the statement of the problem above the monodromy is not prescribed
(as in the one-dimensional case) because it depends on the symmetry algebra of
given arrangement. The choice of the coefficients sets of the equations is possible
in reach limits.

At present time in many sections of mathematical physics the method of
Fuchsian reduction is applied as for linear so for non linear system equations. It
consists in applying the series of local transformations as independent so dependent
variables for deriving the local equations of Fuchsian type. Such a transformation
permits to use a reach technique of local developments of the theory of Fuchsian
and Painleve equations. The method of Fuchsian reduction is applied in astronomy,
general relativity, nonlinear optics, soliton theory, differential geometry etc. In
particular, in the theory of solitons the Fuchsian reduction permits to give the
answer to the question whether the formal solutions of the completely integrable
equations represent actual solutions.

In the talk as the historical review and present results of the multidimensional
Fuchsian theory and also exposition of some results concerning Fuchsian reduction
of certain nonlinear equations will be given.
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On convergence of a formal solution to an ODE

Irina V. Goryuchkina

Abstract. In 2004 Prof. Bruno had formulated a theorem on convergence of
a power series solution to an ordinary differential equation. We proved this
theorem in two cases: for rational power exponents in the expansion and for
complex and irrational (but not rational) power exponents with one complex
or irrational generatrix of the set of power exponents in the expansion. In the
proofs we used Power Geometry, the majorant method and some new trick.
These results are new.
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1. The general case
We consider an ordinary differential equation of the form

f(x, y, y′, . . . , y(n)) = 0, (1.1)

where f(x, y, y′, . . . , y(n)) is a polynomial of its variables.
Let for |x| → 0 equation (1.1) have formal solution of the form

y =
∑

csx
s, s ∈ K ⊂ C (1.2)

where power exponents s are complex, Re s increase, number of power exponents
s with the same real parts Re s is finite, coefficients cs are complex constants.
We enumerate power exponents s in order of increasing real parts Re s : Re s0 ≤
Re s1 ≤ Re s2 ≤ . . . .

By the substitution

y =

sm∑

s=s0

csx
s + u, (1.3)

where m ∈ Z, m ≥ 0, Re sm ≥ n, power exponents s and coefficients cs are from
(1.2), we reduce equation (1.1) to the form

f1(x, u)
def
= L(x)u+ g(x, u, u′, . . . , u(n)) = 0, (1.4)
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where the linear differential operator L(x) has form

L(x) = xv
n∑

l=1

alx
l d

l

dxl
, (1.5)

L(x) 6≡ 0, v ∈ C, al are complex constants. The function g contains terms indepen-
dent of u, u′, . . . , u(n), linear terms in u, u′, . . . , u(n) of the form c xv1+l u(l) with
Re v1 > Re v, l ≤ n, c = const ∈ C, and nonlinear terms in u, u′, . . . , u(n).

The linear differential operator L(x) has eigenvalues λ1, . . . , λn. We order
these eigenvalues by increasing real parts Reλ1 ≤ · · · ≤ Reλn. We suppose that
Re sm ≥ Reλn in substitution (1.3). Then equation (1.4) has unique solution of
the form

u =
∞∑

s=sm+1

csx
s, (1.6)

where power exponents s ∈ C, Re s increase, complex coefficients cs are uniquely
determined constants.

Theorem 1.1. [1] If in the equation (1.4), which we obtain after substitution (1.3)
in the equation (1.1), the order of the highest derivative in L(x)u is equal to the
order of the highest derivative in the sum f1, then the series (1.6) converges for
sufficiently small |x| and arg x ∈ (−π, π).

2. The case of rational power exponents
Let for x→ 0 equation (1.1) have the formal solution

y =
∞∑

s=s0

csx
s, (2.1)

where s ∈ Z, s ≥ s0 > −∞, s increase, cs are constant coefficients.
After substitution (1.3) with s ∈ Z, sm ≥ n, sm ≥ s0, sm ≥ Reλn, the

equation (1.1) takes form (1.4). Equation (1.4) contains integer power exponents
of x and nonnegative integer powers of u, u′, . . . , u(n).

For x→ 0 equation (1.4) has unique solution of the form

u =
∞∑

s=sm+1

csx
s, (2.2)

where power exponents s ∈ N, s increase, complex coefficients cs are uniquely
determined constants.

Theorem 2.1. If in the equation (1.4), which we obtain by means of substitution
(1.3) with s ∈ Z, sm ≥ n, sm ≥ s0, sm ≥ Reλn from the equation (1.1), the order
of the highest derivative in L(x)u is equal to the order of the highest derivative in
the sum f1, then the series (2.2) converges for sufficiently small |x|.
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Here we consider case when expansion (2.2) contains only integer power ex-
ponents. The case of rational power exponents with a finite common denominator
m is reduced to this case by the substitution z = x1/m.

The constraint on arg x is necessary only for expansions (1.6) with irrational
or complex power exponents and can be dropped in the case under study.

The proof of Theorem 2.1 was published in [2] and [3].

3. The case of complex power exponents
We consider formal solution of the form (1.2), where

K = {s0 +m1r1 +m2r2, m1,m2 ∈ Z, m1,m2 ≥ 0}, (3.1)

s0 ∈ C \Q, r1 = 〈R1, (1, s0)〉, r2 = 〈R2, (1, s0)〉,

R1 = (α1, β1), R2 = (α2, β2), R1, R2 ∈ Z2.
(3.2)

After substitution (1.3) with s ∈ K, the equation (1.1) takes the form (1.4).
The function f1 contains complex power exponents of x and nonnegative integer
power exponents u, u′, . . . , u(n).

For |x| → 0, arg(x) ∈ (−π, π), the equation (1.4) has unique solution of the
form (1.6) with power exponents s ∈ C.

Theorem 3.1. If in the equation (1.4), which we obtain after substitution (1.3)
from the equation (1.1), the order of the highest derivative in L(x)u is equal to the
order of the highest derivative in the sum f1, then the series (1.6) converges for
sufficiently small |x| and arg(x) ∈ (−π, π).

The proof of Theorem 3.1 was published in [4]. The similar theorem is true
for irrational s0, r1, r2 in (3.1).

4. On solutions of the sixth Painlevé equation
According to Theorems 2.1 and 3.1 all power expansions of solutions to the sixth
Painlevé equation near its three singular points are convergent. Near regular point
all expansions are power and form 17 families. They converge according to theorem
2.1, and in some cases according to the Cauchy Theorem.
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Asymptotic expansions and forms of solutions to
the sixth Painlevé equation

Irina V. Goryuchkina

Abstract. Using algorithms of Power Geometry, we have found asymptotic
expansions and asymptotic forms of solutions to the sixth Painlevé equation
for all values of its four complex parameters near its three singular points
x = 0, 1, ∞ and near its regular points x = x0 6= 0, 1, ∞. There are five types
of asymptotic expansions of solutions, namely, power, power-logarithmic, com-
plicated, exotic and half-exotic. Near all singular points of the equation they
form 117 families. Most of these expansions are new. Near regular points of
the equation there are 17 families of power expansions. Among them 8 fami-
lies are new. Besides we stated that near singular points of the sixth Painlevé
equation the Boutroux type elliptic asymptotic forms are absent in contrary
to other Painlevé equations.
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Keywords. Painlevé equations, asymptotic forms, asymptotic expansions.

1. Asymptotic expansions near singular points of the equation
The sixth Painlevé equation is

y′′ =
(y′)2

2

(
1

y
+

1

y − 1
+

1

y − x

)
− y′

(
1

x
+

1

x− 1
+

1

y − x

)
+

+
y(y − 1)(y − x)
x2(x− 1)2

[
a+ b

x

y2
+ c

x− 1

(y − 1)2
+ d

x(x− 1)

(y − x)2
]
, (1.1)

where a, b, c, and d are complex parameters, x and y are complex variables, and
y′ = dy/dx. This equation has three singular points x = 0, x =∞, and x = 1, and
three main symmetries that allow to transfer expansions of solutions near one its
singular point to expansions of solutions near the same or other its singular point.
These symmetries are associated with three changes of variables

1) x = z, y = z/w; 2) x = 1/z, y = 1/w; 3) x = 1− z, y = 1− w. (1.2)
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At first we obtained 21 families of such asymptotic expansions of solutions to
the equation (1.1) near the singular point x = 0, for which the order of the first
term is less than unity. We refer to these expansions as basic expansions. All other
asymptotic expansions of solutions to the equation (1.1) near its three singular
points x = 0, x = 1, and x = ∞ we obtained from the basic expansions using
symmetries (1.2). Altogether the expansions form 117 families [1]. At x = 0 we
seek asymptotic expansions of the form

y = crx
r +

∑

s

csx
s, (1.3)

where power exponents r and s are complex, Re s > Re r, Re s increase. They be-
longs to one of three types: power, power-logarithmic or complicated. Expansions
of these types have a finite number of terms s with the same value Re s. Coeffi-
cients cr and cs are varied according to types:
Type 1. cr and cs are constant (power expansions);
Type 2. cr is constant, cs are polynomials in log x (power-logarithmic expansions);
Type 3. cr and cs are series in decreasing powers of log x (complicated expansions).

At x = 0 we also consider expansions of the form

y =
∑

ρ

cρx
ρ +

∑

s

csx
s, (1.4)

where power exponents ρ and s are complex, all Re ρ are the same, Re ρ < Re s,
Re s increase, the first sum contains more than one term, complex coefficients cρ
and cs are polynomials in log x. We differ two types of the expansions (1.4).
Type 4. The first sum in (1.4) contains a finite number of terms. Coefficients cρ
are constants for extreme values of Im ρ. The number of power exponents s with
the same real parts Re s are finite (half-exotic expansions);
Type 5. The first sum in (1.4) contains infinite number of terms, but Im ρ are
bounded either below or above. Coefficient cρ is constant for extreme value of Im ρ
(exotic expansions).
Besides we suppose that arg x is bounded from two sides. Here we give examples
for each type of expansions.

Theorem 1.1. For x→ 0 there exists the family of power expansions of solutions to
the equation (1.1) with two parameters cr and r, and constant coefficients, which
has form

A0 : y = crx
r +

∑

s

csx
s, (1.5)

where complex power exponent r is arbitrary with Re r ∈ (0, 1), complex power
exponents s ∈ {r + lr +m(1 − r), l,m ≥ 0; l +m > 0; l,m ∈ Z}; complex coef-
ficient cr is arbitrary nonzero constant, other complex coefficients cs are uniquely
determined constants. Family A0 exists for all values of parameters of equation
(1.1).

The family A0 was known.
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Theorem 1.2. For x→ 0 and a = c 6= 0, 2
√
2a ∈ Z\{0} there exists the family of

power-logarithmic expansions of solutions to the equation (1.1) of the form

B2 : y = 2 +

∞∑

s=1

cs(log x)x
s, (1.6)

where coefficients cs(log x) are polynomials in log x.

Theorem 1.3. For x → 0 and a 6= c 6= 0 there exists the family of complicated
expansions of solutions to the equation (1.1) of the form

B3 : y = ψ0 +
∞∑

σ=1

ψσx
σ, (1.7)

where

ψ0 =
2

c− a
1

log2 x
+

c−3
log3 x

+
∞∑

s=4

c−s
logs x

=
2(c− a)

(c− a)2 (log x+ C0)2 − 2a
,

coefficients c−3 and C0 are arbitrary constants, other coefficients c−s are uniquely
determined constants; ψσ are series in decreasing powers of log x.

Theorem 1.4. For x → 0 there exists the family of half-exotic expansions of solu-
tions to the equation (1.1) with two parameters cρ and ρ, and constant coefficients,
which has form

H0 : y = cρx
ρ + c1x+ c2−ρx

2−ρ +
∑

s

csx
s + . . . , (1.8)

where ρ − 1 is pure imaginary arbitrary constant, s runs over the set {l + k(ρ −
1); l, k ∈ Z; l ≥ 2, |k| ≤ l}, complex coefficient cρ is an arbitrary constant, other
complex coefficients c1, c2−ρ and cs are uniquely determined constants.

Theorem 1.5. For x → 0 there exists the family of exotic expansions of solutions
to the equation (1.1) with two parameters C1 and ρ, and constant coefficients,
which has form

Bτ0 : y =
ρ2

β cos2[log(C1x)γ ] + α sin2[log(C1x)γ ]
+
∑

Re s≥1
csx

s =

= xρ

(
cρ +

∞∑

k=1

c̃kx
kρ

)
+
∑

Re s≥1
csx

s,

(1.9)

where ρ is a pure imaginary nonzero arbitrary constant, s ∈ {ρ + lρ + m(1 −
ρ); l,m ≥ 0; l +m > 0; l,m ∈ Z}, τ = sgn(Im ρ), α + β = (ρ2 − 2c+ 2a)/(2a),
αβ = ρ2/(2a), 2γ = iρ, complex coefficients c̃k and cs are uniquely determined
constants.
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2. Asymptotic expansions near a regular point of the equation
In neighborhood of a regular point x = x0 6= 0, 1, ∞ of the sixth Painlevé equation
(1.1) there are 17 families of power expansions of its solutions for all values of its
four parameters [2]. The expansions are Laurent or Taylor series. Among them 1
family of expansions has the pole of the second order, 2 families of expansions have
poles of the first order, other ones are families of Taylor expansions. 8 families of
expansions are new (compare with [3]).

3. Boutroux type elliptic asymptotic forms
Theorem 3.1. Near singular points x = 0, 1, ∞ of the sixth Painlevé equation, the
Boutroux type elliptic asymptotic forms of solutions are absent [4] in contrary to
other Painlevé equations [5], [6], [7].
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equation. Doklady Mathem. 2008. 78 (2). 765–768. = ДАН, 2008, 422(6), 729–731.

[7] Bruno, A.D., Goryuchkina, I.V., Asymptotic forms of solutions to the fourth Painlevґe
equation Doklady Mathem. 2008. 78 (3). 868–873. = ДАН, 2008, 423(4), 443–448.

Irina V. Goryuchkina
Keldysh Institute of Applied Mathematics of RAS
125047 Russia, Moscow, Miusskaya Sq. 4
e-mail: igoryuchkina@gmail.com



Painlevé Formal Test and Briot-Bouquet Sys-
tems

Evgenii Gricuk and Valerii Gromak

Hierarchies of ordinary differential equations with Painlevé property and
properties their solutions are a topic of great current interest. For higher-order
differential equations, the Painlevé classifcation problem proved to be very dicult,
and the most complete results have only been obtained for equations of polynomial
type.

In the present paper, for the differential equations

𝑤(𝑛) = 𝑅(𝑤(𝑛−1), . . . , 𝑤, 𝑧), (1)

where 𝑅(𝑤(𝑛−1), . . . , 𝑤, 𝑧) is a rational function of the first 𝑛 arguments whose
coeffcients are analytic with respect to 𝑧 in the domain 𝐺 ⊂ C, we clarify the rela-
tionship between the resonance method, which is also referred to as the Painlevé
formal test, and the representation of these equations in the form of Briot-Bouquet
systems.

The test itself is shortly the successive performing of the following steps.
We find the least possible power of the variable 𝑡 in the formal expansion of

a solution of equation (1) of the form

𝑤 =

∞∑︁

𝑗=1

𝑐𝑗𝑡
𝑗−𝑘

, 𝑡 = 𝑧 − 𝑧0. (2)

If 𝑐0 ̸= 0 and the numbers 𝑘 are positive integers, then the first step is complete,
and the analysis of the equation can be continued. Note that the case of negative
integers 𝑘 can be reduced to the previous case by the replacement 𝑤 → 𝑤−1, and
the case 𝑘 = 0 can be reduced to it by the replacement 𝑤 → 𝑤 + 𝑐0. The second
step of the test is related to finding the Fuchs indices for each pair (𝑐0; 𝑘). The
Fuchs indices, or resonances, are defined as the indices 𝑗𝑟 of the coefficients 𝑐𝑗 in
the expansion of the solution (2) for which the coefficients 𝑐𝑗 remain arbitrary. The
Fuchs indices are found from the polynomial equation 𝑄(𝑟) = 0, which is referred
to as the resonance equation. If, for each pair (𝑐0; 𝑘), all roots of the resonance
equation are simple and roots other than −1 and possibly zero are positive inte-
gers, then the second step of the formal test is considered to be complete. If all
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coefficients 𝑐𝑗 in the expansion (2) can be determined, and the number of arbitrary
coefficients among them is equal to 𝑛 − 1, then we assume that the third step is
complete for the differential equation (1), and, therefore, the whole Painlevé formal
test is complete.

Therefore, the passage of the Painlevé formal test for the differential equation
(1) eliminates the presence of movable algebraic singular points of solutions of that
equation. In this connection, obviously, it is assumed that there can exist movable
singular points of logarithmic type or movable essentially singular points.

The expansion (2) used in the above-described test is formal; the proof of its
converges required additional investigations. It turns out that, to prove the formal
expansion (2) in the general case, one can use the theory of Briot-Bouquet systems

𝑡𝑢′𝑗 = 𝑓𝑗(𝑡, 𝑢1, . . . , 𝑢𝑛), 𝑗 = 1, . . . , 𝑛 (3)

with functions 𝑓𝑗 analytic in some neighborhood of the point 𝑡 = 𝑢1, . . . , 𝑢𝑛 = 0
and with the conditions 𝑓𝑗(𝑡, 𝑢1, . . . , 𝑢𝑛) = 0.

First we prove that for all pairs (𝑐0; 𝑘); 𝑘 ∈ N; 𝑐0 ̸= 0; one root of the
resonance equation 𝑄(𝑟) = 0 is equal to −1. The main result is

Theorem 1. If equation (1) passes the Painlevé formal test, then, in a neigh-
borhood of a singular point, it can be reduced to a Briot-Bouquet system (3), and
expansions of the form (2) for equation (1) are convergent.

We also consider the invese result to theorem 1 and the case of rational 𝑘. In
the last case we looking for the algebraic solutions of equation (1).
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Solutions of the Chazy System

Valerii I. Gromak

The six Painlevé equations, were discovered by Painlevé and Gambier through
the classification problem for ordinary differential equations, whose solutions have
no movable branch points. Today this property is referred to as the Painlevé prop-
erty. For higher-order equations, the Painlevé classification problem proves to be
very complicated, and the most complete results have so far been obtained only
for higher-order polynomial equations. The Chazy paper [1] is one of the first pa-
pers on the classification of higher-order equations with respect to the Painleve
property; it deals with the analysis of the Painlevé property of the equation

𝑦′′′ =
6∑︁

𝑘=1

(𝑦′ − 𝑎′𝑘)(𝑦′′ − 𝑎′′𝑘)

𝑦 − 𝑎𝑘
+

6∑︁

𝑘=1

𝐴𝑘(𝑦′ − 𝑎′𝑘)3 +𝐵𝑘(𝑦′ − 𝑎′𝑘)2 + 𝐶𝑘(𝑦′ − 𝑎′𝑘)

𝑦 − 𝑎𝑘
+

+𝐷𝑦′′ + 𝐸𝑦′ +
6∏︁

𝑘=1

(𝑦 − 𝑎𝑘)
6∑︁

𝑘=1

𝐹𝑘

𝑦 − 𝑎𝑘
;

(1)

here the poles 𝑎𝑘 = 𝑎𝑘(𝑧) are finite and distinct and, in general, are functions of
the independent variable 𝑧. The paper [1] also presents the Chazy system of 31
algebraic and differential equations

6∑︁

𝑗=1

𝐴𝑗 = 0,

6∑︁

𝑗=1

𝑎𝑗𝐴𝑗 = −6,

6∑︁

𝑗=1

𝑎2𝑗𝐴𝑗 = −2

6∑︁

𝑗=1

𝑎𝑗 , 2𝐴
2
𝑘 +

6∑︁

𝑗=1

𝐴𝑘 −𝐴𝑗

𝑎𝑘 − 𝑎𝑗
=0, (𝒜)

where 𝑘 = 1, . . . , 6 (𝑗 ̸= 𝑘),

6∑︁

𝑗=1

(𝐵𝑘−𝐵𝑗)
(︁
−𝐴𝑘

2
− 1

𝑎𝑘 − 𝑎𝑗

)︁
+𝐴′

𝑘−
6∑︁

𝑗=1

𝑎′𝑘 − 𝑎′𝑗
𝑎𝑘 − 𝑎𝑗

(𝐴𝑘−3𝐴𝑗)−
3

2
𝐴𝑘

6∑︁

𝑖=1

𝑎′𝑖𝐴𝑖 = 0, (ℬ)

(︁
−2𝐴𝑘𝐶𝑘−

6∑︁

𝑗=1

𝐶𝑘−𝐶𝑗

𝑎𝑘−𝑎𝑗

)︁
+

6∑︁

𝑗=1

3𝐴𝑗(𝑎
′
𝑘−𝑎′𝑗)2 + +(2𝐵𝑗−𝐵𝑘)(𝑎′𝑘−𝑎′𝑗) + 𝑎′′𝑘−𝑎′′𝑗

𝑎𝑘−𝑎𝑗
−

−𝐵2
𝑘+𝐵′

𝑘−𝐵𝑘𝐷+𝐸 = 0,

(𝒞)
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2𝐷 +

6∑︁

𝑗=1

(𝐵𝑗 − 3𝑎′𝑗𝐴𝑗) = 0, (𝒟)

6∑︁

𝑗=1

𝐹𝑗 = 0,

6∑︁

𝑗=1

𝑎𝑗𝐹𝑗 = 0,

6∑︁

𝑗=1

𝑎2𝑗𝐹𝑗 = 0,

− 𝑎′′′𝑘 −𝐵𝑘𝐶𝑘+𝐶 ′
𝑘+𝐷(𝑎′′𝑘−𝐶𝑘)+𝐸𝑎′𝑘+𝐹𝑘

6∏︁

𝑗=1

(𝑎𝑘−𝑎𝑗)+

+
6∑︁

𝑗=1

𝐴𝑗(𝑎
′
𝑘−𝑎′𝑗)3+𝐵𝑗(𝑎

′
𝑘−𝑎′𝑗)2−(𝐶𝑘−𝐶𝑗)(𝑎

′
𝑘−𝑎′𝑗)+(𝑎′𝑘−𝑎′𝑗)(𝑎′′𝑘−𝑎′′𝑗 )

𝑎𝑘−𝑎𝑗
= 0,

(ℱ)

for 26 unknown functions 𝐴𝑘 = 𝐴𝑘(𝑧), 𝐵𝑘 = 𝐵𝑘(𝑧), 𝐶𝑘 = 𝐶𝑘(𝑧), 𝐷 = 𝐷(𝑧),
𝐸 = 𝐸(𝑧), and 𝐹𝑘 = 𝐹𝑘(𝑧), whose solution, as Chazy claims, determines necessary
and sufficient conditions for Painleve property of (1).

The problem of solving the Chazy system remains open. Moreover, in some
papers the equations of the system are written out in a form different from the
original, and Chazy himself did not present the derivation of the system in [1].

In the present paper, we give a derivation of system (𝒜)–(ℱ), the solution
of system (𝒜) expressed in expanded form via the parameters 𝑎𝑘 [2], and the
solution of system (ℬ)–(ℱ) in the case of constant 𝑎𝑘 as well as in the general case
under some restrictions, which permit one to write out the solution in closed form.
All computations have been carried out with the Mathematica computer algebra
system.
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Solving PVI by Isomonodromy Deformations

Davide Guzzetti

We consider the sixth Painlevé equation, with independent variable x and depen-
dent variable y(x), in standard form [8], with parameters α, β, γ and δ ∈ C. Solving
PVI means that: i) We determine the critical behavior (or asymptotic expansion)
of y(x), by an explicit formula in terms of two integration constants. ii) We solve
the connection problem, namely we find the explicit relations among couples of
integration constants at different critical points. We review here the results of the
isomonodromy deformation method, which answers i) and ii).

PVI is the isomonodromy deformation equation [9] of a 2×2 Fuchsian system

dΨ

dλ
=

[
A0(x)

λ
+
Ax(x)

λ− x +
A1(x)

λ− 1

]
Ψ, y(x) =

x(A0)12
x[(A0)12 + (A1)12]− (A1)12

. (1)

The eigenvalues of Ai(x) are algebraic functions of α, β, γ and δ. Let M0, Mx,
M1 be the x-independent monodromy matrices of Ψ w.r.t. a given basis of loops.
There is a one-to-one correspondence between a point in the space of monodromy
data and a branch y(x) (except for one Mi or M1MxM0 = I. See [5], [6]). As a
consequence, the integration constants of y(x) can be parameterized in terms of the
monodromy data. Jimbo [8] provided the critical behavior and its parameterization
in terms of monodromy data for a wide class of solutions. We review here the
matching procedure of [4], which gives the results of [8] plus the other critical
behaviors and their parameterization.

i) Behavior of y(x): We consider x → 0 (x → 1 and x → ∞ can be
obtained from the results at x = 0 by symmetries). Let us divide the λ-plane
into two domains. The “out” domain is |λ| ≥ |x|δOUT , δOUT > 0. (1) can be
approximated by:

dΨOUT

dλ
=

[
A0 +Ax

λ
+
xAx
λ2

NOUT∑

n=0

(x
λ

)n
+

A1

λ− 1

]
ΨOUT , (2)

The “in” domain is |λ| ≤ |x|δIN , 0 < δIN ≤ δOUT . (1) can be approximated by:

dΨIN

dλ
=

[
A0

λ
+

Ax
λ− x −A1

NIN∑

n=0

λn

]
ΨIN , (3)
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where NIN , NOUT are suitable integers. We impose that

ΨOUT (λ, x) ∼ ΨIN (λ, x), |x|δOUT ≤ |λ| ≤ |x|δIN , x→ 0 (4)

This matching produces the leading terms of A0(x), A1(x) and Ax(x) as x → 0,
therefore it produces the leading term(s) of y(x) in (1). The results are below:

1) Two-complex parameter (c11, σ ∈ C, 0 ≤ <σ < 1) solutions [8],[3],[4],[6]

y(x) =
∞∑

n=1

xn
n∑

m=−n
cnmx

mσ, c11 6= 0, cnm = cnm(c11, σ), convergent

In particular, for σ = 2iν, ν ∈ R the above becomes a three-real parameter solution

y(x) = x
[
A sin(ν lnx+ φ) +B +

∞∑

n=1

xn
n+1∑

m=−n−1
cnmx

mσ
]
, φ = φ(c11) (5)

2) Three-real parameters (ν ∈ R, d ∈ C) solutions [6]

y(x) =
[ ∞∑

n=0

xn
n+1∑

m=−n−1
cnm e2imdx2imν

]−1
convergent

=
[
A sin(ν lnx+ φ(d)) +B +

∞∑

n=1

xn
n+1∑

m=−n−1
cnme

2imdx2imν
]−1

(6)

All cnm, A, B are determined by d and ν. (6) is obtained form (5) by the symmetry
y(x) 7→ x/y(x). If arg x and arg(1− x) are bounded (namely, when we considered
y(x) as a branch), then (6) admits two infinite sequences of movable poles in the
neighborhood of x = 0 (see [7]).

3) If
√−2β ±

√
1− 2δ 6∈ Z, there are one-complex parameter (c11 ∈ C)

solutions [4],[6]

y(x) =
∞∑

n=1

xn
n∑

m=0

cnmx
mσ =

∞∑

k=0

yk(x) (c11 x
σ)k, σ ∈ {σ+

βδ, σ
−
βδ}, convergent

where σ±βδ := (
√−2β ±

√
1− 2δ)sgn(<(

√−2β ±
√

1− 2δ)), and yk(x) are Taylor

expansions of the form y1(x) = O(x), yk(x) = O(xk). cnm are determined by
c11. For c11 = 0, the above becomes a Taylor series with no free parameter. If
|√−2β ±

√
1− 2δ| < 1, the above solutions are defined also for σ ∈ {±(

√−2β +√
1− 2δ),±(

√−2β −
√

1− 2δ)}.
4) If

√−2β +
√

1− 2δ = N or
√−2β −

√
1− 2δ = N , N ∈ Z, there are

one-complex parameter (a ∈ C) solutions [4],[5]

y(x) =

|N |∑

n=1

bnx
n +

(
a+ b|N |+1 lnx

)
x|N |+1 +

∞∑

n=|N |+2

Pn(lnx; a)xn, a ∈ C (7)

where bn are functions of α, β, γ and δ, a is a free parameter, Pn(lnx; a) are
polynomials of lnx of degree n − |N |, with coefficients determined by a, α, β, γ
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and δ. In particular, the above reduces to a Taylor series [4],[10]

y(x) =

|N |∑

n=1

bnx
n + ax|N |+1 +

∞∑

n=|N |+2

bn(a)xn convergent

if either {
√

2α+
√

2γ,
√

2α−√2γ} ∩ {|N | − 1, 1− |N |} 6= ∅ or if 2β = −N2.
5) If 2β 6= 2δ− 1, besides log-solutions (7), there are one-complex parameter

(a ∈ C) logarithmic solutions [8], [4], [5]

y(x) =

[
2β + 1− 2δ

4
(a+ lnx)2 +

2β

2β + 1− 2δ

]
x+

∞∑

n≥2
Pn(lnx; a)xn, a ∈ C.

3.1) The symmetry y(x) 7→ x/y(x) applied to case 3) gives one-parameter
(a ∈ C) solutions

y(x) =

∞∑

k=0

yk(x)(axω)k, ω ∈ {ω+
αγ , ω

−
αγ}, y0(x) = O(1), yk(x) = O(xk−1),

where ω±αγ := (
√

2α±√2γ)sgn(<(
√

2α±√2γ)) 6∈ Z, and yk(x) are Taylor series.

4.1) The symmetry y(x) 7→ x/y(x) applied to case 4) with N 6= 0, gives

solutions existing when
√

2α+
√

2γ = N or
√

2α−√2γ = N :

y(x) =

|N |−1∑

n=0

bnx
n +

(
a+ bN lnx

)
x|N | +

∞∑

n=|N |+1

Pn(lnx; a)xn, N 6= 0

where bn are functions of α, β, γ and δ, a is a free parameter, Pn(lnx; a) are
polynomials of lnx of degree n−|N |+ 1, with coefficients determined by a, α, β, γ
and δ. If {√−2β+

√
1− 2δ,

√−2β−
√

1− 2δ}∩{|N |−1, 1−|N |} 6= ∅ or if 2α = N2,
the solutions become convergent Taylor expansions. The symmetry y(x) 7→ x/y(x)
applied to case 4) for N = 0 gives the solutions

y(x) =
1

(a±
√

2α lnx) +
∑∞
n=1 Pn(lnx; a)

∼ ± 1√
2α lnx

, α = γ

5.1) Symmetry y(x) 7→ x/y(x) applied to 6) gives

y(x) =
2

(γ − α) ln2 x

[
1 +

1

lnx
+O

(
1

ln2 x

)]
, α 6= γ

� Cases 1), 3) for |<σ| < 1, 4) for N = 0, and 5) are obtained by matching
solutions of OUT and IN-systems with NOUT = NIN = 0. Case 2) is obtained
from (5) via symmetry y(x) 7→ x/y(x). Cases 3) and 4) with N 6= 0 are obtained
using OUT and IN-systems with at least one NIN or NOUT greater than zero. For
the convergence of 1), 2) and 3) see method of [11] and [3]. For convergence of
Taylor expansions see [10].

The set of the above behaviors obtained in [8], [3], [4], [5] and [6], coincides
with the set of expansions obtained by power geometry, summarized in [2].
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ii) Parameterization in terms of monodromy data: Every solution
y(x) is associated to a point in the space of monodromy data of (1). The power
of the method of isomonodromic deformations is that it allows to parameterize
the free parameters (integration constants) of y(x) in terms of monodromy data.
For a given point in the space of monodromy data, namely for a given y(x), the
parameterization can be done at each of the critical points x = 0, 1,∞. In this way
the connection problem is solved. In order to achieve the goal, we need to compute
the monodromy data of (1). This is done as follows. Once the matching ΨOUT ↔
ΨIN in (4) has been completed, we have to match ΨOUT with a fundamental
solution Ψ of (1) at λ = ∞, and we have to match ΨIN with the same Ψ in
another region of the λ-plane, typically around λ = 0 or x. If this is done, then M1

of Ψ coincides with MOUT
1 of ΨOUT , while M0 and Mx coincide with M IN

0 and
M IN
x of ΨIN . The crucial point is that we are able to compute the monodromy

matrices MOUT
1 , M IN

0 and M IN
x exactly, namely that we are able to solve the

systems in terms of linear special functions. We cannot write here the rather long
parameterization formulas. The reader may see [8], [1] [4], [5] and [6]
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Parametric Stokes phenomenon for the second
Painlevé equation

Kohei Iwaki

Abstract. The second Painlevé equation with a large parameter (PII) is ana-
lyzed by using the exact WKB analysis. The purpose of this study is to inves-
tigate the problem of the degeneration of P -Stokes geometry of (PII), which
is related to a kind of Stokes phenomena for asymptotic (formal) solutions of
(PII). We formulate the connection formula for this Stokes phenomenon, and
confirm it in two ways: the first one is by computing the ”Voros coefficient”
of (PII), and the second one is by using the isomonodromic deformation the-
ory. Our main claim is that the connection formulas derived by these two
completely different methods coincide.

Mathematics Subject Classification (2000). Primary 34M55; Secondary 34M40.

Keywords. Painlevé equation, Exact WKB analysis, Stokes phenomenon.

1. Introduction

We analyze the second Painlevé equation with a large parameter η

(PII) :
d2λ

dt2
= η2(2λ3 + tλ+ c)

by using the exact WKB analysis. (The general theory of the exact WKB anal-
ysis for Painlevé equations is presented in [1].) The purpose of this study is to
investigate the problem of the degeneration of P -Stokes geometry (existence of
P -Stokes curves connecting two turning points) of (PII). (See Definition 2.1 for
the definition of P -Stokes curve.) Here the following figures describe the P -Stokes
curves of (PII) near argc = π

2 . The degeneration of P -Stokes curves observed when
arg c = π

2 suggests that a kind of Stokes phenomena occurs when c varies near
arg c = π

2 , that is, the correspondence between asymptotic (formal) solutions and
true solutions of (PII) changes discontinuously before and after the degeneration.
We call this phenomenon ”parametric Stokes phenomenon” because this Stokes
phenomenon (or the degeneration of Stokes geometry) occurs when the parameter
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c contained in (PII) varies. In this case, asymptotic solutions mean the following
1-parameter family of transseries solutions (1-parameter solutions) of (PII):

λ(t, c, η;α) = λ(0)(t, c, η) +αη−
1
2λ(1)(t, c, η)eηφII + (αη−

1
2 )2λ(2)(t, c, η)e2ηφII + · · · .

Here α is a free parameter, λ(k)(t, c, η) = λ
(k)
0 (t, c)+η−1λ(k)1 (t, c)+η−2λ(k)2 (t, c)+· · ·

(k ≥ 0) are formal power series of η−1 and φII = φII(t, c) is some function. (Note
that λ(0)(t, c, η) itself is a formal power series solution of (PII), called 0-parameter
solution.) We will formulate the connection formula for the parametric Stokes phe-
nomenon for 1-parameter solutions.

2. Connection formula for the parametric Stokes phenomenon

Before formulating the connection formula, we discuss normalizations of 1-parameter
solutions. By letting λ̃(1)(t, c, η;α) = αη−

1
2λ(1)(t, c, η)eηφII , we know that λ̃(1) sat-

isfies the following second order linear ordinary differential equation

d2λ̃(1)

dt2
= η2(6λ(0)(t, c, η)

2
+ t) λ̃(1), (2.1)

that is, the Fréchet derivative of (PII) at λ = λ(0). Thus λ̃(1) can be taken as a
WKB solution ([1]) of (2.1) of the form

λ̃(1)(t, c, η;α) = α
1√

Rodd(t, c, η)
exp
(∫ t

Rodd(t, c, η)dt
)

(2.2)

= αη−
1
2 (λ

(1)
0 (t, c) + η−1λ(1)1 (t, c) + η−2λ(1)2 (t, c) + · · · )eηφII ,

where Rodd is the odd part of a formal power series solution R = ηR−1 + R0 +
η−1R1 + · · · of the Riccati equation

R2 +
dR

dt
= η2

(
6λ(0)(t, c, η)

2
+ t
)

(2.3)

associated with (2.1). (Thus we have φII =
∫ t
R−1dt.) We note that λ(k) (k ≥ 2)

are determined uniquely once the normalization of λ̃(1) (i.e. the normalization of

the integral
∫ t
Rodd(t, c, η)dt in (2.2)) is fixed.
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Definition 2.1 ([1]). (i) A point t is called a P -turning point of (PII) if t satisfies

6λ
(0)2
0 + t = 0.

(ii) For a P -turning point t = τ , a real one-dimensional curve defined by

Im

∫ t

τ

√
6λ

(0)2
0 + t dt = 0

is said to be a P -Stokes curve of (PII).

Here we introduce two normalizations of λ̃(1). The first normalization of λ̃(1)

is ”the normalization at a P -turning point”:

λ̃(1)τ (t, c, η;α) = α
1√
Rodd

exp

(∫ t

τ

Rodd dt

)
, (2.4)

where τ is a P -turning point of (PII). The second one is ”the normalization at∞”:

λ̃(1)∞ (t, c, η;α) = α
1√
Rodd

exp

(
η

∫ t

τ

R−1 dt+

∫ t

∞

(
Rodd − ηR−1

)
dt

)
. (2.5)

We define the 1-parameter solution λτ (t, c, η;α)(resp. λ∞(t, c, η;α)) by using λ̃
(1)
τ (resp.

λ̃
(1)
∞ ) for the normalization of λ̃(1). Then the connection formula for the parametric

Stokes phenomena for 1-parameter solutions can be described as follows:

Connection formula for the 1-parameter solutions of (PII). Let ε be a sufficiently
small positive number.
(i) If the true solutions represented by λ∞(t, c, η;α) for arg c = π

2 − ε and by
λ∞(t, c, η; α̃) for arg c = π

2 + ε coincide, then the following holds:

α̃ = α. (2.6)

(ii) If the true solutions represented by λτ (t, c, η;α) for arg c = π
2 − ε and by

λτ (t, c, η; α̃) for arg c = π
2 + ε coincide, then the following holds:

α̃ = (1 + e2πicη) α. (2.7)

Assuming the Borel summability of the 1-parameter solutions, we derive the above
connection formulas in two ways:

A: derivation through the analysis of ”the Voros coefficient of (PII)”,
B: derivation by using the isomonodromic deformation.

Our main claim is that the connection formulas derived by these two completely
different methods coincide. In this abstract, due to the lack of space, we explain
only an outline of the derivation of the connection formula by A. The derivation
by B will be discussed in the talk.

3. Derivation of the connection formulas through the analysis of
the Voros coefficient of (PII)

We define the Voros coefficient of (PII). It plays an important role in the analysis
of the parametric Stokes phenomenon for the 1-parameter solutions of (PII).
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Definition 3.1. The Voros coefficient W (c, η) of (PII) is defined as follows:

W (c, η) =

∫ ∞

τ

(
Rodd(t, c, η)− ηR−1(t, c)

)
dt. (3.1)

W (c, η) appears as a difference of the above two normalizations of λ̃(1):

λ̃(1)τ (t, c, η;α) = eW (c,η) λ̃(1)∞ (t, c, η;α). (3.2)

Then we obtain the following theorem.

Theorem 3.2. The Voros coefficient W (c, η) of (PII) is represented explicitly as
follows:

W (c, η) = −
∞∑

n=1

21−2n − 1

2n(2n− 1)
B2n(cη)1−2n. (3.3)

Here B2n is the 2n-th Bernoulli number defined by

w

ew − 1
= 1− w

2
+
∞∑

n=1

B2n

(2n)!
w2n. (3.4)

A key to the proof of Theorem 3.2 is the calculation of the difference W (c, η) −
W (c− η−1, η), which is done by making use of the Bäcklund transformation that
induces the translation of the parameter c 7→ c−η−1 of (PII). Using the expression
(3.3), we can analyze the parametric Stokes phenomenon for W (c, η).

Corollary 3.3 ([2]). By denoting the Borel resummation operator by S, we obtain
the following:

S
[
eW (c,η)

∣∣
argc=π

2−ε
]

= (1 + e2πicη) S
[
eW (c,η)

∣∣
argc=π

2 +ε

]
, (3.5)

where ε is a sufficiently small positive number.

Assume that the connection formula (2.6) for λ∞ is true. Then, combining Corol-
lary 3.3, (2.6) and (3.2), we can derive the connection formula (2.7) for the 1-
parameter solution λτ (t, c, η;α).
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Solution of the equivalence problem for the sec-
ond order ODE’s with the degenerate Cartan’s
invariants

Vera V.Kartak

Abstract. A class of second order ordinary differential equations that pos-
sesses the constant (degenerate) Cartan’s invariants is investigated. Four basic
types of these equations were found. For any type of equations the equiva-
lence problem is solved. As the examples, it solved for the Painleve II equation,
Painleve III equation with three zero parameters, Emden equations and for
some other equations from the handbook Kamke.

Mathematics Subject Classification (2000). 53A55, 34A26, 34A34, 34C14, 34C20,
34C41.

Keywords. Differential invariant, Problem of equivalence, Point transforma-
tion, Painleve equation, Emden equation.

1. Four types of the equations

Let us consider the following class of the second order ODE’s:

y′′ = P (x, y) + 3Q(x, y)y′ + 3R(x, y)y′2 + S(x, y)y′3. (1.1)

It is well-known fact that it closed under the general point transformations x̃ =
x̃(x, y), ỹ = ỹ(x, y). Let we have two arbitrary equations (1.1). The problem of
existence of the point transformation that connects these equations is called the
equivalence problem. The main approach that allows to solve the equivalence prob-
lem is based on the theory of invariant.

The invariant theory of equation (1.1) goes back to the classical works of the
end of XIXth - beginning of the XXth centuries by R.Liouville, S.Lie, A.Tresse,
E.Cartan; later it continues in the works of the end of XX century by C. Grissom,

This work was completed with the support of German Academic Exchange Service (DAAD),
programme “Mikhail Lomonosov” 2010.
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G. Thompson and G. Wilkens; N. Kamran, K.G. Lamb & W.F. Shadwick; J. Hi-
etarinta, V. Dryuma, L.A. Bordag, N. Kh. Ibragimov, R.A.Sharipov. It remains an
active research topic in the XXI century, see works by C. Bandle and L.A. Bordag,
V.V.Kartak, N.H. Ibragimov, S.V. Meleshko.

In the present paper we use notations from works R.A.Sharipov to calculation
the Cartan’s invariants. The explicit formulas are very huge and can’t be written
at the present paper, see [1].

Here we investigate equations (1.1) with conditions

α 6= 0, F = 0, M 6= 0, I1 = const 6= 0, I2 = 0. (1.2)

Theorem 1.1. Each equation (1.1) with conditions (1.2) can be transformed by
point transformations into the form:

y′′ = P ∗(y) + t(x)y + s(x),

where

P ∗(y) =





ey, if I1 =
3

5
;

− ln y, if I1 = − 9

10
;

y(ln y − 1), if I1 = −12

5
;

yC+2

(C + 1)(C + 2)
, if I1 =

3(C + 5)

5C
, C = const 6= −5, −2, −1, 0.

Definition 1.2. Let us say that equation (1.1) has Type I if hold the conditions
(1.2) where I1 = 3/5.

Theorem 1.3. A complete list of cases which can be distinguished for equations of
Type I. Here J3, J6, J1 and K are invariants. Formulas are into the paper [2].

Type J3 J6 J1 K Canonical form
I.1 0 0 − 0 y′′ = ey

I.2 6= const J3 − 0 y′′ = ey + 1
I.3 6= const 6= J3, const=a 0 y′′ = ey + y + a

6= const
I.4 6= const J3 − const = k 6= 0 y′′ = ey + 4

kx2

I.5 6= const J3 − 6= const y′′ = ey + s(x), s(x) 6= const
I.6 6= const 6= J3, 6= const 6= const y′′ = ey + t(x)y + s(x),

6= const t(x) 6= 0

Definition 1.4. Let us say that equation (1.1) has Type II if hold the conditions
(1.2) where I1 = −9/10.

Theorem 1.5. A complete list of cases which can be distinguished for equations of
Type II. Here J6, J9 and J are invariants. Formulas are into the paper [2].
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Type J6 J9 J Canonical form
II.1 0 0 − y′′ = − ln y
II.2 6= const 0 a =const6= 0 y′′ = − ln y + y + a
II.3 0 6= const, - y′′ = − ln y + s(x), s(x) 6= const
II.4 6= const 6=const 6=const y′′ = − ln y + t(x)y + s(x), t(x) 6= 0

Definition 1.6. Let us say that equation (1.1) has Type III if hold the conditions
(1.2) where I1 = −12/5.

Theorem 1.7. A complete list of cases which can be distinguished for the equations
(1.1) of Type III, J6, J9 and J are invariants. Formulas are into the paper [2].

Type J6 J9 J Canonical form
III.1 0 0 0 y′′ = y(ln y − 1)
III.2 0 b2 =const6= 0 0 y′′ = y(ln y − 1)± bxy
III.3 6= const 0 a =const6= 0 y′′ = y(ln y − 1) + a
III.4 6= const b2 =const6= 0 6= const y′′ = y(ln y − 1)± bxy + 1
III.5 6= const 6= const 6= const y′′ = y(ln y − 1) + t(x)y + s(x),

s(x) 6= 0

Definition 1.8. Let us say that equation (1.1) has Type IV if hold the conditions
(1.2) where I1 = 3(C + 5)/5C, C = const, C 6= 0, −1, −2, −5.

Theorem 1.9. A complete list of cases which can be distinguished for the equations
(1.1) of Type IV. Here J1, J2, K, J , J9 and K1 are invariants. Explicite formulas
are into the paper [2].

Type J1 J2 K J J9 K1 Canonical form

IV.1 0 0 - - 0 0 y′′ = yC+2

(C+1)(C+2)

IV.2 0 6= 0 - - 0 0 y′′ = yC+2

(C+1)(C+2)
+ 1

IV.3 0 6= 0 - - 6= 0 0 y′′ = yC+2

(C+1)(C+2)
+ x

IV.4 0 6= 0 - - 6= 0 6= 0 y′′ = yC+2

(C+1)(C+2)
+ s(x)

IV.5 6= 0 0 6=const 0 6= 0 0 y′′ = yC+2

(C+1)(C+2)
+ xy

IV.6 6= 0 0 k =const 6= 0 0 6= 0 6= 0 y′′ = yC+2

(C+1)(C+2)
+ 4y

kx2

IV.7 6= 0 6= 0 k =const 6= 0 6=const 6= 0 6= 0 y′′ = yC+2

(C+1)(C+2)
+ 4y

kx2 + 1

IV.8 6= 0 ∀ 0 a =const 0 0 y′′ = yC+2

(C+1)(C+2)
+ y + a

IV.9 6= 0 ∀ 6=const a =const 6= 0 ∀ y′′ = yC+2

(C+1)(C+2)
+ t(x)y+

+ at(x)
C+2
C+1

IV.10 6= 0 6= 0 6=const 6=const 6= 0 0 y′′ = yC+2

(C+1)(C+2)
+

+ xy + cx + d

IV.11 6= 0 6= 0 6=const 6=const 6= 0 6= 0 y′′ = yC+2

(C+1)(C+2)
+ t(x)y + s(x)
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Example. Equation Painleve III depends on 4 parameters (a, b, c, d)

PIII(a, b, c, d) : y′′ =
y′2

y
− y′

x
+

(ay2 + b)

x
+ cy3 +

d

y
.

It is known that all equations Painleve III with 3 zero parameters are equivalent.
In this way suppose that a 6= 0, b = c = d = 0. For the equation PIII(a, 0, 0, 0)
conditions (1.2) are hold and invariants are equal to:

I1 =
3

5
, I2 = 0, I3 =

1

15
.

As J3 = 0, then according to Theorem 1.3, equation PIII(a, 0, 0, 0) has Type I.1
and can be reduced:

y′′ =
y′2

y
− y′

x
+
ay2

x
→ ỹ′′ = eỹ.

Example. Equation Painleve II depends on 1 parameter a

PII(a) : y′′ = 2y3 + xy + a.

It satisfies to the conditions (1.2) with invariant I1 = 18/5. According to Theorem
1.9 it has Type IV, case C = 1. Let us calculate the additional invariants

J1 =
x

12y2
, J2 =

a

12y3
, J =

2a
√

3

x
√
x
, K =

1

x3
, J9 =

1

1728y6
, K1 = 0.

We see that the equation PII(a) has Type IV.10 if a 6= 0 and Type IV.5 if a = 0.

Let us calculate x, y and a via invariants: x = 1/ 3
√
K, y = 1/2

√
3 6
√
J9,

a = J2/2
√

3
√
J9.

Theorem 1.10. Equation (1.1) of Type IV is equivalent to Painleve II equation
with parameter ±a if and only if

C = 1,
J2

2
√

3
√
J9

= a = const, K1 = 0. (1.3)

The explicit point transformation is x̃ = 1/ 3
√
K(x, y), ỹ = 1/(2

√
3 6
√
J9(x, y)).
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On some estimates of the minimal eigenvalue
for the Sturm — Liouville problem with third-
type boundary conditions and integral condi-
tion

Elena Karulina

Abstract. We consider the Sturm–Liouville problem with symmetric bound-
ary conditions and an integral condition. We estimate the first eigenvalue λ1

of this problem for different values of the parameters.

Mathematics Subject Classification (2000). 34L15.

1. Introduction

Consider the Sturm — Liouville problem:

y′′(x)− q(x)y(x) + λy(x) = 0, (1.1)
{
y′(0)− k2y(0) = 0,
y′(1) + k2y(1) = 0,

(1.2)

where q(x) belongs to the set Aγ (γ 6= 0) of non-negative bounded summable

functions on [0, 1] such that
∫ 1

0
qγ(x)dx = 1.

We estimate the first eigenvalue λ1(q) of this problem for different values of
γ and k.

According to the variation principle λ1(q) = inf
y∈H1(0,1)\{0}

R(q, y), where

R(q, y) =

1∫
0

y′2(x)dx+
1∫
0

q(x)y2(x)dx+ k2
(
y2(0) + y2(1)

)

1∫
0

y2(x)dx

. (1.3)

The author was partially supported by the Russian Foundation for Basic Researches (Grant
11-01-00989) and grant AVP RNP 2.1.1/13250.
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Put mγ = inf
q∈Aγ

λ1(q), Mγ = sup
q∈Aγ

λ1(q).

Remark 1.1. Dirichlet problem for the equation (1.1), q(x) ∈ Aγ was considered
in [3], [4]. Different problems for the equation y′′ + λq(x)y = 0, q(x) ∈ Aγ was
considered in [1], [2].

2. Results

Theorem 2.1. The following assertions are valid:

1. If γ ∈ (−∞, 0) ∪ (0, 1), then Mγ = +∞, and there exists the minimizing
sequence qε(x) ∈ Aγ such that Mγ = lim

ε→0
λ1(qε).

2. If γ ≥ 1 and k = 0, then Mγ = 1, and this estimate is attained at q(x) ≡ 1.
3. If γ = 1 and k 6= 0, then M1 = ξ∗, where ξ∗ is the solution to the equation

arctan k2√
ξ

= ξ−1
2
√
ξ
, and this estimate is attained at

q(x) = q∗(x) =





0, 0 ≤ x < τ,
ξ∗, τ ≤ x < 1− τ,
0, 1− τ ≤ x < 1,

where τ =
1√
ξ∗

arctan
k2√
ξ∗
.

4. If γ > 1, then for k = 0 we have mγ = 0, and for k 6= 0 we have mγ = λ01,
where λ01 is the minimal positive solution to the equation

(k4 − λ) sin
√
λ+ 2k2

√
λ cos

√
λ = 0; (2.1)

and there exists the minimizing sequence qε(x) ∈ Aγ such thatmγ = lim
ε→0

λ1(qε).

5. If γ > 0, then mγ → π2 as k →∞.

3. Proofs of some results

Results 1)–3) were proved in [5], [6]. Here we prove results 4)–5).
Suppose γ > 1 and k 6= 0. Let us prove that mγ = λ01, where λ01 is the

minimal positive solution to equation (2.1).

Proof. By definition,

mγ = inf
q∈Aγ

(
inf

y∈H1(0,1)\{0}
R(q, y)

)
= λ01 + inf

q∈Aγ

inf
y

1∫
0

q(x)y2dx

1∫
0

y2dx

, (3.1)

where λ01 is the first eigenvalue of the problem for the equation

y′′(x) + λy(x) = 0 (3.2)

with conditions (1.2).
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Let y01 be the first eigenfunction of problem (3.2), (1.2), then

y01 = C1 cos
√
λ01x+ C2 sin

√
λ01x.

Put

qε(x) =

{
ε−1/γ , 0 < x < ε,
0, ε < x < 1.

Suppose M1 ≥
(
y01(x)

)2 ≥M2 > 0 at x ∈ [0, 1], where M1, M2 are constants (such

constants exist since y01(x) is bounded and non-trivial function). Hence,

inf
q∈Aγ

inf
y

1∫
0

q(x)y2dx

1∫
0

y2dx

≤

1∫
0

qε(x)
(
y01
)2
dx

1∫
0

(y01)
2
dx

≤ M1

M2
· ε1−1/γ → 0 as ε → 0.

Therefore, mγ = λ01. �

Suppose γ > 0. Let us prove that mγ → π2 as k →∞.
First let us prove that if γ > 0, then mγ ≤ π2.

Proof. Put

yδ(x) =

{
sin πx

δ , 0 < x < δ,
0, δ < x < 1

and qδ(x) =

{
0, 0 < x < δ,

(1− δ)− 1
γ , δ < x < 1,

where δ → 1− 0.
Then we have

R(qδ, yδ) =
π2

2δ + 0 + k2 sin2 π
δ

δ/2
.

Therefore we obtain

mγ = inf
q∈Aγ

[
inf

y∈H1(0,1)\{0}
R(q, y)

]
≤ R(qδ, yδ)→ π2 as δ → 1− 0.

�

Now let us prove that if γ > 0, then mγ → π2 as k →∞.

Proof. It follows from (3.1) thatmγ ≥ λ01, where λ01 is the minimal positive solution

to equation (2.1). For k2 > π/2 we have cos
√
λ01 6= 0, so we may seek λ01 as the

minimal positive solution to the equation

tan
√
λ =

2
√
λk2

(λ− k4)
. (3.3)

Using the properties of the functions tan(
√
λ) and 2

√
λk2

(λ−k4) (see fig. 1), we get:

• if k2 > π, then λ01 ∈
(
π2/4; π2

)
;

• if k →∞, then λ01 → π2.

Therefore, mγ → π2 as k →∞. �
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Figure 1. The solution of the equation tan t = 2tk2

(t2−k4) for dif-

ferent values of k.
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Euler integral symmetry and deformed hyper-
geometric equation

Alexander Ya.Kazakov

Abstract. Deformed hypergeometric equation, linear differential equation of
the second order with three regular singularity and one apparent singularity,
is under consideration. Euler integral symmetry for this equation is described.
Analytic continuation of the corresponding contour integral gives the possi-
bility to calculate the monodromy group for this equation in explicit terms.
Solutions of the deformed hypergeometric equation in integral form are ob-
tained too.

Mathematics Subject Classification (2000). Primary 34M35; Secondary 33C60,
34M03.

Keywords. Euler integral symmetry, monodromy, connection matrix, deformed
hypergeometric equation.

Linear special functions (like hypergeometric functions, Heun class functions
etc.) connected with nonlinear special functions (solutions of the Painleve equa-
tions) by two ways. Firstly, Painleve equations govern isomonodromy deformations
of the linear equations [1], [2]. Secondly, explicit information about monodromy
groups can be exploited at the study of solutions of Painleve equations ( A.Its and
colleagues). Here the monodromy group of the deformed hypergeometric equation

w′′(z) +

[
α

z
+

β

z − 1
− 1

z − λ

]
w′(z) +

1

z(z − 1)

[
χ

z − λ +
σ

λ(λ− 1)

]
w(z) = 0 (1)

is under consideration. This equation has like the hypergeometric one 3 regular
singular points z = 0, z = 1, z =∞, and, moreover, apparent (or ”false” ) regular
singular point of the first order at z = λ. It has 4 free parameters α, β, λ, χ,
the value of the parameter σ is determined by the condition: solutions have not
logarithmic behavior in the neighbourhood of the point z = λ. It can be shown,
that σ = −(βλ − 2λ + αλ + 1 + χ − α)χ. The order of the apparent singularity
is equal to 1 in accordance with residue at z = λ in the coefficient at w′(z). This
equation can be considered as a particular case of the Heun equation [3] when
one of regular singularity is apparent one. Our aim is to calculate the monodromy
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group for this equation, we apply here Euler integral symmetry and procedure of
analytic continuation. This approach was discussed before in [4], [5].

Initial point is the linear differential system

(Az +B)W ′(z) = CW (z), (2)

where A,B,C are constant m×m matrices. If m = 2, this system can be reduced to
the deformed hypergeometric equation. The singular regular points of this system
are the roots of the det(Az +B) and, may be, the infinity.

Theorem 1. Let V (t) be the solution of the system

(At+B)V ′(t) = [C − (µ+ 1)A]V (t), (3)

branching in the neighbourhood of some regular singularity t = t∗ and contour L
is a double loop on complex plane around the point t = z and t = t∗ . Then W (z)
defined as

W (z) =

∫

L

(z − t)µV (t)dt, (4)

is the solution of the system (2) branching at the same point z = t∗.

Note, that integral relation (4) is a scalar one, namely, it links corresponding
components of the vector-functions V (t) and W (z). So, if m = 2 reduction of sys-
tems (2) and (3) to the differential equations leads to the integral relation between
solutions of the deformed hypergeometric equations. In order to describe this link
in explicit terms it is necessary to express parameters of (1) in terms of parameters
of (2). Then it is necessary to calculate parameters of deformed hypergeometric
equation, which is a reduction of the system (3). These cumbersome calculations
were realized with help of Maple, we omit here theirs details. Results of this cal-
culations we summarize in the Proposition 2. Here we need in some convenient
notions.

Let denote by w
(0)
h (z) normalized at z = 0 holomorphic solution of equation

(1), w
(0)
b (z) normalized branching at z = 0 solution of this equation, w

(0)
h (z) ∼ 1,

w
(0)
b (z) ∼ 1·z1−α at z ∼ 0, w

(1)
h (z), w

(1)
b (z) normalized holomorphic and branching

at z = 1 solutions, w
(1)
h (z) ∼ 1, w

(1)
b (z) ∼ 1 · (z − 1)1−β at z − 1 ∼ 0.

Theorem 2. Let v
(0,1)
b (t) are normalized branching solutions of equation

v′′(t) +

[
α̃

t
+

β̃

t− 1
− 1

t− λ̃

]
v′(t) +

1

t(t− 1)

[
χ̃

t− λ̃
+

σ̃

λ̃(λ̃− 1)

]
v(t) = 0, (5)

fixed by theirs behavior in the regular singular points t = 0 or t = 1 respectively,
the contour L = L0,1 be double loop including either t = 0 (for L(0)), or t = 1 (for

L(1)), and point t = z, and

α̃ = α+ µ+ 1, β̃ = β + µ+ 1, (6)

λ̃ =
λ(αλ− λ− α+ µλ− µ+ βλ+ χ)

−2λ+ βλ+ αλ+ 1− α+ χ
(7)
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χ̃ = − 1

−2λ+ βλ+ αλ+ 1− α+ χ
(−χ2 − αµλ− βµλ− αχλ+ (8)

αλ2 +βλ2−λ2−βλ+λ+βµλ2−χ+αλ2µ+αχ−αλ+µ2λ2−µ2λ−βλχ+ 2χλ).

Then function w(z), defined by relation

w(z) = (ν0,1)−1
∫

L0,1

(z − t)µv(0,1)b (t)dt, (9)

coincides with w
(0,1)
b (z). Here

ν0,1 = [1− exp(2πiµ)] [1− exp(2πi(κ0,1))]B(µ+ 1, 1 + κ0,1),

κ0,1 are characteristic exponents for the solutions v
(0,1)
b (t) at the corresponding

singular point.

Let W (0,1)(z) = (w
(0,1)
b (z), w

(0,1)
h (z))T . Then, in accordance with analytic

theory of linear differential equations [1], [2], W (0)(z) = RW (1)(z), where R is the
corresponding connection matrix for the equation (1). Considering the analytic
continuation with help of integral relation (9), one obtains:

R11 =
exp(2πiκ1)− 1

exp (−2πiβ)− 1

Γ(κ1 + 1)Γ(κ0 + µ+ 2)

Γ(κ0 + 1)Γ(κ1 + µ+ 2)
T11, (10)

where T is the corresponding connection matrix for the equation (5). Note, that
integral transform (9) depends on the free parameter µ. Changing this parameter
one can change the parameters of equation (5) in accordance with (6)-(8). Let us

fix parameter µ by condition: apparent singularity of equation (5) t = λ̃ coincides
with regular singularity t = 0. It means, that µ = −(αλ−α+βλ−λ+χ)/(λ−1),
and equation (5) reads:

v′′(t) +

[−αλ− 1 + α− β + 2λ− χ
(t− 1)(λ− 1)

+
−βλ+ λ− χ
t(λ− 1)

]
v′(t)+ (11)

(βλ− λ+ χ)(−λ2 + tλα+ tβλ+ λ− 2tλ+ t− tα+ tχ)

(λ− 1)2λt2(t− 1)
v(t) = 0.

Coefficient at v(t) in the equation (11) has pole of the second order at t = 0,
so this equation can be transformed into hypergeometric one by simple substitu-
tion. Connection matrices for hypergeometric equation are described by Kummer
relations [6]. So, one can calculate the value of T11 and, consequently, R11. Let

∆ =

√
(α− β)2

4
+

(βλ− λ+ χ)(−λ+ αλ+ χ+ 1− α)

λ(λ− 1)
, (12)

then

R11 = − (λ− 1) exp(iπβ)Γ(β − 1)Γ(2− α)

(βλ+ χ− λ)Γ(β−α2 + ∆)Γ(β−α2 −∆)
. (13)

Relation (13) describes one entry of connection matrix for the equation (1), this
connection matrix corresponds to the pair of singular points z = 0, z = 1. Other
entries of this matrix can be evaluated with help of elementary symmetries of
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the deformed hypergeometric equation. Namely, substitutions w(z) = z1−αw1(z),
w(z) = (z−1)1−βw2(z), and change of variable z = 1−s produce the same equation
for functions w1(z), w2(z), w(s) with different sets of parameters. In more details,
the first substitution transforms equation with parameters [α, β, λ, χ] into equation
with parameters [2− α, β, λ, 1 + χ+ λα− λ− α], and exchanges branching and
holomorphic at z = 0 solutions, solutions fixed by behavior at z = 1 does not
change its character. So,

R21(α, β, λ, χ) = R11(2− α, β, λ, 1 + χ+ λα− λ− α). (14)

Analogously,
R12(α, β, λ, χ) = R11(α, 2− β, λ, χ− λ+ βλ). (15)

Combining,

R22(α, β, λ, χ) = R11(2− α, 2− β, λα+ βλ− 2λ+ 1 + χ− α). (16)

These relations give us connection matrix R, which corresponds to the pairs of
singularities z = 0, 1. Equation (1) has once more regular singularity z = ∞.
But change of independent variable z = s−1 (which exchanges points 0 and
∞)transforms equation (1) into equation, which differs from equation (1) by ele-
mentary factor only (with different set of parameters). This symmetry gives the
possibility to calculate the connection matrix which corresponds to the pair of
singularities z = ∞, z = 1. Solutions of the deformed hypergeometric equation in
integral form are obtained too.
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Confluent Heun equation is a second order equation with two regular sin-
gularities which are assumed to be z1 = 0, z2 = 1 and one irregular singularity
at infinity of s-rank R(∞) = 2 [1]. If the fourth singularity z = q, namely the
apparent one, is added to this equation we term the generated equation as the
deformed Confluent Heun equation CHE1.

z(z−1)w′′(z)+(−tz(z−1)+c(z−1)+dz− 1

z − q
)w′(z)+(−taz+tλ+

pq

z − q
)w(z) = 0. (1)

It is known that the isomonodromy condition for equation (1) is equivalent to the
Painleve equation P 5.

The Euler integral transforms for Heun equation has been studied before.
They lead to symmetries for Heun equations and as a result symmetries of the
corresponding P 6 [2]. First idea that integral transforms lead to inner symmetries
appeared in the paper by Fock [3]

The problem of transforms for CHE1 is rather sophisticated and needs com-
puter algebra systems for particular calculations. Here we give an implicit solution
of this problem using the ideas proposed in [2] based on study of an auxiliary linear
2× 2 system for which the Euler transform and subsequent symmetries are much
simpler. As a result the symmetries of CHE1 and resulting symmetries of P 5 are
found. They generate a subset of Okamoto transforms for P 5.

The starting linear system is assumed to be of the form

(z2A+ zB + C)
dW

dz
= (−αzA+ E)W. (2)

Here A,B,C,E are 2× 2 matrices which do not depend on z, W (z) is a 2-vector
function. Particularly

A =

(
1 0
0 0

)
, B =

(
0 τ
1 0

)
, C =

(
cτ + c+ τ −cτ − c− τ

c −c

)
, E =

(
e1 e2
e3 e4

)
. (3)
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Here c and τ are parameters determining characteristic exponents at regular
singularities. The determinant of Az2 +Bz + C can be easily computed

det(Az2 +Bz + C) = −(c+ τ)z(z − 1) (4)

The choice of matrices A,B,C was the crucial point in our studies. It is based on
(4) but has much freedom which can either simplify intermediate computations or
make them more complicated. The roots of the polynomial det(z2A+ zB+C) are
regular singularities of CHE1.

Reduction of (2) to the second order equation leads to the CHE1 and the
corresponding relations between parameters of system (2) and equation (1) can
be obtained. However, in several cases these relations are complicated (include
hundred of terms) and are presented only in the report.

Further the solution of the auxiliary system CHE1 Φ(s) is introduced:

(
s2A+ sB + C

) dΦ(s)

ds
= ((α+ 2)sA+ E − (−α+ 1)B)Φ(s) = 0. (5)

It can be shown by integration by parts, that if Φ(s) is appropriate solution of
(??) and L is appropriate contour on complex plane, then

W (z) =

∫

L

(z − s)κΦ(s)ds, (6)

is a solution of initial system (2). Reduction of the system (5) leads to CHE1 too,
but with the transformed coefficients. Due to the scalar nature of integral relation
(6), the corresponding integral relation can be written for solutions of initial CHE1
and transformed CHE1. Analytic continuation with help of this integral give the
possibility to link the monodromy matrices of the initial and transformed CHE1.

The rather boring computations where computer algebra systems can help
allow to find the explicit relations between parameters of initial CHE1 and trans-
formed CHE1.

References

[1] S.Yu.Slavyanov, W. Lay. Special functions: a unified theory based on singularities.
OUP, Oxford New York, 2000.

[2] A.Ya. Kazakov, S.Yu. Slavyanov, Theor. Math. Phys, 155, 721-732, (2008).

[3] V.A. Fock ”Zur Theorie des Wasserstoffatoms”. Zs. f. Phys., Bd.98, S. 145-154, 1935.

Alexander Ya. Kazakov
S.-Petersburg State University of Aerospace Instrumentation,
B. Morskaya, 67, 190000 S.-Petersburg, Russia
e-mail: a kazak@mail.ru

Sergey Yu. Slavyanov
S.-Petersburg State University, Ulyanovskaya, 3, St.Peterhof, S.-Petersburg, Russia
e-mail: slav@SS2034.spb.edu



Third order differential equation with Painlevé
property

A.Kessi and Y.Adjabi

Introduction

Painleve, Chazy and Garnier have obtained partial results on the Painlevé
classification of rational third-order differential equations of the form

u′′′ = A2 (u′, u, x)u′′2 +A1 (u′, u, x)u′′ +A0 (u′, u, x) . (1)

In this work we study the case where A2 =
1− 1

η

u′ + c1
;

u′′′ =
1− 1

n

u′+c1
u′′2 +A1 (u′, u, x)u′′ +A0 (u′, u, x) . (2)

Third order equation (2), such that A1 is analytic in x and rational in its
other arguments, was considered in Chazy and Martynov and others. I.P. Mar-
tynov starts with the following simplified equation. i.e. equation which contains
the leading terms with leading order p = −1 as x −→ x0 only

u′′′ = β
(u′′ − 2uu′)2

u′ − u2 + buu′′ + cu′2 + du2u′ + fu4 + a1
u′′u′

u
+ b1

u′3

u2
, (3)

and investigates the values of b, c, d, e, f, a1, b1 and β such that the equation
is of Painlevé type.

We consider the following third order differential equation:

u′′′
(
δu′ + αu2

)
= βu′′2+au′′u′u+bu′′u3+cu′3+du′2u2+eu′u4+fu6+a1

u′′u′2

u
+b1

u′4

u2
.

(4)

The main aim of this work is to find necessary conditions for equation (4) to
be a Painlevé-type equation, and determine all the values of all the coefficients of
the equation (4) , so that it will be with fixed critical points, moreover we study
some obtained equations. The simplified equation corresponding is

u′′′ = β
u′′2

u′
+ a1

u′′u′

u
+ b1

u′3

u2
. (5)
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Firstly, by taking into account these requirements, we find that the equation
(5) is with fixed critical points only if the couple (a1, b1) takes one of the following
values

(a1, b1) ∈





η = −2 :
(

0, 1−m2

2m2

)
,

η = 2 :
(

2m−1
m , − (m−1)(3m+1)

2m2

)
;
(

2, − 3(m−1)(m+1)
2m2

)
,

η > 2 :
(

(m−1)(2+η)
ηm , − (m−1)(ηm+m−1)

ηm2

)
,

η = 3 :
(

5m−2
3m , − 2(m−1)(2m+1)

3m2

)
,

η = 5 :
(

7m−2
5m , − 2(m−1)(3m+2)

5m2

)
,

η =∞ :
(
m−1
m , 1−m

m

)
;
(
1, 1

m2 − 1
)
,

η integer :
(

2
η + 1, − 1

η − 1
)
,





,

where m is an integer number different from 0.

Secondly, equation (4) satisfies the Painleve test if all its solutions can be
expanded in the formal Laurent series:

u = (x− x0)
r
∞∑

i=0

ui (x− x0)
i
, (6)

with u0 non zero and r is the leading power that needs to be found, we see that
r = −1, and the indicial equation of the equation (4) is

(δ − αu0) r3 +
(
bu20 + (6α− a)u0 + a1 + 4β − 6δ

)
r2 +Q (u0) r+ P (u0) = 0, (7)

where

{
Q (u0) = eu30 − (3b+ 2d)u20 + (3c+ 5a− 11α)u0 − 12β + 17δ − 7a1 − 4b1,
P (u0) = 6fu40 − 5eu30 + 4 (d+ 2b)u20 + 3 (6α− 2a− c)u0 + 4a1 + 2b1 + 2 (4β − 6δ) ,

and u0 is root of the following equation :

fu40− eu30 + (d+ 2b)u20 + (6α− 2a− c)u0 + 2a1 + b1 + (4β − 6δ) = 0, u0 6= 0. (8)

So that the equation (4) will be with fixed critical points, it is necessary that,
for each values of u0 solution of the equation(8), the solutions of the equation
(7) will be distinct integer numbers.

There are two cases to consider, according to whether α is or not zero.

I. Equation with α = 0
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By applying Painlevé test method, we find that the list of equation with
integer Fuchs’s indices. For example




u′′′u′ = 3
2u
′′2 − 4u′3 − 8u′2u2 + 2

u′′u′2

u
,

u′′′u′ = u′′2 + 10
3 u
′′u′u+ 16

3 u
′′u3 − 26

3 u
′3 − 44

3 u
′2u2 + 2

u′′u′2

u
,

u′′′u′ = 3
2u
′′2 + 31

6 u
′′u′u+ 1

3u
′′u3 − 89

12u
′3 − 3

2u
′2u2 − 1

12u
′u4 + 2

u′′u′2

u
,





u′′′u′ = 2
3u
′′2 + 1

3u
′′u3 + u′2u2 − 1

3u
6 +

u′′u′2

u
,

u′′′u′ = 4
3u
′′2 + 5

3u
′′u3 − 5u′2u2 + 1

3u
6 +

u′′u′2

u
,

u′′′u′ = 1
2u
′′2 + 5

2u
′2u2 − 1

2u
6 +

u′′u′2

u
.

II. Equation with α 6= 0
Without loss of generality one can see that one of the roots of (8) may be

taken equal to -1 , and the corresponds indicial equation of the equation (7) can
be writen as

(r + 1)
(
(α+ 1) r2 +Mr +N

)
= 0, and u0 = −1,

where

M = b+ a− 7− 7α+ a1 + 4β,

N = 24 + 18α− (e+ 2d+ 3c+ 4b+ 6a)− 16β − 8a1 − 4b1.

We will distinguish two cases according to that (N, M) = (0, 0) , or (N, M) 6=
(0, 0).

II.1. The case where α = −1 and M = N = 0, equation (4) takes the form
(3), which is already studied by Martynov [4]. We obtained a list of equations with
integer Fuchs’s indices. For example



u′′′ =
1

2

(u′′ − 2uu′)2

u′ − u2 + 2uu′′ + 8u2u′ − 8u4 +
u′′u′

u
,

u′′′ =
1

2

(u′′ − 2uu′)2

u′ − u2 − 5
2uu

′′ − 37
24u
′2 + 125

24 u
2u′ + 125

24 u
4 + 3

2

u′′u′

u
− 7

8

u′3

u2
,





u′′′ =
1

2

(u′′ − 2uu′)2

u′ − u2 + 7uu′′ + 265
24 u

′2 − 833
24 u

2u′ + 343
24 u

4 +
u′′u′

u
− 5

8

u′3

u2
,

u′′′ =
1

2

(u′′ − 2uu′)2

u′ − u2 + 20
3 uu

′′ + 118
9 u′2 − 200

9 u2u′ + 4
3

u′′u′

u
− 8

9

u′3

u2
,

u′′′ =
1

2

(u′′ − 2uu′)2

u′ − u2 − 8
3uu

′′ − 46
9 u
′2 + 128

9 u2u′ + 5
3

u′′u′

u
− 10

9

u′3

u2
,

u′′′ =
4

5

(u′′ − 2uu′)2

u′ − u2 + 6
5uu

′′ − (125n2−153)
108 a6u

′2 − 2a6u
2u′ + a6u

4 + 6
5

u′′u′

u
− 4

5

u′3

u2
.

equtions are not considered in [4].
II.2. The case when α 6= 0 and (N, M) 6= (0, 0)
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By applying Painlevé test method, we find that the list of equation with
integer Fuchs’s indices. For example



u′′′
(
u′ − u2

)
= u′′2 − 4u′′u′u− u′′u3 + 4u′3 + u′2u2 +

u′′u′2

u
− u′4

u2
,

u′′′
(
u′ − u2

)
= 1

2u
′′2 − 4u′′u3 + 2u′3 + 12u′2u2 − 8u′u4,

u′′′
(
u′ − u2

)
= u′′2 − 3u′′u′u− u′′u3 + 3u′3 + 1

2u
′2u2 + 2

u′′u′2

u
− 3

2

u′4

u2
,

u′′′
(
u′ − u2

)
= 2

3u
′′2 − 14

3 u
′′u′u− 1

3u
′′u3 + 4

3u
′3 + 16

3 u
′2u2,

u′′′
(
u′ − u2

)
= 1

2u
′′2 − 3u′′u′u− u′′u3 − 3u′3 + 19

2 u
′2u2 + 3

2u
6 − 6u′u4 + 2

u′′u′2

u
.

equtions are not considered in [4].
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Dissipationless shocks and Painlevé equations

Christian Klein

The Cauchy problem for dissipationless equations as the Korteweg de Vries
(KdV), Camassa-Holm (CH) and nonlinear Schrödinger (NLS) equation with small
dispersion of order ε � 1, is characterized by the appearance of a zone of rapid
modulated oscillations of wave-length of order ε. Near the gradient catastrophe of
the dispersionless equation (ε = 0), a multi-scales expansion gives an asymptotic
solution in terms of a fourth order generalization of Painlevé I for KdV and CH, and
of a Painlevé I transcendent for NLS. At the leading edge of the oscillatory zone
for KdV and CH, a corresponding multi-scales expansion yields an asymptotic
description of the oscillations where the envelope is given by a solution to the
Painlevé II equation. We study the applicability of these approximations for several
PDEs and random matrix models numerically.
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From the tau function of Painlevé VI equation
to the geometry of moduli spaces

Dmitry Korotkin and Peter Zograf

Abstract. The isomonodromic tau function of Hitchin’s solution to the Pain-
levé VI equation can be naturally generalized for an arbitrary Riemann-
Hilbert problem with quasi-permutation monodromies (the corresponding tau
function also appears in the theory of Frobenius structures on Hurwitz spaces).
Such a tau function can be interpreted as a holomorphic section of the Hodge
line bundle on a Hurwitz space. Analysing the asymptotic behavior of the tau
function near the boundary of the Hurwitz spaces we obtain new relations
between divisor classes on these spaces. Similar results hold for the spaces of
holomorphic 1-differentials on Riemann surfaces.

Mathematics Subject Classification (2000). Primary 34M55; Secondary 32G15.

Keywords. Painlevé VI equation, tau function, Hurwitz spaces.

Hitchin solved the Painlevé VI equation with coefficients (1/8,−1/8, 1/8, 3/8)
in [5], and his objective was to classify all SU(2) invariant solutions of self-dual
Einstein’s equations. The isomonodromic tau function corresponding to his solu-
tion was found later in [7] and looks as follows:

τ = τ
−1/2
B θ[p, q](0|σ); (1)

here p, q are two complex valued constants, θ[p, q](u|σ) is the theta function with
characteristics and σ is the period of elliptic curve ν2 = z(z − 1)(z − x). The
function τB(x) (called the Bergman tau function by the reasons explained below)
is given by

τB = K(x(x− 1))1/4, (2)

where K(x) is the elliptic integral of the first kind. Formula (1) makes it possible
to considerably simplify the original Hitchin’s description of the corresponding
Einstein manifolds [1].

On the other hand, a straightforward generalization of (1) immediately yields
the isomonodromic tau function for an arbitrary Riemann-Hilbert problem with
off-diagonal 2× 2 monodromy matrices; in that case σ becomes the period matrix
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of the hyperelliptic curve of genus g given by ν2 =
∏2g+2
i=1 (z− zi); p and q are two

arbitrary vectors from Cg. The Bergman tau function τB has in this case the form

τB = detA
∏

i<j

(zi − zj)1/4 , (3)

where A is the matrix of a-periods of non-normalized differentials zi−1dz/ν, i =
1, . . . , g. The expression (3) is also well-known as the partition function of the
Ashkin-Teller model [15].

Further generalization of the formulas (1) and (3) appears in the form of
an isomonodromic tau function of an arbitrary Riemann-Hilbert problem with
quasi-permutation monodromy matrices [8]. Each Riemann-Hilbert problem of
this kind in matrix dimension d is naturally associated to a d-sheeted cover-
ing of the complex plane, which defines a Riemann surface C of some genus
g. Denoting the period matrix of this Riemann surface by σ as before, we find
that the corresponding tau function is given by the formula (1), where the vec-
tors p and q are determined by the entries of monodromy matrices. To define
the Bergman tau function τB is this general case we introduce the canonical
bimeromorphic differential B(x, y) = dxdylogE(x, y), where E(x, y) is the prime
form on C. Near the diagonal x = y the bidifferential B behaves as follows:
B(x, y) = ((ξ(x) − ξ(y)−2 + SB(x) + ...)dξ(x)dξ(y), wher ξ is a local parame-
ter. The term SB(x) transforms as a projective connection under the change of a
local parameter; it is called the Bergman projective connection [14]. Another pro-
jective connection, denoted by Sdf , is defined by the Schwarzian derivative of f :
Sdf = {f(x), ξ(x)}, where f(x) is the meromorphic function on C, or the covering
of the Riemann sphere. The space of pairs (C, f) for given genus g and degree d
of f is called the Hurwitz space Hg,d. We assume that all poles and critical values
zi of the function f are simple, C is considered up to an isomorphism, and f up
to a linear fractional transformation f̃ = (af + b)(cf + d)−1; moreover, zi serve as
local coordinates on Hg,d.

The difference of two projective connections SB −Sdf is a meromorphic qua-
dratic differential on the Riemann surface C. One can verify that the 1-form

q = −1

6

n∑

i=1

Res|x=xi

SB − Sdf
df

dzi

is closed on the Hurwitz space; here xi are the critical points of f , i = 1, . . . , n
(i.e. df(xi) = 0) and zi = f(xi). Then the Bergman tau function on the Hurwitz
space (called so after the Bergman projective connection SB) is defined as a local
potential for the 1-form q:

dlogτB = q (4)

For the hyperelliptic coverings an explicit integration of (4) gives (3); for an arbi-
trary covering τB is given by a more complicated expression, cf. [9]. The function τB
is a universal object appearing in different problems - from the theory of Frobenius
manifolds [6] to Hermitian matrix models [2] and the spectral theory of Riemann
surfaces [13].
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It was shown in [11] that the product η = τ
24(n−1)
B V −6, where V =

∏
i<j(zi−

zj) denotes the Vandermonde determinant of critical values, is invariant under
Möbius transformations of the function f . On the other hand, under symplectic
transformations of canonical basis on the Riemann surface given by a 2g×2g matrix(
A B
C D

)
, it transforms as follows: η → η [det(Cσ + D)]24(n−1). Therefore, η

is a section of the 24(n − 1)th power of the Hodge line bundle on the Hurwitz
space (moreover, it is holomorphic and non-vanishing as long as critical values
of the function f remain finite and distinct). The Hurwitz space Hg,d can be
compactified by means of admissible covers [4], and the boundary divisors of the

compactification Hg,d we denote by ∆
(k)
µ , where k = 2, . . . , g + d − 1 and µ =

[m1, . . . ,mr] is a partition of d describing the ramification over the double point
(see [4, 11] for details). The asymptotics of η near the boundary divisors can be
explicitly computed, yielding the following relation [11]:

Theorem 1. For the Hodge class λ ∈ Pic(Hg,d)⊗Q we have

λ =

g+d−1∑

k=2

∑

µ=[m1,...,mr]

r∏

i=1

mi

(
k(n− k)

8(n− 1)
− 1

12

(
d−

r∑

i=1

1

mi

))
δ(k)µ . (5)

(here δ
(k)
µ are the classes of the divisors ∆

(k)
µ ).

Recently this theorem got a different proof that is based on the Grothendieck-
Riemann-Roch theorem, cf. [3].

A natural version of the Bergman tau function also exists on the moduli
spaces of holomorphic differentials on Riemann surfaces [13]. These spaces were
extensively studied in the theory of dynamical systems (see for example [10]). To
each holomorphic 1-differential w on C one can naturally associate a flat metric
with conical singularities |w|2 that has trivial holonomy. As it was shown in [13],

the regularized determinant of Laplace operator ∆|w|
2

for this metric is given by
the formula:

det ∆|w|
2

= Area(C, |w|2) {det=σ}|τB(C,w)|2 (6)

where the Bergman tau function τB is defined by a system of equations similar to
(4), and can be computed in terms of theta functions as well.

Analysing the behavior of τB near the boundary divisor of the projectivized
moduli space P(Hg) of holomorphic 1-differentials, we derive a formula for the
Hodge class λ similar to (5), cf. [12]:

Theorem 2. In the rational Picard group Pic(P(Hg))⊗Q of the space P(Hg)

λ =
g − 1

4
ψ +

1

24
δdeg +

1

12
δ0 +

1

8

[g/2]∑

j=1

δj . (7)

Here λ is the pullback to P(Hg) of the Hodge class on the compactified Riemann

moduli spaceMg, ψ is the tautological class of the projectivization, δdeg is the class
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of the divisor of 1-differentials with multiple zeros, and δj , j = 0, . . . , [g/2], are

the pullbacks of the classes of the boundary divisors of Mg.

References

[1] M.Babich, D.Korotkin, Lett. in Math. Phys. 46 323-337 (1998)

[2] B.Eynard, A.Kokotov and D.Korotkin, Nucl. Phys. B694 443-472 (2004)

[3] G. van der Geer, A.Kouvidakis, The Hodge bundle on Hurwitz spaces,
arXiv:1010.3335

[4] J.Harris, D.Mumford, Invent. Math. 67 23-86 (1982)

[5] N.Hitchin, J. Diff. Geom., 42 No.1 30-122 (1995)
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Isomonodromic deformations and Jordan-Pochhammer
systems

Vladimir P. Leksin

For a Fuchsian system

d y(z)

d z
=

(
n∑

i=1

Bi
z − ai

)
y(z). (1)

we consider the Schlesinger family of Fuchsian systems

d y(z, a)

d z
=

(
n∑

i=1

Bi(a)

z − ai

)
y(z, a). (2)

with initial conditions Bi(a0) = Bi, i = 1, 2, . . . n, where a0 = (a01, a
2
2, . . . , a

0
n) ∈

Cn∗ = {(a1, a22, . . . , an)| ai 6= aj , i 6= j, i, j = 1, 2, . . . , n}. In small neighborhood
of the a0 = (a01, a

2
2, . . . , a

0
n) the sufficient condition on the family (2) that it

was the isomonodromic family for the system (1) is the system of the Schlesinger
equations on matrices Bi(a), i = 1, 2, . . . n

dBi(a) = −
n∑

j=1, j 6=i
[Bi(a), Bj(a)]

d(ai − aj)
ai − aj

. (3)

Here [Bi, Bj ] denote the commutator of matrices. Non-linear Pfaff system (3) is
integrable in Frobenius sense [2,4] and consequently in sufficient small neighbor-
hood of the a0 there exist the local solution B(a) = (B1(a), B2(a), . . . , Bn(a))
of the Pfaff system (3) with every initial value B(a0) = (B1(a0) = B1, B2(a0) =
B2, . . . , Bn(a0) = Bn). As well-known [2] that eigenvalues all matrices Bi(a) are
constants, that is, don’t depend from a. Malgrange was proved [7] that the local
solution B(a) has meromorphic continuation on whole universal covering C̃n∗ . In
general, polar divisor Θ of the solution B(a) on C̃n∗ is non-empty and it is de-
fined by zero of the tau-function Miva τ(a) which is a solution of the equation
d ln τ(a) = κ

∑n
i6=j, i,j=1 tr(Bi(a)Bj(a))

d(ai−aj)
ai−aj . Theta-divisor Malgrange Θ de-

pends from initial data B(a0) and now it is called simple Malgrange divisor. The
example, when Malgrange is non-empty, give us divisor movable poles of solutions
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Painlevé VI equation. Last equation is rational reduction of the (3) for matri-
ces Bi(a) the size 2 × 3. For general solution B(a) of the (3) with initial values
B(a0) = (B1, B2, . . . , Bn) when the monodromy representation of the (1) is irre-
ducible there exist estimates of the order of poles of the B(a) on the Malgrange
divisor [2].

If the system (1) is a system of the order two with reducible monodromy
representation then under some condition on eigenvalues of matrices Bi, i =
1, 2, . . . , n, (that is, under additional demand on initial data for system (3)) we
obtain that Malgrange divisor of corresponding solution is empty set. In this case
we prove also that solution B(a) has power growth in points of the divisor of fixed
singularities H = ∪1≤i<j≤n{ai − aj = 0} and the ramification of the B(a) around
H has very special form.

Now we remind some information about special class of multidimensional
integrable Fuchsian systems on the Cn that detailed are considered in works [5, 6]
(scalar analog in class of ordinary differential equations of higher orders see in
works [1] and [8]).

Jordan-Pochhammer system on the Cn is a meromorphic system with loga-
rithmic poles of the order one on diagonal hyperplanes the following form

d y(a) =


 ∑

1≤i<j≤n
Jij(λ)

d(ai − aj)
ai − aj


 y(a). (4)

Here Jij(λ) are following matrices the size n× n :

Jij(λ) =




0 . . . 0 . . . 0 . . . 0
...

. . .
...

...
...

0 . . . λj . . . −λi . . . 0
...

...
. . .

...
...

0 . . . −λj . . . λi . . . 0
...

...
...

. . .
...

0 . . . 0 . . . 0 . . . 0




i
...
j

Here λ is ordered collection of complex numbers λ = (λ1, λ2, . . . , λn). The matri-
ces Jij(λ) are satisfied the relations

[Jij(λ), Jik(λ) + Jjk(λ)] = 0, 1 ≤ i < j < k ≤ n; (∗)
[Jij(λ), Jkl(λ)] = 0, {i, j} ∩ {k, l} = ∅. (∗∗).

The relations (*) and (**) are equivalent the Frobenius condition of the integrabil-
ity of system (4) (that is, the system (4) is integrable). Then there exist fundamen-
tal matrix of solutions Y (a) of the (4) that have holomorphic continuation on uni-
versal covering and deck transformations of elements g of the fundamental groups
π1(Cn∗ , a0) on universal covering C̃n∗ act on Y (a) by rule Y (g∗a) = Y (a)M(g),
where M(g) monodromy matrix corresponding g ∈ π1(Cn∗ , a0). The entries yij of
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the fundamental matrix of solutions of the system (4) have the following integral
representations [6]

yij(a1, . . . , an) = λi

∫

γj

(t− a1)λ1 · · · (t− an)λn
d t

t− ai
, (5)

where γj , j = 1, . . . , n is a basis in homology groupH1(CP 1\{a1, . . . , an,∞}, Lχ)
with local coefficients Lχ. The local system Lχ is defined with a representation
χ : π1(CP 1 \ {a1, . . . , an,∞}, t0) = Fn → C∗ of the fundamental group π1(CP 1 \
{a1, . . . , an,∞}, t0) = Fn, that map generators x1, . . . , xn this free groups Fn in
non-zero complex numbers q1 = e2πiλ1 , . . . , qn = e2πiλn .

Now we suppose that coefficients of the system (1) have traces equal to zero
(that is, Bi ∈ sl2(C), i = 1, . . . , n) then Bi(a) ∈ sl2(C), i = 1, . . . , n. Denote
λi, i = 1, . . . , n eigenvalues of matrices Bi and λ∞ eigenvalue of matrix B∞ =
−∑n

i=1Bi. We suppose also that B∞ is the dianalizable matrix.

Theorem 1. Let monodromy representation of Fuchsian system (1) be reducible.
If for some choice of signs εi = ±1, i ∈ {1, 2, . . . , n, ∞} the sum of eigenvalues∑m
i=1 εiλi + ε∞λ∞ is equal to zero then the Schlesinger equation (3) under conju-

gation CBi(a)C−1 by a constant matrix C of all matrices Bi(a), i = 1, 2, . . . , n is
reduced to integrable Jordan-Pochhammer system (4) on the Cn.

Proof. In [3] Gontsov is proved that under assumptions above the all matrices
Bi(a) can be reduced with constant matrix C to upper-triangular mitrices

B̃i(a) =

(
εiλi b̃12i (a)

0 −εiλi

)
.

Conjugating with C the Schlesinger system (3)and compute commutators
[B̃i(a), B̃j(a)] we obtain system for b̃12i (a), i = 1, . . . , n

d b̃12i (a) =




n∑

j 6=i, j=1

(εjλj b̃
12
i − εiλib̃12j )

d(ai − aj)
ai − aj


 . (6)

Last system is coincide with Jordan-Pochhammer system (4) for λ̃ =
(ε1λ1, . . . , εnλn). Q.E.D.

Corollary 1. Under conditions of the theorem 1 Malgrange divisor of Schlesinger
system (3) is the empty set.

Proof. The statement of corollary is the consequence of linearity and inte-
grability of Jordan-Pochhammer system and properties of their solutions pointed
above. Q.E.D.

The monodromy representations of Jordan-Pochhammer systems (4) have
enough descriptions [5, 6, 8]. For case λ1 = λ2 = · · · = λn the monodromy rep-
resentation of the (4) is equivalent to Burau representations [5]. In case does not
equal all λi, i = 1, . . . , n is equivalent to some generalization of Gassner represen-
tation [6]. Explicit form monodromy matrices of these representations permit us
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to describe of ramification of solutions B(a) = (B1(a), . . . , Bn(a) of Schlesinger
systems.
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Asymptotics of Angelesco polynomials and
double scaling limit at pushing point

VladimirG. Lysov

Abstract. Multiple orthogonal polynomials on the two disjoint intervals with
Jacobi weights are studied. The strong asymptotics is derived by the method
of matrix Riemann—Hilbert problem. The double scaling limit near the push-
ing point is considered.

Keywords. multiple orthogonal polynomials, Angelesco systems, Riemann—
Hilbert problems, Painlevé equations.

Multiple orthogonal polynomials originally appear as the denominators of
the Hermite—Padé rational approximants. In the last years they attracted a lot
of attention because of various applications in random matrices, spectral theory
of difference operators and diophantine approximations.

Consider two intervals on the real line ∆1 = [a1, b1] and ∆2 = [a2, b2] and two
positive weight functions w1 and w2 on them. Given a multi-index (n1, n2) ∈ Z2

+

the multiple orthogonal polynomial Pn1,n2
is the monic polynomial of degree at

most n1 + n2 such that the following orthogonality conditions hold
∫

∆j

Pn1,n2
(x)xk wj(x) dx = 0, k = 0, . . . , nj − 1, j = 1, 2.

Angelesco systems introduced in [1] are the special case of multiple orthogonal

polynomials with orthogonality on non-overlapping intervals:
◦
∆1∩

◦
∆2 = ∅. For the

Angelesco system the polynomial Pn1,n2
is unique and has exactly nj zeros on

◦
∆j .

Kalyagin [2] obtained the asymptotics of Pn,n for the special case when the
intervals have a common point b1 = a2 and the weights are the Jacobi weights.
At this case the polynomial Pn1,n2 preserves certain properties of classical Jacobi

This research was carried out with the financial support of the RFBR (grant no. 11-01-00245),

the Programm for the Support of Leading Scientific Schools (grant no. 8033.2010.1) and the State

Analytical Program The Development of the Scientific Potential of the Higher Shool (project no.
2.1.1/1662).
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polynomials, namely there exists the Rodrigues formula and the linear differential
equation.

The Angelesco system with general weights and intervals was considered by
Gonchar and Rakhmanov in [3]. They introduced a new approach on the asymp-
totics analysis of Hermite—Padé approximants based on the equilibrium of the
vector potential. In particular they describe the weak limit of the zero-counting
measure for Pn,n:

νn(x) :=
1

n

∑

Pn,n(y)=0

δ(x− y) → λ1 + λ2, n→∞.

The vector measure (λ1, λ2) is the extremal measure that minimizes the energy
functional:

J(µ1, µ2) = I(µ1, µ1) + I(µ1, µ2) + I(µ2, µ2)

subject to {S(µj) ⊂ ∆j ,
∫
dµj = 1, j = 1, 2}, where S(µ) is the support of the

measure µ and I(µ, ν) is the mutual logarithmic energy:

I(µ, ν) =

∫ ∫
ln

1

|t− x| dµ(t) dν(x).

In [3] the so-called pushing effect was described. Assume that |∆1| ≥ |∆2|
and b1 ≤ a2, then there exists a critical value b∗ = b∗(a1, a2, b2) such that

{
S(λ1) = ∆1 and S(λ2) = ∆2, if b1 ≤ b∗,
S(λ1) = ∆∗1 := [a1, b

∗] and S(λ2) = ∆2, if b1 ≥ b∗.
In the electrostatic interpretation one can say that the charges on the two con-
ductors repel and for the certain locations the charges on the second (the smaller)
conductor push the charges on the first conductor from the edge. This affects the
behavior of the equilibrium measure at the end-point of the support:

{
dλ1(x) � dx√

b1−x , x→ b1 − 0, if S(λ1) = ∆1,

dλ1(x) �
√
b∗ − xdx, x→ b∗ − 0, if S(λ1) = ∆∗1

That is we have the transition from hard to soft edge.
We study the strong asymptotics of Angelesco multiple orthogonal polynomi-

als in the case of non-intersecting intervals (b1 < a2) and modified Jacobi weights:
wj(x) = (x− aj)αj (bj − x)βjhj(x), 1/hj ∈ H(∆j), αj , βj > −1, j = 1, 2. General
result on the strong asymptotics was obtained in [4]. Our analysis is based on the
steepest descent method for the matrix Riemann—Hilbert problems [5],[6]. The
case of symmetric intervals and Chebyshev weights was already considered in [7].
Generalized Angelesco—Nikishin systems were studied in [8]. The key feature of
the current work is the explicit solution of the boundary problem for the Szegö
function, where we use the result of [9].

Our particular interest is to describe the local behavior of the polynomials in
the neighborhood of the end-point b1 when the transition from hard to soft edge
occurs. The transition is studied in a double scaling limit where b1 − bcr1 � n−2/3

and n → ∞. We mention two papers here: [10] where the phase transition for
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the Angelesco system with touching intervals is investigated and [11] where the
transition from hard to soft edge for random matrix ensembles is described. We
expect that the result is related to the Painlevé II equation.
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Third Order Equation with an
Irrational Right-Hand Side
with the Painleve Property

Ivan P. Martynov, V. A. Pronko and Tatsyana K. Andreeva

Abstract. In this paper the Painleve analysis of third order ordinary differen-
tial equations with irrational right-hand side is presented.
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Consider the differential equation

x′′′ = f1(x, x′, x′′) +
x′

x2
f2(x, x′, x′′) +

1

x2
(f3(x, x′, x′′))

3/2
, (1)

where fk(x, x′, x′′) = akxx
′′ + bkx

′2 + ckx
2x′ + dkx

4, ak, bk, ck, dk, k = 1, 2, 3
are constants; moreover, f3(x, x′, x′′) is not a complete square. We single out all
classes of equations (1) with the Painleve property. We indicate which functions are
integrated the resulting equations. The equation (1) determine one of components
of the quadratic third-order system.

Require that the solutions of equation

f3(x, x′, x′′) = 0 (2)

are solutions of equation (1) [1]. If performed these requirement, then equation (1)
replace the system

x′′ +
b3
a3

x′2

x
+
c3
a3
xx′ +

d3
a3
x3 = ηw2x, w′ = w2 +

(
αx+ β

x′

x

)
w, (3)

where η = 4
a33
, α = 1

2 ( c3a3 + a1), β = b3
a3

+ 1
2 (a2 − 1). From (3) we have that 2w =

f ′3(x, x′, x′′)/f3(x, x′, x′′)− (β + 2)x′/x− αx. The following statement is valid.

Lemma 1. Equation (1) has the Painleve property if and only if the system (3) has
the Painleve property.

Holds
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Lemma 2. If equation (1) has the Painleve property, then the equation (2) has the
Painleve property.

Proof. Setting in the system (3) w = εω, we obtain the simplified system

x′′ +
b3
a3

x′2

x
+
c3
a3
xx′ +

d3
a3
x3 = 0, ω′ =

(
αx+ β

x′

x

)
ω,

as ε = 0 which should have the Painleve property. It follows that lemma 2 is valid.
Setting in the system (3) z = ετ , at ε = 0 we obtain the simplified system

ẍ+
b3
a3

ẋ2

x
= 0, ẇ = β

ẋ

x
w, (4)

as ε = 0, where ẋ = dx
dτ , ẍ = d2x

dτ2 , ω̇ = dω
dτ . The first equation of the system (4) has

the Painleve property if and only if

b3
a3

=
1

n
− 1, (5)

where n ∈ Z \ {0} or n =∞. If β 6= 0, a3 + b3 6= 0, then we find w = C1(τ − τ0)βn,
where C1, τ0 are arbitrary constants (in the following, τ0 and Ci, i = 1; 2, stand
for arbitrary constants). Consequently, τ = τ0 is not a critical point, only for

β =
µ

n
, (6)

where µ, n ∈ Z \ {0}. �

The following statement is valid.

Lemma 3. If system (3) has the Painleve property then the condition (5) is true
and at β 6= 0, n ∈ Z \ {0} condition (6) is true.

Introducing in the system (3) the parameter ε by the formulas w = ε−1ω, z =
ετ , we obtain the simplified system

ẍ =
(

1− 1

n

) ẋ2
x

+ ηw2x, ω̇ = ω2 + β
ẋ

x
ω, (7)

as ε = 0, where ẋ = dx
dτ , ẍ = d2x

dτ2 , ω̇ = dω
dτ . Let β = 0. The second equation in

system (7) has a solution ω = −1/(τ − τ0), then the first equations in system (7)
acquires the form

ẍ =
(

1− 1

n

) ẋ2
x

+ η
x

(τ − τ0)2
. (8)

The equation (8) has general solution x = C1e
C2(τ−τ0)(τ − τ0)−η, for n =∞ and

x = (τ − τ0)
1
2

(
n−
√
n(n+4η)

) (
C1 + C2(τ − τ0)

1
2

√
n(n+4η)

)n
,

for n ∈ Z \ {0}. If β = 0, n =∞, then system (7) has Painleve property only if

η ∈ Z \ {0}. (9)
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If β = 0, n ∈ Z \ {0}, then system (7) has Painleve property if and only if one of
the following conditions:

n = 2m, η = m(s2 − 1)/2,m ∈ Z \ {0}; (10)

n = 2m+ 1, η = (2m+ 1)(l2 − l),m ∈ Z; (11)

where s ∈ Z \ {−1; 1}, l ∈ Z \ {0; 1} is true. Consequently, the following statement
is valid

Lemma 4. Let β = 0. If system (3) has the Painleve property, then the condition
(9) for n =∞ or one of the conditions (10), (11) is true.

Let β 6= 0. From system (7), for ω, we have the equation

ω̈ =
(

1− 1

µ

) ω̇2

ω
+
(

1 +
2

µ

)
ωω̇ +

(
µ
η

n
− 1

µ

)
ω3, (12)

for n ∈ Z \ {0} and the equation

ω̈ =
ω̇2

ω
+ ωω̇ + ηβω3, (13)

for n = ∞. Equation (12) has the Painleve property only if one of the following
conditions [2,3]:

η = 10n or η = n at µ = 1; η = 5n/4 at µ = 2;

η = 3n/2 at µ = 3; η = 2n at µ = 5;µ = −2

is true. Equation (13), where β 6= 0, has not the Painleve property [2,3]. From
system (7) we find that

x = ω
1
β e−

1
β

∫
ωdt, (14)

where ω is a solution to the of equation (12). The following statement is valid

Lemma 5. If system (3) at β 6= 0 has the Painleve property, that one of the
following conditions

1) n = (µ+ 2)p, η = (µ+ 2)(µ+ 3)p/4, where p ∈ Z \ {0}, µ ∈ {1; 2; 3; 5};
2) n = 3p, η = 30p, where p ∈ Z \ {0}, for µ = 1;
3) η = pn(p+n)/(2p+n)2, where p, n ∈ Z\{0}, p 6= −n, p 6= −n2 , for µ = −2;
4) η = n/4, where n ∈ Z \ {0}, for µ = −2

is true.

Using lemmas 1–5, Painleve analysis of system (3) we obtain the following
statement

Theorem 1. Equation (1) has the Painleve property if and only if one of the fol-
lowing conditions:

1) a1 = c3 = d1 = d3 = 0, a2 = 3 − 2/n, b1 = −c2, b2 = 2/n − 2, b3 =
(1/n− 1)a3, c1 = −d2,a33 = 8/(m(s2− 1)), n = 2m, s ∈ Z \ {−1; 1},m ∈ Z \ {0} or
a33 = 4/((2m+ 1)(l2 − l)), n = 2m+ 1, l ∈ Z \ {0; 1},m ∈ Z;

2) a1 = 1, a2 = 3 − 2/n, a33 = 16/(n(s2 − 1)), b1 = −c2, b2 = 2/n − 2,
b3 = (1/n − 1)a3, c3 = −a3, d1 = 0, d2 = −c1 − 2n/(n + 2)2, d3 = na3/(n + 2)2,
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where n ∈ Z \ {−2;−1; 0}, s ∈ Z \ {−1; 1}, (1− s)n/2 ∈ Z, (1− s)n/2 + sk 6= −1,
if n ∈ N, then k = 0, n; if n ∈ Z− \ {−2;−1} then k = 0, 1, 2, . . . ;

3) a1 = c3 = d1 = d3 = 0, a2 = 3, b1 = −c2, b2 = −2, b3 = −a3, c1 =
−d2, 4/a33 ∈ Z \ {0};

4) a1 = −c3/a3, a2 = 3, b1 = −c2, b2 = −2, b3 = −a3, c1 = −d2, c3 6= 0,
d1 = d3 = 0, 4/a33 ∈ Z−;

5) a1 = c3 = d1 = d3 = 0, a2 = 3 + 2(µ− 1)/n, b1 = −c2, b2 = 2(1/n− 1)(1 +
µ/n), b3 = (1/n− 1)a3, c1 = −d2 and one of the following conditions:

a) n = (µ+ 2)p, a33 = 16/((µ+ 2)(µ+ 3)p), where µ ∈ {1; 2; 3; 5}, p ∈ Z \ {0};
b) n = 3p, a33 = 2/(15p), where p ∈ Z \ {0}, for µ = 1;

c) a33 = 16/n or a33 = 4(2p+n)2/(pn(p+n)) where p, n ∈ Z\{0}, p 6= −n, p 6=
−n/2, for µ = −2
is true;

6) a1 = 3, a2 = 1, a33 = 1/5, b1 = −c2, b2 = b3 = 0, c1 = 6− d2, c3 = a3, d1 =
−4, d3 = −a3;

7) a1 = 1, a2 = 2, a33 = 8/15, b1 = −1 − c2, b2 = −1, b3 = −a3/2, c1 =
3− d2, c3 = a3,d1 = −1, d3 = −a3/2;

8) a1 = 0, a2 = 1, a33 = −2/3, b1 = −4/3 − c2, b2 = −4/9, b3 = d3 = −c3 =
−2a3/3, c1 = 8/3− d2, d1 = −4/9;

9) a1 = 1 − 2µ/(n + 2), a2 = 3 + 2(µ − 1)/n, b1 = −c2 − 6µ/(n(n + 2)),
b2 = 2(1−n)(n+µ)/n2, b3 = (1/n−1)a3, c1 = −d2+2(µ(n+3)−n)/(n+2)2, c3 =
−a3, d1 = −2nµ/(n+ 2)3, d3 = a3n/(n+ 2)2 and one of the following conditions:

a) n = (µ+ 2)p, a33 = 16/((µ+ 2)(µ+ 3)p), where µ ∈ {1; 2; 3; 5}, p ∈ Z−;

b) n = (µ + 2)p, a33 = 16/((µ + 2)(µ + 3)p), where µ ∈ {1; 2; 3; 5}, p ∈ N \
{1} or n = 3p, a33 = 2/(15p), where p ∈ N, for µ = 1, and there has been a

correlation
∑m−1
k=1 (m − k)Akam−k = −mam, where m = −a0 − 1, A0 = 1, Ak =∑k−1

l=0 (m− l)Alak−l/(k(m− k)), k = 1,m− 1, where ak are expansion coefficients
(µ+ 2)p(ω̇−ω2)/(µω) = a0/(z− z0) + a1 + a2(z− z0) + . . ., where ω is a solution
to the equation (12);

c) n = 3p, a33 = 2/(15p), where p ∈ Z−, for µ = 1;

d) a33 = 16/n, at n ∈ Z− \ {−2;−1} or a33 = 4(n− 2m)2/(nm(m−n)), where

m 6= n

2
, n−m > 0,m, n ∈ N, for µ = −2

is true;

10) a1 = 2, a2 = 6, a33 = 8(p−1)2/(p(2−p)), p ∈ Z\{0; 1; 2}, b1 = −3−c2, b2 =
−6, b3 = −3a3/2, c1 = −d2, c3 = 0, d1 = −1, d3 = −a3/2;

11) a1 = 2, a2 = 6, a3 = −2, b1 = −3− c2, b2 = −6, b3 = 3, c1 = −d2, c3 = 0,
d1 = −1, d3 = 1
is true.

The solutions of these equations can be expressed via either elementary func-
tions, elliptic functions, or solutions of linear equations.
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Quasi-rational solutions to the focusing NLS equa-
tion and multiple rogue waves generation

Vladimir B. Matveev

Focusing NLS equation last years was considered as one of the most credible
models for description of the rogue waves propagation in the optical fibers. The
related solutions can be regarded as a special modulations of the plane wave so-
lution, such that their amplitude attend one or several big maximums at a finite
number of points of the (x, t) plane, in such a way that the amplitude of the solu-
tion at the point of the maximum is 3 or more times greater than the amplitude
of the seed plane-wave solution, and it tends to the amplitude of the seed solution
when x2 + t2 → ∞. Surprisingly, only very isolated solutions of this kind which
are known as Peregrine breather or higher Peregrine breathers were studied until
very recently in connection with rogue waves. These solutions might be also called
”extreme” rogue waves. Their amplitude attends only one biggest possible maxi-
mum in the (x, t) plane surrounded by the small maxima. In our recent works with
Ph. Dubard it was shown that, in fact, the generic rogue waves solutions attend
several maximums of the amplitude in (x, t) plane . They can be described by
a compact formula involving Wronskian determinants of order 2n, which can be
obtained by appropriate reduction of the general Darboux dressing formula for the
ψ-function for the non-stationary linear Schrödinger equation.1 For given n and
the amplitude of the seed plane waves, solution equal 1 the related solutions de-
pends on 2n real parameters. Peregrine breather corresponds to n = 1. It depends
on two trivial translation parameters. In the case n = 2 , the amplitude of solution
corresponding to generic choice of the parameters has three big maximums of the
height close to that of the Peregrine breather. We explain that a second and higher
order Peregrine breathers can be obtained by appropriate specialization of the free
parameters in this generic construction and that when we take the parameters to
be close enough to the higher order Peregrine breather we obtain the solution
which also can be considered as ”extreme rogue wave”. Therefore for n ≥ 2 the
”extreme” rogue waves solutions are not isolated any more, contrary to the case
of Peregrine breather.

1This formula is equivalent to that obtained in more complicated way by Eleonski, Krichever
and Kulagin in their almost forgotten article written 25 years ago.
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The discussed solutions to the NLS equation are also used by us to construct a
large family of smooth, real localized rational solutions of the KP-I equation quite
different from the multi-lumps solutions. Some part of the related results can be
found in our article: P.Dubard , V.B. Matveev ,”Multi-rogue wave solutions to the
focusing NLS equation and the KOP-I equation ” J. of Nat. Hazards earth System
sci. , v.11, 667-672(2011), www.nat-hazards-earth-syst-sci-net/11/667/2011/

Vladimir B. Matveev
Institut de mathématiques de Bourgogne, Dijon, France



A monodromy problem and some functions con-
nected with Painlevé VI

Dmitrii P. Novikov

Abstract. We consider an integral equation connected with the problem of
construction of a linear equation with given monodromy group.

Mathematics Subject Classification (2000). Primary 34M56; Secondary 34M50,
34M55, 45F05.

Keywords. isomonodromic deformations, Belavin - Polyakov - Zamolodchikov
equations.

Preliminaries I. Let L be a non-selfintersecting closed curve passing through all
ramification points (t1, t2, . . ., tm, clockwise) of functions y1, . . ., yn, that form
basis of solutions to some Fuchsian equation. We assume L smooth. Let D be
the domain bounded by L and y+ = (y+1 , . . . , y

+
n ) be branches of these functions

in D. The condition that y− = y+ on the arc (tm, t1) of L uniquely defines the
analytical continuation y− of y+ onto D− = C\D. It follows that y+ = y−M1 on
(t1, t2), y+ = y−M1M2 on (t2, t3), etc., where Mi are the monodromy matrices.
Thus, we get y+ = y−C on L, where C(ζ) is a piecewise constant matrix. This is a
particular case of the Riemann - Hilbert (or linear conjugation) problem: given C,
find analytic vector functions y+ in D and y− in D− such that y+ = y−C on L.
The Sokhotskij - Plemelji formulas imply the following singular integral equation
for the function ϕ = (y− + y+)/2:

ϕ(x) =
1

πi

∫

∂D

ϕ(ζ)
C(ζ)− E
C(ζ) + E

dζ

ζ − x + y−(∞). (0.1)

In [1], Its and Harnad considered equation (0.1) with C(ζ) = E+f(ζ)g(ζ), f(ζ) and
gT (ζ) are n× l matrices (l ≤ n) such that g(ζ)f(ζ) = 0. Suppose that C satisfies
the following condition: for any nonzero y−(∞) the equation (0.1) is soluble. Then
the matrix problem Y + = Y −C, Y −(∞) = E, reduces to the equations on the



Monodromy problem 119

function Φ = (Y − + Y +)/2:

Φ(x) = E +

∫
Φ(ζ)

f(ζ)g(ζ)

2πi(ζ − x)
dζ
[

= E +

∫
F (ζ)g(ζ) dζ

2πi(ζ − x)

]
,

Φ−1(x) = E −
∫

f(ζ)g(ζ)

2πi(ζ − x)
Φ−1(ζ) dζ

[
= E −

∫
f(ζ)G(ζ) dζ

2πi(ζ − x)

]
.

Here F = Φf and G = gΦ−1 are solutions of integral equations whose kernel has
no singularity on the diagonal:{

F (x)−
∫
F (ζ)K(ζ, x) dζ = f(x),

G(x)−
∫
K(x, ζ)G(ζ) dζ = g(x),

K(ζ, x) =
1

2πi

g(ζ)f(x)

ζ − x . (0.2)

The resolvent is defined by the equation R(x, z) −
∫
K(x, ζ)R(ζ, z) dζ = K(x, z)

and can be written explicitly ([1]):

R(x, z) =
1

2πi

G(x)F (z)

x− z . (0.3)

Preliminaries II. The following case of the monodromy problem was considered
in the papers [1], [2]. L is the system of nonintersected intervals, the number of
ramification points is even (m = 2k), matrix C = E + figi on the arcs (t2i−1, t2i),
fi and gTi are n× l constant matrices (l ≤ n), and gifi = 0. On the remainder of
L it is assumed that C = E. Then the problem reduces (as it was explained in
Preliminaries I) to the integral equations (0.2)

F (x)−
∫ t2

t1

F (ζ) dζ

ζ − x
g1fj
2πi
− . . .−

∫ t2k

t2k−1

F (ζ) dζ

ζ − x
gkfj
2πi

= fj , (0.4)

where x ∈ (t2j−1, t2j), j = 1, k. Here, the kernel is continuous. Differentiating on
variables tj we get, using formulas from [3] and (0.3), the system

∂F (x)

∂tj
= − Aj

x− tj
F (x), Aj =

(−1)j

2πi
F (tj)G(tj). (0.5)

It follows from the integral equation that F (x) is homogeneous on x, tj and holo-
morphic on x near infinity:

∂F

∂x
+
∂F

∂t1
+ . . .+

∂F

∂tm
= 0, x

∂F

∂x
+ t1

∂F

∂t1
+ . . .+ tm

∂F

∂tm
= 0.

Thus, if the matrices Mi satisfy conditions (Mi − E)2 = 0, i = 1, 2k, and
M2i−1 = M−12i , i = 1, k, and are independent of tj , then they are generators of the
monodromy group of the Fuchsian system

∂F

∂x
= AF, A =

m∑

i=1

Ai

x− ti
. (0.6)

From (0.6), (0.5) follows the Schlesinger system

∂Aj

∂ti
=

[Ai, Aj ]

ti − tj
, i 6= j,

∂Ai

∂ti
= −

∑

j 6=i

[Ai, Aj ]

ti − tj
. (0.7)
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3. The τ -function was introduced in the paper [4] in connection with the system
(0.6). Its construction involves the closed form ω =

∑
Hi dti = d ln τ , where

Hi =
1

2
res
x=ti

(trA2) ≡
m∑

j 6=i

trAjAi

ti − tj
.

In what follows, we describe the results of [5]. We assume that Ai are 2 × 2
matrices and trAi = 0, detAi = 0. According to (0.6), we have

m∑

i=1

1

x− ti
∂F

∂ti
=
∂2F

∂x2
−

m∑

i=1

Hi

x− ti
F.

For Φ = τF this read as
m∑

i=1

1

x− ti
∂Φ

∂ti
=
∂2Φ

∂x2
; (0.8)

(0.8) is a special case of the equation on the correlator Φ in the conformal field
theory

m∑

i=1

1

x− ti
∂Φ

∂ti
= κ

∂2Φ

∂x2
−

m∑

i=1

∆i

(x− ti)2
Φ,

(the Virasoro algebra have central charge c = −6κ+ 13− 6κ−1, formula (5.17) in
[6]; we get (0.8) setting c = 1 and ∆i = 0).

The Neumann series for (0.4) gives an example of a solution to (0.8) (with
polylogarithms). We apply linear superposition of solutions of (0.8) to construct
solutions to systems (0.6), (0.7). This is only one aspect of the problem of complete
integration of system (0.7) in special functions.

4. We demonstrate the reduction to P-VI in the particular case m = 2k = 4 in
(0.4). The monodromy matrices satisfy the relations

M1 =

(
1 2πiγ
0 1

)
= M−12 , M3 =

(
1 0

2πiγ 1

)
= M−14 .

The equation for F (x) follows from (0.4). Suppose that t1 = 1, t2 = t, t3 = 0, and
t4 →∞. Then

F (x)− λ
∫ t

1

lnx− ln ζ

x− ζ F (ζ) dζ =

[
1

lnx

]
, (0.9)

where λ = γ2. Due to (0.3), (0.5), we get

F =

[
ψ1

ψ2

]
, R(x, z) =

ψ1(x)ψ2(z)− ψ2(x)ψ1(z)

x− z .

Set ã = ψ1(1), a = ψ1(t). It follows that the function σ = ta2 + ã2 is a solution to
the σ-form (see [2]) of Painlev’e VI equation

[t(t− 1)σ′′]2 = 4σ′(tσ′ − σ)((1− t)σ′ + σ). (0.10)
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Note that σ = t(t− 1)R(t, t). Let δ be the Fredholm determinant for (0.9). Using
the identity R(t, t) = (ln δ)′, we get a formula for σ with an entire function δ on
λ. One can check that we get solutions to P-VI by substitution to (0.10)

σ = −λ(t− 1)− λ2t(t− 1)

∫ t

1

(lnx− ln t)2

(x− t)2 dx+ . . . .

Moreover, for the function φ = δψ1 we have the equation ([7])

t(t− 1)

x(x− 1)(x− t)
∂φ

∂t
=
∂2φ

∂x2
+

(
1

x
+

1

x− 1

)
∂φ

∂x
. (0.11)

The Fredholm theory, for the integral equation (0.9), gives the expansion φ =
1 + λφ1 + λ2φ2 + . . . of solution to equation (0.11). Coefficients at the powers of
λ satisfies to (0.11), for example,

φ1 =

∫ t

1

[K(x, z)−K(z, z)] dz =

∫ t

1

( lnx− ln z

x− z − 1

z

)
dz.

The complexity of φi grows quickly as i increases. Noting that all branches of φi
satisfy (0.11), one can get simpler solutions; in particular, φ1 generate solutions
ln(x− 1)− ln(x− t) and lnx− ln(x− t).
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Particular solutions of q-Painlevé equations and
q-hypergeometric equations

Yousuke Ohyama

Abstract. We study a degeneration diagram of linear q-difference equations
of hypergeometric type, which are second order q-difference equations whose
coefficients are linear functions. We obtain seven q-hypergeometric equations,
including two types of q-Bessel equations and two types of q-Airy functions.
We explain how our degeneration scheme corresponds to a degeneration dia-
gram of q-Painlevé equations.

Mathematics Subject Classification (2000). Primary 34M55; Secondary 33E17.

Keywords. q-Painlevé equation, basic hypergeometric series.

1. Introduction

We give a unified theory for q-special functions, which come from degeneration
of the basic hypergeometric functions 2ϕ1(a, b, c; q;x). We obtain seven types of
q-special functions. We have two different the q-Bessel functions. We also have two
q-Airy equations, which are essentially equivalent.

2ϕ1(a, b; c; z) 1ϕ1(a; c; z)

1ϕ1(a; 0; z)

J
(3)
ν

J
(1)
ν

q-Airy

Ramanujan

- �
��3

-

-

Q
QQs ��*

PPPPq

We also show that a relation to hypergeometric type of q-Painlevé equations
and our classification of q-special functions. See [6] for details.

This work was supported by the Mitsubishi foundation and the JSPS Grant-in-Aid for Scientific
Research.
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2. q-difference equation of the hypergeometric type

We call a q-difference equation of the second order with the linear coefficients

(a0 + b0x)u(xq2) + (a1 + b1x)u(xq) + (a2 + b2x)u(x) = 0 (2.1)

it the hypergeometric type. We denote the solution space of the above equation as

Φ

[
a1 a2 a3
b1 b2 b3

; x

]

following [1]. We set lqx = log x/ log q.

Theorem 2.1. A q-difference equation of the hypergeometric type has transforma-
tions which keep the hypergeometric type:

(A) Change x→ cx:

Φ

[
a1 a2 a3
b1 b2 b3

; cx

]
= Φ

[
a1 a2 a3
cb1 cb2 cb3

; x

]

(B) Change u→ xγu (c = qγ)

xγ Φ

[
a1 a2 a3
b1 b2 b3

; x

]
= Φ

[
c2a1 ca2 a3
c2b1 cb2 b3

; x

]

(C) Change x→ 1/x

Φ

[
a1 a2 a3
b1 b2 b3

;
1

x

]
= Φ

[
b3 b2 b1
q2a3 q2a2 a1

; x

]

(D) Change u→ (ax; q)∞/(bx; q)∞u:

Φ

[
a1 a2 a3
b1 b2 b3

; x

]
= xs

(−b3x/a3; q)∞
(−b1x/a1q; q)∞

Φ

[
a3 a2 a1
qb3 b2 q−1b1

; x

]

where s = lq(a3/a1).

We classify q-difference equations of the hypergeometric type up to the trans-
formations in Theorem 1. Then we obtain seven classes of q-difference equations:

Theorem 2.2. A q-difference equation (2.1) of the hypergeometric type reduces to
one of the following equation by transforms in theorem 2.1.ip =

√
q)

1) When a1a3b1b3 6= 0, Heine’s hypergeometric 2ϕ1(a, b; c; q;x):

(c− abqx)u(xq2)− [c+ q − (a+ b)qx]u(qx) + q(1− x)u(x) = 0.

2) When b3 = 0, a1a3b1b2 6= 0, 1ϕ1(a; c; q;x):

(c− aqx)u(xq2)− (c+ q − qx)u(qx) + qu(x) = 0.

3-1) When b1 = b2 = 0, a3 ·a2a1b3 6= 0, Jackson’s Bessel functions J
(1)
ν (x; q)F

u(xp2)− (pν + p−ν)u(xp) + (1 + x/4)u(x) = 0.

3-2) When b1 = b3 = 0, a2 · a3a1b2 6= 0, Hahn-Exton’s Bessel functions

J
(3)
ν (x; q):

u(xp2) + [−(pν + p−ν) + p2−νx]u(xp) + u(x) = 0.
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3-3) When b3 = a1 = 0, a2b2 · a3b1 6= 0, q-Hermite-Weber 1ϕ0(a;−; q;x)

axu(xq2) + (1− x)u(xq)− u(x) = 0.

4-1) When b1 = a2 = b3 = 0, q-Airy Aiq(x) = 1ϕ1 (0;−q; q;−x) :

u(xq2) + xu(xq)− u(x) = 0.

4-2) When a1 = b2 = b3 = 0, the Ramanujan function 0ϕ1 (−; 0; q;−tq):
qxu(xq2)− u(xq) + u(x) = 0.

In the study of differential equations, shearing transformations are useful to
study irregular singular points whose Poincaré rank is non-integer.

Shearing transformations are also useful for q-differential equations when a
slope of the Newton diagram is non-integer.

For a q-difference equation

a(x)u(xq2) + b(x)u(xq) + c(x)u(x) = 0,

a shearing transformation is the following transformation:

x = t2, p =
√
q, v(t) = u(x).

Then we have
a(t2)v(tp2) + b(t2)v(tp) + c(t2)v(t) = 0.

Lemma 2.3. In Theorem 2.2, (4-2) is equivalent to (4.1) by shearing transforma-
tion.

By connection formula of the q-Airy function by T. Morita, we obtain a
relation between the q-Airy function and the Ramanujan function [5]:

Aq2(−q3/x2) =
q2

(q,−1; q)∞

(
−θ(−x/q)Aiq(xq

2) + θ(x/q)Aiq(−xq2)
)
.

3. Hypergeometric solutions of the q-Painlevé equations

As the same as the Painlevé differential equations have particular solutions repre-
sented by (confluent) hypergeometric functions, the q-Painlevé equations also have
special solutions written by q-hypergeometric functions.

In [3], they has studies q-hypergeometric solutions of the q-Painlevé equa-
tions. The degeneration diagram of q-hypergeometric solutions of the q-Painlevé
equations is as follows:

q-P q-PVI → q-PV → q-PIV

q-PIII
→ q-PII → q-PI

HG 2ϕ1 → 1ϕ1 → 1ϕ1 (a; 0; z)

1ϕ1 (0; b; z)
→ 1ϕ1 (0;−q; z) → none

(1) → (2) → (3-3)
(3-2)

→ (4-1) → none
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Comparing our list in Theorem 2.2, we do not have (3-1) and (4-2). The equation
(4-2) is related to (4-1) by a shearing transformation. The equation (3-1) appears
in another form of q-PIII.

It is know that there are several types of the q-Painlevé equations. For q-PIII,

one is called q-PIII(A
(1)
5 ) by Sakai [8]:

yȳ

a3a4
= − z̄(z̄ − b2t)

z̄ − b3
,

zz̄

b3
= − y(y − a1t)

a4(y − a3)
.

Another one is known by Ramani, Grammaticos and Hietarinta [7]:

ww

a3a4
=

(w − a1s)(w − sa2)

(w − a1)(w − a4)
, (3.1)

which is a symmetric specialization of q-PVI found by Jimbo and Sakai [2]. And

J
(1)
ν (x; q), a solution of (3-1), is a special solution of (3.1) shown by [4].
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Asymptotic expansions of solutions
to the fifth Painlevé equation

Anastasya V. Parusnikova

Abstract. By means of Power Geometry we obtained all asymptotic expan-
sions of solutions to the equation P5 of the following five types: power, power-
logarithmic, complicated, exotic and half-exotic for all values of 4 complex
parameters of the equation. They form 16 and 30 families in the neighbour-
hood of singular points z = ∞ and z = 0 correspondingly. There exist 10
families in the neighbourhood of nonsingular point. Over 20 families are new.

1. Introduction
We consider the fifth Painlevé equation

w′′ =

(
1

2w
+

1

w − 1

)
(w′)

2−w
′

z
+

(w − 1)2

z2

(
αw +

β

w

)
+
γw

z
+
δw(w + 1)

w − 1
, (1.1)

where α, β, γ, δ are complex parameters, z is an independent complex variable,
w is a dependent one. The fifth Painlevé equation (1.1) has two singular points:
z = 0 and z = ∞. The aim of the present work is to find all asymptotic expan-
sions of solutions to the fifth Painlevé equation. We obtain these expansions using
the methods of Power Geometry [1,2]. We are looking for the expansions of the
following form near the singular points of the equation:

w = cr(z)z
r +

∑

s∈K
cs(z)z

s, (1.2)

where cr(z), cs(z), r, s ∈ C, K ⊂ { s | Re s > Re r} for the expansions in the
neighbourhood of z = 0 and K ⊂ { s | Re s < Re r} for the expansions in the
neibourhood of z =∞; the set K is countable.

We obtain the expansions (1.2) of the following five types:
Type 1. cr(z) and cs(z) are constant (power expansions).
Type 2. cr(z) is constant, cs(z) are polynomials in log z (power-logarithmic).
Type 3. cr(z) and cs(z) are power series in log z (complicated expansions).
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Type 4. r, s ∈ R, cr(z) and cs(z) are series in zi, and cr is a sum of countable
number of terms, the set of power exponents of zi in cr is bounded either from
above, or from below (exotic expansions).
Type 5. r, s ∈ R, cr(z) is a finite sum of powers of zi with complex coefficients
and cs(z) are power series over zi (half-exotic).

The apparatus of the Power Geometry [1,2] permits to work with ordinary
differential equations which have the form f(z, w,w′, w′′, . . .) = 0, where f is a
polynomial in its variables (we call the left part of the equation a differential
sum). To transform the equation (1.1) to a differential sum we multiply it by
z2w(w − 1). The next step of the equation’s exploration is construction of its
polygon Γ(f). The polygon Γ(f) for the equation (1.1) is shown in Fig. 1. The
edges Γ

(1)
j , j = 1, 2, 3 give the expansions in the neighbourhood of z = ∞, the

edge Γ
(1)
1 gives the expansions near z = 0.

The equation (1.1) has the symmetry

(z, w, α, β, γ, δ) = (z̃,
1

w̃
,−β̃,−α̃,−γ̃, δ̃). (1.3)

-

6
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2. Asymptotic expansions of solutions near infinity [3]

Theorem 2.1. In the neighbourhood of z =∞ there exist 10 asymptotic expansions
of solutions to the equation (1.1) (power expansions):

If αβδ 6= 0 there exist the following 5 expansions of solutions

Dk : w = (−1)k
√
β

δ

1

z
+

(
−2β

δ
+ (−1)k

γ

2δ

√
β

δ

)
1

z2
+
∞∑

s=3

csk
zs
.
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E1 : w = −1 +
2γ

δz
+
∞∑

s=2

cs
zs
.

Fk : w = (−1)k
√
− δ
α
z + 2 + (−1)k

1

2

γ√
−αδ

+
∞∑

s=1

cs,k
zs

,

where cs, csk are uniquely determined complex constants, k = 1, 2.
If αβγ 6= 0, δ = 0 there exist the following 5 expansions of solutions

Dk : w = (−1)k

√
−β
γ

1√
z

+
β

γ

1

z
+
∞∑

s=3

cs,k
zs/2

.

E2 : w = 1.

Fk : w = (−1)k
√
−γ
α

√
z + 1 +

∞∑

s=1

cs,k
zs/2

,

where cs, csk are uniquely determined complex constants, k = 3, 4. For every ex-
pansion except E2 there exist two corresponding exponential additions of the form
b(z)Ceϕ(z), where C is an arbitrary constant, ϕ′(z), b(z) are power series. More-
over, every exponential addition can be continued to the exponential expansion of
the following type:

w =
∞∑

k=0

bk(z)Ckekϕ(z), (2.1)

where C is an arbitrary constant, ϕ′(z), bk(z) are power series.
If β = 0 there exist two families of expansions U1, U2 of the type (2.1) with

b0 ≡ 0. If α = 0 there exist two families V1, V2, which can be obtained from U1,
U2 by the symmetry (1.3). If γ = δ = 0 there exist one family for α = 0 and one
more for β = 0

3. Asymptotic expansions of solutions near zero [4]

The following truncated equation corresponds to the edge Γ
(1)
4

−z2w(w−1)w′′+z2
(

3

2
w − 1

2

)
(w′)

2−zw(w−1)w′+(w−1)3(αw2+β) = 0. (3.1)

As the differential operator (the first variation of (3.1)) vanishes only if w = 1
thus w = 1 is its special solution. We substitute w = 1 + w̃ into (1.1) and obtain
an equation g(z, w̃) = 0 with polygon Γ̃ = Γ(g) having edges G(1)

j , j = 1, 2, 3, 4

and 4 vertices (see Fig. 2)). As we consider the case z → 0, the appropriate
truncated solutions can be given by equations corresponding to vertex (0, 2) and
edges G(1)

3 , G
(1)
4 .
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Theorem 3.1. In the neighbourhood of z = 0 there exist the following 8 families of
expansions, corresponding to the edge G(1)

4 :

H1 : y = 1−2δ

γ
x+

∑

s∈K
csx

s,

where a =

(
sgn Re

γ√
−2δ

)
γ√
−2δ

, K = {s : s = l + m + ma, l,m ∈ Z, l,m ≥
0, l + m > 0}, ca+1 is an arbitrary constant, exists if γδ 6= 0, γ2/2δ = −p2, p ∈
R \ N. If a ∈ Q the expansion converges according to Theorem 1.7.2 [2];

H2 : y = 1−2δ

γ
x+

∞∑

s=1

csx
s,

where cs, 1 ≤ s ≤ a are constant and cs, s ≥ a + 2 are polynomials in log z
with uniquely determined coefficients, ca+1 = A log x+C, where C is an arbitrary
constant, exists if γδ 6= 0, γ2/2δ = −n2, n ∈ N.

H3 : y = 1− δ
γ
x− γ

2
(lnx+ C)

2
x+

∞∑

p=2

ϕpx
p,

where C is an arbitrary constant, ϕp are series in decreasing powers of log x with
uniquely determined coefficients;

Hτ1 : y = 1 +

(
−2δ

γ
+ Cxiτγ/

√
2δ
)
x+

∑

Re s>1

csx
s, γ2/δ ∈ R+, τ = ±1, C 6= 0;

H4 : y = 1 +

(
crx

ir− γ

r2
+
γ2 − 2δr2

4crr4
x−ir

)
x+

∑

Re s>1

csx
s, r ∈ R \ {0}, cr ∈ C,

r and cr are arbitrary constants.
The families H1, Hτ1 , H2 and H3 are one-parametric, the family H4 is two-

parametric.
If γ 6= 0, δ = 0 there exist the families H3 and H4 (we should substitute

δ = 0 in the corresponding formulae).
If γ = 0, δ 6= 0 there exist two families of expansions

H(1)
j : y = 1 + (−1)j

√
−2δ (lnx+ C)x+

∞∑

p=2

ϕpx
p, j = 5, 6,

where C is an arbitrary constant, ϕp are series in decreasing powers of log x with
uniquely determined coefficients; and the family H4 (we should substitute γ = 0 in
the corresponding formulae).

Theorem 3.2. In the neighbourhood of z = 0 there exist the following 21 families
of asymptotic expansions corresponding to the edge G(1)

3 and to the vertex G(0)
3 =

(0, 3) obtained from the corresponding families of expansions of solutions to the
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sixth Painlevé equation: Bi, i = 1, 1′, 2, 2′, 3, 4, 5, 6, 8, 9, 10, Bτj , j = 0, 1, 2, 6, 7,
A1. The family A2 is obtained by the symmetry (1.3) from the family A1. Families
B1 and B2 are of type 1, but B1′ and B2′ are of type 2.

4. Asymptotic expansions of solutions in the neighbourhood of the
nonsingular point of the equation [5]

To explore the expansions near the nonsingular point z = z0, z0 6= 0, z0 6= ∞ of
the equation we perform the the transformation z = t + z0 which permits us to
apply to the transformed equation the algorithms of Power Geometry described
above.

Theorem 4.1. In the neighbourhood of the nonsingular point z = z0 of the equation
(1.1) there exist 10 families of asymptotic expansions of its solutions. The new one
is

O8 : w = 1− γ

2z0
(z − z0)2 +

∞∑

s=4

cs(z − z0)s,

where c4 is an arbitrary constant, other cs are uniquely determined. The expansions
exist when γ 6= 0, δ = 0. One of 10 families is two-parameter, the rest families are
one-parameter.

Theorem 4.2. The expansions of all 10 families converge in the deleted neighbour-
hood of z = z0.

Some of these results are not new – they can be found in [6,7].

References
[1] Bruno, A.D., Asymptotics and expansions of solutions to an ordinary differential equa-

tion // УМН 59:3 (2004) 31-80 = Russian Mathem. Surveys 59:3 (2004) 429-480.
[2] Bruno, A.D., Goryuchkina, I.V., Asymptotic expansions of solutions to the sixth

Painleve equation Труды ММО. 2010, 71, 6-118 = Transactions of Moscow Math.
Soc. 2010. 71, 1-105.

[3] Bruno, A.D., Parusnikova, A.V., Asymptotic expansions of solutions to the fifth
Painleve equation. Preprint no. 39, Keldysh Inst. Appl. Math., Moscow, 2010 (Rus-
sian).

[4] Bruno, A.D., Parusnikova, A.V., Local expansions of solutions to the fifth Painleve
equation. Doklady Mathematics, 83 (3) Moscow, 2011 = ДАН. 2011, 438 (4), 439-
443.

[5] Bruno, A.D., Parusnikova, A.V., Expansions of solutions to the fifth Painleve equation
near its nonsingular point. Preprint no. 18, Keldysh Inst. Appl. Math., Moscow, 2011
(Russian).

[6] Gromak V.I., Laine I., Shimomoura S., Painleve Differential Equations in the Complex
Plane // Walter de Gruyter. Berlin, New York, 2002. 303 p.



Asymptotic expansions of solutions to the fifth Painlevé equation 131
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Gauge transformation of
the sixth Painlevé equation

Yoshikatsu Sasaki

Abstract. This talk concerns the isomonodromic deformations of three linear
ordinary differential equations, which governed the sixth Painlevé equation.
We show that there exists a 2-dimensional system of LODEs s.t. (i) by elim-
inating an entry, the system reduces to one of the 3 LODEs; (ii) the IMD of
the system is equivalent to the IMD of one of the 3 LODEs; (iii) the system is
obtained from a linearization of the sixth Painlevé equation by use of a gauge
transformation.

Mathematics Subject Classification (2000). Primary 34M55.

Keywords. the sixth Painlevé equation, gauge transformation.

1. 3 LODEs

Consider the following 3 LODEs:

LVI :
d2y

dx2
+ p1

dy

dx
+ p2y = 0, κ = ρ(ρ+ κ∞) (= ρ(ρ̄+ 1)),

p1 =
1− κ0
x

+
1− κ1
x− 1

+
1− θ
x− t −

1

x− λ,

p2 =
κ

x(x− 1)
− t(t− 1)H

x(x− 1)(x− t) +
λ(λ− 1)µ

x(x− 1)(x− λ)
.

L̄VI :
d2y

dx2
+ p1

dy

dx
+ p2y = 0, κ̄ = ρ(ρ+ κ∞ − 1) (= ρρ̄),

p1 =
1− κ0
x

+
1− κ1
x− 1

+
1− θ
x− t −

2

x− λ̄ ,

p2 =
κ̄

x(x− 1)
− t(t− 1)H̄

x(x− 1)(x− t) +
λ̄(λ̄− 1)µ̄

x(x− 1)(x− λ̄)
.

This study is supported by Hiroshima University Grant-in-Aid for Exploratory Research.
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L̃VI :
d2y

dx2
+ p1

dy

dx
+ p2y = 0, κ̄ = ρ(ρ+ κ∞ − 1) (= ρρ̄),

p1 =
1− κ0
x

+
1− κ1
x− 1

+
1− θ
x− t −

∑

k=1,2

1

x− λk
,

p2 =
κ̄

x(x− 1)
− t(t− 1)H̃

x(x− 1)(x− t) +
∑

k=1,2

λk(λk − 1)µk

x(x− 1)(x− λk)
.

We assume that

• the regular singularities of 3 equations lie in generic locations;
• the parameters κ0, κ1, θ, κ∞ ∈ C\Z (then ρ is defined by Fuchsian rel.);
• each equation has no logarithmic solutions (non-logarithmic condition).

Riemann scheme of each equation reads :

LVI :




x = 0 x = 1 x = t x = λ x =∞

0 0 0 0 ρ
κ0 κ1 θ 2 ρ+ κ∞



 ,

L̄VI :




x = 0 x = 1 x = t x = λ̄ x =∞

0 0 0 0 ρ
κ0 κ1 θ 3 ρ+ κ∞ − 1



 ,

L̃VI :




x = 0 x = 1 x = t x = λ1 x = λ2 x =∞

0 0 0 0 0 ρ
κ0 κ1 θ 2 2 ρ+ κ∞ − 1



 .

2. Gauge transformation

IMD(=isomonodromic deformation) of the equations have been studied separately[3,
2, 5]. In this talk, we observe these 3 equations from a unific viewpoint.

Theorem 2.1. ([6]) There exists a 2 dimensional system of LODEs:

SVI :
d~y

dx
= A(x)~y, ~y =

(
y1
y2

)
, A(x) : a 2× 2 matrix with function entries.

s.t.
(i) by eliminating y1 or y2, SVI reduces to LVI, L̄VI or L̃VI;

(ii) IMD of SVI is equivalent to IMD of LVI, L̄VI or L̃VI;
(iii) SVI is obtained by a Gauge transformation of the linearization of PVI given
in [1] (also see [4]).
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Antiquantization of quantum models as a tool
for generating Painlevé equations

Sergey Yu. Slavyanov

The Painlevé equations can be derived and studied by different means. One
of the most fruitful approaches is the use of linear equations as a basic tool. The
conventional ones are 2 × 2 first order linear systems added by isomonodromie
conditions [1] and second order equations with apparent singularity. Being quite
straightforward from the analytical point of view these approaches lead, however,
to very sophisticated practical computations. The author of the report recently
proposed another approach which seems to be a tricky recipe. but leads to the re-
sult much more efficient [2, 3]. This approach was later termed as antiquantization
procedure [5, 6]. It includes

Choice of quantum equation. It could be only equation belonging to Heun
class.
Choice of the parameter which is termed as adiabatic and which plays the
role of time.
Choice of ”energy” or hamiltonian.
Normalization of the hamiltonian. This step is equivalent to introduction of
isomonodromie condition.

This is the content of a quantum model. Examples are discussed in the pub-
lication [7]. Further the quantum variables in the hamiltonian coordinate and
momentum are substituted for classical coordinate and momentum. The classical
Euler-Lagrange equations appear to be one of the Painlevé’s equation.

In conventional antiquantization procedures the role of order of quantum
operators is important. In our procedure is not. Normalization of the wave function
is also not crucial.



136 Sergey Yu. Slavyanov

The general Heun equation in essence can be studied as following [4]

σ(z)y′′(z) +

3∑

j=1

(1 − bj)σj(z)y
′(z) +




3∑

j=1

ajσj(z)

(z − zj)
+ δ(z − z3)−


 λσ3(z3)

(z2 − z1)
+

1

2

2∑

j=1

(1 − b3)(1 − bj)
σ3(z3)

z3 − zj




 y(z) = 0. (1)

Here

bj = (ρ1j + ρ2j), aj = ρ1jρ2j , j = 1, 2, 3, a∞ = κ1κ2,

σ(z) =
3∏

j=1

(z − zj), σj(z) =
σ(z)

z − zj
,

δ = a∞ −
3∑

j=1

aj ,

where ρmj are characteristic exponents at finite singular points and κ1, κ2 are
characteristic exponents at infinity. It can be shown that the quantity λ stays
invariant under linear transform of independent variable and s-homotopic trans-
formation of the function y. The other invariants are squares of differences between
characteristic exponents

∆j = (ρ1j − ρ2j)
2, j = 1, 2, 3 ∆∞ = (κ1 − κ2)2.

Applying the antiquantization procedure we arrive to the following equation
[4]

2σ3(t)√
σ(q)

d

dt

q̇σ3(t)√
σ(q)

+
q̇σ2

3(t)

σ(q)(q − t)
+


−∆∞ +

2∑

j=1

(∆j + 1 − 2bj)σj(zj)

(q − zj)2
+

(∆3 − 1)σ3(t)

(q − t)2


 = 0. (2)

This is a general form of the Painlevé equation P 6 generated by general form of
Heun equation. Two important features of equation (2) should be emphasized.

1. The role of the singular point z3 = t is specific in (2) compared to the other
points z1, z2.

2. The only influence of generalization due to s-homotopic transformation is a
slight dependence on bj j = 1, 2 in (2).

The general approach to Hamiltonian structure for Painlevé equations is as fol-
lowing. Each equation belonging to the Heun class in its canonical form may be
presented in a form

1

f(t)

[
P0(z, t)D2 + P1(z, t)D + P2(z, t)

]
y(z) = λy(z) (3)
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In eq. (3) P0(z, t), P1(z, t), P2(z, t) are polynomials in z of order not higher than
third, t is the scaling parameter, λ is the accessory parameter or ”energy” in
formulation above. The factor f(t) is due to normalization of energy. If quantum
observables q̂, p̂, (q̂ the coordinate and p̂ the momentum) are associated with z
and D in eq. (3) it becomes the Hamiltonian structure and can be rewritten as

H(q̂, p̂, t)y = λy (4)

In eq. (4) the function H is the Hamiltonian adiabatically depending on the param-
eter t which can be considered as time, λ is energy. The corresponding Hamiltonian
in classical machanics is quadratic in the classical momentum p.

H(q, p, t) =
1

f(t)

[
P0(q, t)p2 + P1(q, t)p+ P2(q, t)

]
(5)

The Legendre transform can be applied to this Hamiltonian turning from momen-
tum p to velocity qt. The following Euler-Lagrange equation of motion relates to
this Lagrangian

qtt =
1

2

∂

∂q
(lnP0(q, t))q2t −

(
∂

∂t
(ln f(t)) − ∂

∂t
(lnP0(q, t))

)
qt

+
P0(q, t)

f2(t)

(
∂

∂q

P 2
1 (q, t)

2P0(q, t)
+ f(t)

∂

∂t

P1(q, t)

P0(q, t)
− 2

∂P2(q, t)

∂q

)
(6)

The following theorem holds.
Theorem. Each type of equations belonging to Heun class is generic for one

of the equations of Painlevéé class in the sense that a Schrödinger type equation
corresponds via antiquantization recipe to an equation of motion in classical dy-
namics. The inverse statement holds also. Each type of Painlevé equations may be
generated by the corresponding Heun equation.

Specially chosen solutions of Painleve equations constitute the class of spe-
cial functions related to nonlinear mathematical physics – the so-called Painlevé
transcendents.
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Integral transformation of Heun’s equation and
some applications

Kouichi Takemura

Abstract. Kazakov and Slavyanov established that Heun’s equation admits
Euler’s integral transformation which changes the parameters. In the talk we
investigate the transformation in detail. Existence of polynomial-type solu-
tions corresponds to apparency (non-branching) of a singularity by the trans-
formation, and we obtain integral representations of solutions of Heun’s equa-
tion which has an apparent singularity.

Mathematics Subject Classification (2000). Primary 34M35; Secondary 33E10.

1. Heun’s equation and Integral transformation

Heun’s equation is a standard form of a second-order Fuchsian equation with four
singularities, which is given by

d2y

dz2
+

(
γ

z
+

δ

z − 1
+

ε

z − t

)
dy

dz
+

αβz − q
z(z − 1)(z − t)y = 0, (1.1)

with the condition γ + δ + ε = α + β + 1 [2, 3]. The parameter q is independent
from the local exponents and is called an accessory parameter. It is known that
Heun’s equation appears as a degenerate case of the linear differential equations
which produce Painlevé VI equation by monodromy preserving deformation.

Kazakov and Slavyanov established that Heun’s equation admits Euler’s in-
tegral transformation which changes the parameters;

Proposition 1.1 ([1]). Set

(η − α)(η − β) = 0, γ′ = γ − η + 1, δ′ = δ − η + 1, ε′ = ε− η + 1, (1.2)

{α′, β′} = {2− η, α+ β − 2η + 1}, q′ = q + (1− η)(ε+ δt+ (γ − η)(t+ 1)).

Let v(w) be a solution of

d2v

dw2
+

(
γ′

w
+

δ′

w − 1
+

ε′

w − t

)
dv

dw
+

α′β′w − q′
w(w − 1)(w − t)v = 0. (1.3)
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Then the function

y(z) =

∫

[γz,γp]

v(w)(z − w)−ηdw (1.4)

is a solution of Eq. (1.1) for p ∈ {0, 1, t,∞}, where [γz, γp] = γzγpγ
−1
z γ−1p is the

Pochhammer contour which turns around the points w = z and w = p.

Note that Proposition 1.1 was rediscovered by considering middle convolu-
tions of 2× 2 Fuchsian differential equations with four singularities (see [6]).

2. Apparent singularity and Integral representation of solutions

Let us consider local solutions of Heun’s equation. The exponents of Eq.(1.1) about
z = t are 0 and 1− ε. If ε 6∈ Z, then we have a basis of local solutions as follows;

f(z) =
∞∑

j=0

cj(z − t)j , g(z) = (z − t)1−ε
∞∑

j=0

c̃j(z − t)j , (c0 6= 0 6= c̃0). (2.1)

We now define an apparent singurality in the case ε ∈ Z. For simplicity, we only
consider the case ε ∈ Z≤0. If ε ∈ Z≤0, then we have a basis of local solutions as

f(z) =
∞∑

j=0

cj(z − t)j +A g(z) log(z − t), g(z) = (z − t)1−ε
∞∑

j=0

c̃j(z − a)j . (2.2)

If the logarithmic term in Eq.(2.2) disappear, i.e. A = 0, then the singularity z = t
is called apparent. Note that the apparency of a regular singularity is equivalent
to that the monodromy about z = t is trivial.

Set n = 1 − ε. Then the condition that the singularity z = t is apparent is
written as P app(q) = 0, where P app(q) is a polynomial of the variable q of order n.

Example. If ε = −2 (n = 3), then the condition that the regular singularity z = t
is apparent is written as

0 = P app(q) = q3 + {(−3αβ − 3α− 3β − 1)t+ (3γ − 4)}q2 (2.3)

+ {(3α2β2 + 6αβ(α+ β) + 10αβ + 2(α2 + β2) + 2α+ 2β)t2

+ ((−6αβ − 4α− 4β)γ + 4αβ + 4α+ 4β)t+ 2(γ − 1)(γ − 2)}q
− αβt{(α+ 1)(α+ 2)(β + 1)(β + 2)t2 − γ(3αβ + 4α+ 4β + 4)t+ 2γ(γ − 1)}.

By the integral transformation, polynomial-type solutions of Heun’s equation
corresponds to solutions which has an apparent singularity ([7]). Moreover we have
the following proposition;

Theorem 2.1. [[7]] If ε ∈ Z≤0, α, β, β − γ, β − δ 6∈ Z and the singularity z = t of
Eq. (1.1) is apparent, then there exists a non-zero solution of Eq.(1.3) which can
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be written as wβ−γ(w − 1)β−δh(w) where h(w) is a polynomial of degree −ε and
the functions

∫

[γz,γp]

wβ−γ(w − 1)β−δh(w)(z − w)−βdw, (2.4)

(p = 0, 1) are non-zero solutions of Eq. (1.1).

Example. Set ε = −2. The condition that the singularity z = t of Eq. (1.1) is
apparent is written as Eq.(2.3). Then there exists a non-zero solution of Eq. (1.3)

written as w1−γ′
(w − 1)1−δ

′
h(w) = wβ−γ(w − 1)β−δh(w) where

h(w) = 2α(α+ 1)w2 + 2(α+ 1){q − α(β + 2)t}w (2.5)

+ q2 − {2αβ + 3α+ β + 1)t− γ + 2}q + αt{t(α+ 1)(β + 1)(β + 2)− βγ},
and the functions in Eq.(2.4) (p = 0, 1) are non-zero solutions of Eq.(1.1).

We have similar results for linear equations which produce Painlevé VI ([7]).

3. Elliptical representation of Heun’s equation and Integral
transformation

It is known that Heun’s equation has an elliptical representation. Let ℘(x) be
the Weierstrass doubly periodic function with periods (2ω1, 2ω3), ω0(= 0), ω1,
ω2(= −ω1 − ω3), ω3 be the half-periods and ei = ℘(ωi) (i = 1, 2, 3). Then Heun’s
equation (Eq. (1.1)) is transformed to

H(l0,l1,l2,l3)f(x) = Ef(X), H(l0,l1,l2,l3) = − d2

dx2
+

3∑

i=0

li(li + 1)℘(x+ ωi), (3.1)

by setting z = (℘(x) − e1)/(e2 − e1), t = (e3 − e1)/(e2 − e1). The eigenvalue E
corresponds to the accessory parameter q.

We rewrite the integral transformation of Heun’s equation (i.e. Proposition
1.1) in elliptical representation form. It is remarkable that the eigenvalue E is
unchanged by the integral transformation.

Proposition 3.1 ([7, 8]). Let σ(x), σi(x) (i = 1, 2, 3) be the Weierstrass sigma and
co-sigma functions and I be a suitable cycle. Let α′i be a number such that α′i = −l′i
or α′i = l′i + 1 for each i ∈ {0, 1, 2, 3}. Set d = −∑3

i=0 α
′
i/2 and η = d+ 2. If f̃(x)

satisfies

H(l′0,l
′
1,l

′
2,l

′
3)f̃(x) = Ef̃(x), (3.2)

then the function

f(x) = σ(x)α
′
0+d+1σ1(x)α

′
1+d+1σ2(x)α

′
2+d+1σ3(x)α

′
3+d+1· (3.3)

∫

I

f̃(ξ)σ(ξ)1−α
′
0σ1(ξ)1−α

′
1σ2(ξ)1−α

′
2σ3(ξ)1−α

′
3(σ(x+ ξ)σ(x− ξ))−ηdξ
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satisfies

H(α′
0+d,α

′
1+d,α

′
2+d,α

′
3+d)f(x) = Ef(x). (3.4)

Theorem 3.2 ([7, 8]). Let k ∈ {1, 3} and M
(l0,l1,l2,l3)
2ωk

(E) be the monodromy matrix
by the shift of the period x → x + 2ωk with respect to a certain basis of solutions
to H(l0,l1,l2,l3)f(x) = Ef(x). Then

traceM
(l′0,l

′
1,l

′
2,l

′
3)

2ωk
(E) = traceM

(α′
0+d,α

′
1+d,α

′
2+d,α

′
3+d)

2ωk
(E). (3.5)

In other word, periodicity is preserved by the integral transformation.

We apply the integral transformation for the case where Heun’s equation
has the finite-gap property, i.e. the case where l0, l1, l2, l3 ∈ Z (γ, δ, ε, α − β ∈
Z+ 1/2). For the case l0, l1, l2, l3 ∈ Z we can calculate the monodomy in principle
for all E by means of hyperelliptic integrals [4] and by the Hermite-Krichever
Ansatz [5]. By applying monodromy invariance, we can calculate the monodromy
of Heun’s equation for the case l0, l1, l2, l3 ∈ Z + 1/2 and l0 + l1 + l2 + l3 ∈ 2Z + 1
(γ, δ, ε, α+ 1/2, β + 1/2 ∈ Z), which have not been studied so far.
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Asymptotics at the gradient catastrophe points
and Painlevé 1 transcendents: semiclassical fo-
cusing NLS and orthogonal polynomials cases

Alexander Tovbis and Marco Bertola

We study the asymptotics at the points of gradient catasrophe for: A) semi-
classical limit of the focusing Nonlinear Schrödinger equation (NLS); B) large
N asymptotics of monic orthogonal polynomials πn(z) with the quartic weight

e−N(z2/2+tz4/4). Our technique is based on the nonlinear steepest descent method
for matrix Riemann-Hilbert problems.

1. Semiclassical limit of the focusing NLS

We consider the integrable (x ∈ R) focusing NLS

iε∂tq + ε2∂2
xq + 2|q|2q = 0, (1-1)

with rapidly decaying analytic initial data q(x, 0, ε) = A(x)eiΦ(x)/ε in the semiclas-
sical (zero dispersion) limit ε→ 0. Generically, in different regions of the spacetime,
there are different asymptotic (as ε → 0) regimes separated by breaking curves
(or nonlinear caustics), see Fig. 1. Separating the amplitude and the phase

q(x, t, ε) = b(x, t, ε)eiΦ(x,t,ε)/ε, U := b2, V = Φx, (1-2)

the NLS equation can be recast as

Ut + (UV )x = 0 , Vt + V Vx − Ux +
ε2

2

(
1

2

U2
x

U2
− Uxx

U

)

x

= 0 (1-3)

Neglecting the ε2-term yields an elliptic system, which develops singularities in
the derivatives at some finite (x0, t0). This point is called a gradient catastrophe
point. On Fig. 1, (x0, t0) corresponds to the tip of the breaking curve (right in
front of the very first spike).

A solution q(x, t, ε) of the NLS (1-1) is defined by its initial data q(x, 0, ε).
At the same time, since (1-1) is an integrable equation, its solutions can be defined
through the scattering data: the reflection coefficient r(z, ε), z ∈ R, and the points
of the discrete spectrum (solitons) together with their norming constants. The
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Figure 1. Left: the case of A(x) = e−x
2

, Φ′(x) = tanhx and
ε = 0.03; Right:the shape of a spike is the scaled Peregrine’s
breather.

initial and the scattering data of a solution to the NLS are related through direct
and inverse scattering transformations for the corresponding Zakharov-Shabat sys-
tem of linear equations. For example, the initial data with A(x) = −sech x and
Φx = −µ tanhx, µ > 0, corresponds to ([5])

r(z, ε) = −iε2− iµe Γ(1− w + w+ + w−)Γ(w − w+)Γ(w − w−)

Γ(w+)Γ(w−)Γ(w − w+ − w−)
, (1-4)

where

w+ = − i
ε

(
T +

2

µ

)
, w− =

i

ε

(
T − 2

µ

)
, w = −z i

ε
− µ i

2ε
+

1

2
and T =

√
µ2

4
− 1.

(1-5)
For the sake of simplicity, we consider µ ≥ 2, when there are no solitons. The semi-
classical limit of the scattering transformations is the subject of ongoing research.
Using the Stirling asymptotics in the above example with µ = 2, we can calculate
the leading order term r0 of r as

r0(z, ε) = e−2if0(z)/ε where f0(z) = (1− z)
[
i
π

2
+ ln(1− z)

]
+ z ln z + ln 2 +

π

2
ε,

(1-6)
when =z ≥ 0. Casting the inverse scattering problem for the NLS-evolution of r0

as the Riemann-Hilbert problem (RHP) and using the nonlinear steepest descent
method, we recover the corresponding solution q of (1-1) with O(ε) accuracy. In
particular, we recover |q(x, 0, ε)| = sech x and Φ(x, 0, ε) = −2 tanhx. In general,
solutions to (1-1), corresponding to a wide class of reflection coefficients of the form
r0(z, ε) = e−2if0(z)/ε, were described in [6]. It was assumed there that f0(z) are
analytic in the upper halfplane and =f0(z) < 0 everywhere on R except one finite
interval, where =f0(z) > 0. It was also shown that, subject to additional technical
assumptions, the corresponding solutions q will evolve as modulated plane waves
(1-2) until undergoing the gradient catastrophe at some finite points x0, t0.
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The results of Subsection 1.1 below were proven (see [1]) for solutions q de-
fined through their reflection coefficients r0(z, ε) = e−2if0(z)/ε, where the require-
ments to f0(z) were described in [6]. There are little doubts that these results are
valid for a significantly wider class of solutions q, including solutions with solitons.
However, in order to describe (and prove) the essence of the gradient catastrophe
phenomenon for the focusing NLS , we consider the most technically convenient
and yet a wide enough class of solutions q, as described above.

1.1. The results

Let us introduce scaling variables x = x0 +ε4/5X, t = t0 +ε4/5T in an O(ε4/5)-size
neighborhood D of the point of gradient catastrophe x0, t0. We have established
the following universal behaviors of the NLS solutions near the point of generic
gradient catastrophe (x0, t0):

1. there exists a mapping v = v(X,T ) of D of into a finite region V , 0 ∈ V , of
the complex v-plane of the form

v = −i
√

2ib0
C

(X + 2(2a0 + ib0)T ) (1 +O(ε2/5)), (1-7)

such that the center of each spike is given by (X,T ) = v−1(vp), where vp ∈ V
is a pole of the tritronquée solution y(v) of the Painlevé I (P1) y′′ = 6y2 − v;
here b0 = |q(x0, t0, ε)| and a0 = Φx(x0, t0), see Fig. 1.1;

2. the maximum amplitude of each spike in D is 3|q(x0, t0, ε)|+O(ε1/5);
3. the shape of each spike is universally the one of the rational (Peregrine)

breather solution (aka rogue wave, see Figure 1) to the NLS , scaled to the
size O(ε);

4. if (x, t) ∈ D but lies O(ε) away from the spikes, the asymptotics of the NLS
solution is

q(x, t, ε) =
(
b0 − 2ε2/5=

(
y(v)
C

)
+O(ε3/5)

)
×

exp 2i
ε

[
1
2Φ(x0, t0)−

(
a0(x− x0)− (2a2

0 − b20)(t− t0)
)

+ ε
6
5<
(√

2i
Cb0

HI(v)
)]
,(1-8)

where HI = (y′(v))2/2+vy(v)−2y3(v) and C is a nonzero constant that can
be calculated explicitly.

This asymptotics is uniform on V away fromthe poles of y(v).

Eq. (1-8) confirms the conjecture of Dubrovin, Grava and Klein [3] about
the form of the leading order correction to the semiclassical asymptotics in the
non-oscillatory region around (x0, t0), whereas the first 3 items go well beyond
the prediction of this conjecture, establishing simple universal behavior of NLS-
solutions near the point of gradient catastrophe. We further conjecture that the P1
hierarchy occurs at higher degenerate catastrophe points and that the amplitudes
of the spikes are odd multiples of the amplitude at the corresponding catastrophe
point.
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O(ε
1
5 )

8π
5

2π
5

Figure 2. Spikes correspond to the poles of the tritronquée so-
lution y(v), shown as red (dark) circles on the right.

2. Double scaling limit of orthogonal polynomials with quartic
weight

Asymptotic analysis of the recurrence coefficients αn(t,N), βn(N, t) for orthogonal

polynomials with varying quartic weight e−N( 1
2 z

2+ 1
4 tz

4), t ∈ R and n = N → +∞
was considered in [2], [4]. The asymptotics in the case t > 0 is well known

αn(t) =

√
1 + 12t− 1

6t
+O(N−1), βn(t)→ 0, (2-1)

It can be continued into some negative interval (t0, 0) provided the integrals are
taken along the rays with the slope ±1 in C instead of R. We put different con-
stant weight factors νj , j = 1, 2, 3, 4, for integral along each of the above four rays.
The corresponding monic orthogonal polynomials πn satisfy the 3-term reccurence
relation πn+1 = (z− βn)πn(z)−αnπn−1(z), where αn, βn are the recurrence coef-
ficients.

Similarly to the point of gradient catastrophe (x0, t0) of the NLS, this asymp-
totics cannot (in general) be continued beyond the critical t = t0 = −1/12. More-
over, in the double scaling limit N4/5(t− t0) = v

29/536/5 , where v ∈ C is a constant,
the correction to the leading order constant term (2-1) is given in terms of a P1
solution yν(v) as long as v is away from the poles of yν(v) ([DK], [FIK]). The
solution yν(v) is defined through the weights νj . This sounds similar to the [3]
conjecture for the NLS.

2.1. Results for orthogonal polynomials, generic case

1. there exists a mapping v = v(t) = cN
4
5 (t − t0)(1 + O(N−

2
5 )) of a O(N−

4
5 )

size neighborhood D ⊂ C of the critical point t = t0 into an O(1) size open
set V ⊂ C, 0 ∈ V (with c ∈ R), such that the center if each spike is given by
tp = v−1(vp), where vp ∈ V is a pole of the solution yν(v) of the Painlevé I
(P1);
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2. if the weights are even, the hight of each spike at its center tp is 9 times the

hight of the background, ( with accuracy O(N−
1
5 ));

3. we calculated the (complex) universal shape of each spike;
4. for some special choices of the weights νj there is an additional point of

gradient catastrophe at t1 = 1
15 , which is closer to the origin than t0. We

calculated the shape of the spikes near t1, as well as near t0 in nonsymmetric
cases.
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Analytical Properties of Solutions to Some Non-
linear Differential Equations and Their Systems
Associated with Models of Random-matrix Type

Vladimir Tsegel’nik

Abstract. Certain analytical properties of solutions to some differential equa-
tions and their systems associated with models of random-matrix type are
investigated.
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1. Introduction

The last three decades witnessed an increasing interest in studying certain classes
of continuous and discrete probability models by the name ”models of random-
matrix type”. The origins of such models can be very different [1].

One of the most important characteristics of these models is the emptiness
formation probability, i.e., the probability that particles are absent from a given
interval or union of intervals.

The emptiness formation probabilities, as a rule, can be represented in the
form of the Fredholm determinant det (1−K)J , where K is an integral operator
and J is the set inside which no particles must be present. The kernel of the
operator K usually has the form

K(x, y) =
A(x)B(y)−B(x)A(y)

x− y
√
ψ(x)ψ(y) (1)

with appropriate functions ψ, A, and B. The only currently known way to calcu-
late such Fredholm determinants is to present them as solutions of an ordinary
differential equation or a system of partial differential equations.



148 Vladimir Tsegel’nik

2. Model of Random-matrix Type with Airy Kernal

This paper deals with the Hamilton system

q′ = p− qu+ αs, v′ = −pq − αsq, (2)

p′ = sq − 2qv + pu+ αsu, u′ = −q2, (3)

where s is an independent variable, α is a parameter. The hamiltonian of system
(2) has the form

H =
p2

2
− sq2

2
+ q2v − pqu+ αsp− αsqu.

In case of α = 0 system (2), (3) corresponds to a model of random-matrix
type with the Airy kernel [2]. We have carried out Painlevé-analysis of solutions
to system (2), (3) and have proved

Theorem 2.1. System (2), (3) is a Painlevé type system. Its solutions are expressed
in terms of solutions to the second Painlevè equation

q′′ = 2q3 + (s+ C)q + α, (P2)

where C is an arbitrary constant of integration.

The correctness of this theorem follows from the existence of the first integral
u2− 2v− q2 = C of system (2), (3) and the next formulas u(s) = −

∫
q2(s)ds, p =

q′ + qu− 2s, 2v = u2 − q2 − C.
Example. As equation (P2) in case of α = −1 has a solution q = 1

s+C , system

(2), (3) has a solution u = 1
s+C + C1, v = C1

s+C +
C2

1−C
2 , p = C1

s+C + s, where C1 is
an arbitrary constant.

3. System of Differential Equations Associated with Dyson Process

We have carried out Painlevé-analysis of solutions to the system of differential
equations

q′′ =
(
s2 − 2n− 1

)
q + 2q2p,

p′′ =
(
s2 − 2n+ 1

)
p+ 2p2q,

(4)

associated with so called Dyson process [3].

Theorem 3.1. System (4) satisfies the Painlevé test.

4. Solutions of Travelling Wave Form of a Partial Differential
Equation

We have studied a class of selfsimilar solutions to the partial differential equations
(
A3

1 − 4

(
A3 −

1

2

))
f + 6 (A1f)

2
= 0, (5)
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where An =
2r∑
i=1

x
n−1
2

i · ∂
∂xi

, n = 1, 3; f is an unknown function of independent

variables x1, x2, . . . x2r.

Equation (5) is also associated with a model [4] of random-matrix type.

The set E =
r⋃
i=1

[x2i−1, x2i] ⊂ R is associated with equation (5). The trans-

formation w1 = f(τ), τ = x1 + x2 + . . .+ x2r reduces equation (5) to the equation

rw′′′1 − 2rw′1 + w1 + 6rw′21 = 0, w′1 =
dw1

dτ
, w′′′1 =

d3w1

dτ3
, (6)

that has the first integral

w′′21 + 4w′31 −
2

r
τw′21 +

2

r
w1w

′
1 = K1, (7)

where K1 ia an arbitrary constant. The substitution w1 = λ1y, τ = µ1s, λ1µ1 =
1, µ3

1 = r transforms [5] equation (7) into the equation

y′′2 + 4y′3 − 2sy′2 + 2yy′ −
(
α− ε

2

)2
= 0, (8)

where α is an arbitrary parameter; ε2 = 1.

In case of C = 0 there is a correspondence between solutions of equation (8)
and solutions of equation (P2) given by the next formulas

y = w′2 −
(
w2 +

s

2

)2
− 2

(
α− ε

2

)
w, (8)

w =

(
y′′ +

1

2
− αε

)
(−2εy′)

−1
. (10)

Theorem 4.1. Let y = y(s) be a solution of equation (8) with fixed parameter values

α and ε. Then the function f(τ) = λ1y
(
τ
µ1

)
, τ = x1+x2+. . .+x2r, λ1µ1 = 1, µ3

1 =

1 is a solution of equation (1).

In case E = (x,+∞) the function f(x) satisfies the following equation

f ′′′ − 4xf ′′ + 2f + 6f ′2 = 0,

that has the first integral

f ′′2 + 4f ′3 − 4xf ′2 + 4ff ′ = K2, (11)

where K2 is an arbitrary constant.

A scale transformation of unknown function f and independent variable x
reduces equation (11) to the form (8).

Equation (11) for K2 is obtained in [2].
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Local expansions for solutions of
the Schlesinger equation

Ilya Vyugin

Abstract. A local behavior of solutions of the Schlesinger equation is studied.
We obtain expansions for this solutions, which converge in some neighborhood
of a singular point. As a corollary the similar result for the sixth Painlevé
equation was obtained. In our analysis, we use the isomonodromic approach
to solve this problem.
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1. Introduction

We study a local behavior of solutions of the Schlesinger equation. We present
solutions of this equation in the form of power series or logarithmic-power series.
This series are converge in some neighborhood of a singular point. As a corollary
we obtain a similar result for description of the behavior of solutions of the sixth
Painlevé equation in some sectorial neighborhood. We use the isomonodromic ap-
proach to solve this problem.

Let us consider the following system of analytical partial differential equations

dBi = −
n∑

j=1,j 6=i

[Bi, Bj ]

ai − aj
d(ai − aj), i = 1, . . . , n, (1.1)

where Bi (i = 1, . . . , n) — are analytical p × p-matrix functions of the variable
a = (a1, . . . , an), [Bi, Bj ] denotes the commutator of matrices Bi and Bj . The
matrix-functions Bi(a) are defined and meromorphic (see B. Malgrange [1], R.

The work is supported by President’s of Russian Federation grants NSh-8508.2010.1, MK-
4270.2011.1, and by grant RFBR 11-01-00384.
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Gontsov and I. Vyugin [4]) on the space

{a|a = (a1, . . . , an) ∈ Cn \
⋃

i,j

Aij}, Aij = {a | ai = aj}.

This system is called Schlesinger equation (read more in A.A. Bolibruch [7]). Di-
visor of the Schlesinger equation is the following set Ω =

⋃
i,j Aij . We are going to

describe a local form of solutions of Schlesinger equation (1.1) in a neighborhood
of the point a0 = (a01, . . . , a

0
n), which belongs to the following singular set

a0 ∈ Ω′ = Ω \


⋃

i,j,k

Aijk


 , Aijk = {a | ai = aj = ak}.

We obtain the local expansions of the solutions of the system (1.1) in the form of
power and logarithmic-power series of (as − ar) (if a0 ∈ Asr), which converges in
some neighborhood of the point z = a0 (the first version of these results see [6]).
These series have terms of complex degrees.

Theorem 1.1. Any solution of two dimensional Schlesinger equation (1.1) can be
represented in the neighborhood of a point a0 = (a01, . . . , a

0
n) ∈ Ω′, where a0r = a0s,

r 6= s, in one of two following forms:

• bikl(a) = F1(a) + (as − ar)ϕF2(a) + (as − ar)−ϕF3(a), ϕ ∈ C in the general
case;

• bikl(a) = F1(a) +F2(a) ln(as−ar) +F3(a) ln2(as−ar) in the degenerate case,

where F kli1 (a), F kli2 (a), F kli3 (a) are meromorphic (holomorphic in the generic case)
functions, i = 1, . . . , n, and k, l ∈ {1, 2}.

The notions of “general case” and “non-general case” are explained below.
Notice that the measure of the systems of non-general case is equal to zero.

Now consider the case n = 4, p = 2, which is equivalent to case of the sixth
Painlevé equation (1.2). Without loss of generality, let us fix three variable a1 = 0,
a2 = 1, a3 =∞ and denote a4 by t. We obtain the system of ordinary differential
equations with variable t and unknown matrix-functions

Bi(t) =

(
bi11(t) bi12(t)
bi21(t) bi22(t)

)
, i = 0, t, 1,∞.

With restrictions above the following corollary holds.

Corollary 1.2. Any solution of the Schlesinger equation under the above constraints
can be represented in the neighborhood of t = 0 in one of two forms:

• bikl(t) = F kli1 (t) + tϕF kli2 (t) + t−ϕF kli3 (t), ϕ ∈ C in the general case;

• bikl(t) = F kli1 (t) + F kli2 (t) ln t+ F kli3 (t) ln2 t in the degenerate case,

where F kli1 (t), F kli2 (t), F kli3 (t) are meromorphic in t = 0 functions, i = 0, t, 1,∞,
and k, l ∈ {1, 2}.
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Note that the well-known sixth Painlevé equation

d2w

dt2
=

1

2

(
1

w
+

1

w − 1
+

1

w − t

)(
dw

dt

)2

−
(

1

t
+

1

t− 1
+

1

w − t

)
dw

dt
+ (1.2)

+
w(w − 1)(w − t)

t2(t− 1)2

(
α+ β

t

w2
+ γ

t− 1

(w − 1)2
+ δ

t(t− 1)

(w − t)2
)
,

α, β, γ, δ ∈ C is equivalent to the system (1.1), where

w(t) =
tb012

(t+ 1)b012 + tb112 + bt12
. (1.3)

Corollary 1.2 and (1.3) give the power expansions for solutions of the sixth Painlevé
equation. A different asymptotics for sixth Painlevé equation was obtained in D.
Guzzetti [2], A. Bruno and I. Goryuchkina [5], M. Mazzocco [3] and others.

For the sixth Painlevé equation, we have an analogue of Corollary 1.2.

Corollary 1.3. Any solution w(t) of sixth Painlevé equation (1.2) in the intersection
of the given sector for t sufficiently close to singular point t = 0, 1,∞ can be
represented as a converged power series or as a converged logarithmic-power series:

• if G1G∞ is digonalizable, then w(t) = S(t, tλ, t−λ), where
λ = λ(α, β, γ, δ, t0, w(t0), w′(t0)) can be found approximately;

• if G1G∞ is a Jordan block, then w(t) = S(t, ln t).

2. Schlesinger equation and isomonodromic deformations

In this section we give a description of the Schlesinger equation (1.1) as an isomon-
odromy condition for a family of Fuchsian systems. Let us consider a Fuchsian
system

dy

dz
=

(
n∑

i=1

B0
i

z − a0i

)
y, B0

i ∈ Matp×p(C), y(z) ∈ Cp. (2.1)

The family of such systems

dy

dz
=

(
n∑

i=1

Bi(a)

z − ai

)
y (2.2)

is called isomonodromic if the following conditions hold:

• Bi(a) are continuous matrix-functions of a = (a1, . . . , an);
• The Fuchsian system (2.2) with any fixed a has fixed monodromy represen-

tation χ : π1(C \ {a1, . . . , an}, z0) −→ GL(p,C).

Schlesinger isomonodromic family is a family defined by the equation (1.1).
An isomonodromic fundamental matrix Y (z, a) of the Schlesinger isomonodromic
family (2.2) satisfies the following condition

Y (∞, a) ≡ Y (∞, a0).
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The initial data of such family are the coefficients Bi(a
0) = B0

i , i = 1, . . . , n of sys-
tem (2.1). It is known that the solutions of Schlesinger equation are meromorphic

functions on the space a ∈ Cn \ Ω.
Let us consider the Painlevé VI case (n = 4, p = 2, a1 = 0, a2 = 1, a3 = ∞,

a4 = t). Usually the following family

dy

dz
=

(
B0(t)

z
+
Bt(t)

z − t +
B1(t)

z − 1

)
y (2.3)

is considered, where

trB0 = trBt = trB1 = trB∞ = 0, B∞ = −(B0 +Bt +B1),

and the matrices B0, Bt, B1, B∞ = diag(δ,−δ) are diagonalizable.
The formula (1.3) gives a solution of sixth Painlevé equation (1.2) with the

following constants

α =
(2λ∞ − 1)2

2
, β = −2λ20, γ = 2λ21, δ =

1

2
− 2λ2t ,

where λ0, λt,λ1, λ∞ are eigenvalues of matrices B0, Bt, B1, B∞.
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Reductions on the lattice and Painlevé equa-
tions

Pavlos Xenitidis

Abstract. The symmetry analysis of the discrete integrable systems of the
Adler-Bobenko-Suris classification is reviewed and symmetry reductions of the
latter are discussed. In particular, reductions of the discrete potential KdV
equation to discrete Painlevé equations are presented, and continuous sym-
metric reductions leading to integrable systems of partial differential equations
are considered. As a byproduct, an interpretation of solutions of continuous
Painlevé equations as particular solutions of the discrete potential KdV and
a discrete Painlevé II equations is demonstrated.

Mathematics Subject Classification (2000). Primary 35B06, 39A14; Secondary
34M55.

Keywords. Integrable equations, symmetries, reductions, Painlevé equations.

1. Introduction

Adler, Bobenko and Suris (ABS) classified recently [2] all the integrable scalar
difference equations which are defined on an elementary quadrilateral of the lattice
and possess the following two properties : i) they are affine linear and ii) they are
multidimensionally consistent1. Their classification led to the following list of seven
equations which includes some new cases (H2, H3δ=1, Q1δ=1, Q2, Q3δ=1), as well
as some well known equations (H1, H3δ=0, Q1δ=0, Q3δ=0, Q4), see e.g. [1, 3, 6].

H1 (u− z) (x− y) − α + β = 0

H2 (u− z)(x− y) + (β − α)(u+ x+ y + z)− α2 + β2 = 0

H3 α(ux+ yz)− β(uy + xz) + δ(α2 − β2) = 0

1This means that these equations can be extended to a multidimensional lattice in a self consistent

way. This property serves as an integrability criterion which played central role in the ABS
classification.
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Q1 α(u− y)(x− z)− β(u− x)(y − z) + δ2αβ(α− β) = 0

Q2 α(u− y)(x− z)− β(u− x)(y − z) +

αβ(α− β)(u+ x+ y + z)− αβ(α− β)(α2 − αβ + β2) = 0

Q3 (β2 − α2)(uz + xy) + β(α2 − 1)(ux+ yz)

−α(β2 − 1)(uy + xz)− δ2(α2 − β2)(α2 − 1)(β2 − 1)/(4αβ) = 0

Q4 a0uxyz + a1(uxy + xyz + yzu+ zux) + a2(uz + xy)

+ā2(ux+ yz) + ã2(uy + xz) + a3(u+ x+ y + z) + a4 = 0

In the above list we have used the following shorthand notation for the values of
the function u : Z2 → R

u := un,m, x := un+1,m, y := un,m+1, z := un+1,m+1 ,

and α, β denote the lattice parameters assigned to the n and the m direction of
the lattice, respectively. In Adler’s equation Q4 the parameters are functions of
the lattice parameters given in terms of the Weierstrass ℘ function [1].

The study of equations H1, H30 and Q10 led to the derivation of special
type of solutions, namely similarity solutions [5], which have been shown to be
related to discrete Painlevé equations [4, 7]. Moreover, a new type of connection
among integrable discrete and continuous equations was demonstrated in [4] where
a system of partial differential equations was constructed in relation with the
discrete potential KdV equation, i.e. equation H1.

In this talk we will formulate this analysis in terms of symmetries and sym-
metry reductions, and consequently we will derive these results in a systematic
and simple manner which can be applied to any equation of the ABS classifica-
tion. In particular, the symmetries of the above equations have been studied [10]
and it has been demonstrated how they can be used effectively in the construction
of group invariant solutions [10] and continuously symmetric solutions [11]. The
former are related to solutions of discrete Painlevé equations while the latter to
solutions of the continuous Painlevé equations. Finally, relations among the solu-
tions of particular discrete and continuous Painlevé equations follow from these
considerations.

2. Symmetries of the ABS equations

All of the ABS equations

Q(un,m, un+1,m, un,m+1, un+1,m+1, α, β) = 0

admit a pair of symmetries generated by the following vector fields

V1 =

(
f(un,m, un+1,m, α)

un+1,m − un−1,m
− 1

2
∂un+1,m

f(un,m, un+1,m, α)

)
∂un,m

G1 = nV1 + ξ(α) ∂α ,
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where the symmetric and biquadratic polynomial f is determined completely
by the polynomial Q and its derivatives. Moreover, the invariance of the equa-
tion under the interchange of the lattice directions, i.e. the mutual interchange
(n,m, un+i,m+j , α, β) −→ (m,n, un+j,m+i, β, α), implies the existence of two sim-
ilar symmetries V2 and G2 in the m-direction [10].

Symmetries generated by Vi are referred to as generalized symmetries, and
they will be used in the derivation of similarity solutions. The other two symmetries
Gi are referred to as extended generalized symmetries, and the reduction of the
ABS equations under the action of both of these symmetries leads to systems of
partial differential equations, also known as generating PDEs.

3. Reduction on the lattice and discrete Painlevé equations

The solutions of an equation which remain invariant under the action of a sym-
metry of the equation are called group invariant solutions [8]. These particular
solutions of the equation satisfy, not only the equation, but certain constraints
following from their invariance.

In the case of the ABS equations which admit a generalized symmetry of the
form X = P∂un,m

:= c1V1 + c2V2, ci ∈ R, such group invariant solutions can be
derived systematically. More precisely, they are solutions of the equation which in
addition satisfy the constraint P = 0. From the symmetry analysis of the ABS
equations [10], it is known that the numerator and the denominator of the rational
function P depends linearly on un±1,m and un,m±1, which implies that the equation
P = 0 can be solved uniquely with respect to any of these values of u. Using
this observation, the system constituted from the original equation and the above
constraint leads, in general, to a fourth order dimensional map, the derivation of
which is straightforward. If the equation admits point symmetries which commute
with X, then the order of the map can be reduced further. In the case of H1 and
a specific form of X, one finds that these group invariant solutions are determined
by solutions of the asymmetric, alternate discrete Painlevé II equation [10].

4. Continuous symmetry reductions

In the same fashion, the solutions of the ABS equation, which remain invariant
under the action of the extended generalized symmetries G1 and G2, are the ones
which additionally satisfy the system of differential-difference equations

ξ(α)∂αun,m = nR(un,m, un+1,m, un−1,m, α),

ξ(β)∂βun,m = mR(un,m, un,m+1, un,m−1, β) .

From the compatible system of the discrete equation and the above two differential-
difference equations one can systematically derive a system of partial differential
equations involving only un,m, un+1,m, and un,m+1 [11].
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The continuous system corresponding to equation H1 generalizes the Ernst
equation [9] and some of its similarity solutions are determined by solutions of
Painlevé V and VI equations. From the derivation of this system follows that
solutions of the continuous Painlevé V equation can be regarded as solutions of
the asymmetric, alternate discrete Painlevé II equation [11].
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Preliminary Conference Program
June 17

Arrival day
11:00 – 17:00 Registration in Euler Institute

June 18
9:00 – 10:30 Registration, coffee
10:30 – 11:00 OPENING THE CONFERENCE

Morning session

11:00 – 12:00 Sergey Yu. Slavyanov Antiquantization of quantum models as
a tool for generating Painlevé equations

12:00 – 12:30 Coffee break

12:30 – 13:30 AlexanderD.Bruno Plane Power Geometry for single ODE and
Painlevé equations

13:30 – 15:00 Lunch

Afternoon session

15:00 – 15:30 Irina V. Goryuchkina On convergence of a formal solution to
an ODE

15:30 – 16:00 Marco Bertola Fredholm determinants and noncommutative
Painlevé II

16:00 – 16:30 AlexanderD.Bruno Space Power Geometry for an ODE and
Painlevé equations

16:30 – 17:00 Coffee break
17:00 – 17:30 Alexander Ya.Kazakov and Sergey Yu. Slavyanov Integral Euler

symmetries for confluent Heun equation and symmetries of Painlevé equation P 5

17:30 – 18:00 Kouichi Takemura Integral transformation of Heun’s equation
and some applications

18:00 WELCOME PARTY

June 19

Morning session
10:00 – 11:00 Irina V. Goryuchkina Asymptotic expansions and forms of

solutions to the sixth Painlevé equation

11:00 – 11:30 Coffee break

11:30 – 12:30 Davide Guzzetti Solving PVI by Isomonodromy Deformations
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12:30 – 13:00 Ilya Vyugin Local expansions for solutions of the Schlesinger
equation

13:00 – 13:30 Yurii V. Brezhnev The sixth Painlevé transcendent as a gener-
ator of uniformizable orbifolds

13:30 – 15:00 Lunch

Afternoon session

15:00 – 15:30 Alexander B. Batkhin and Natalia V. Batkhina Exact simple
solutions to PVI

15:30 – 16:00 Dmitrii P. Novikov A monodromy problem and some functions
connected with Painlevé VI

16:00 – 16:30 Yoshikatsu Sasaki Gauge transformation of the sixth Painlevé
equation

16:30 – 17:00 Coffee break

17:00 – 17:30 Anastasya V. Parusnikova Asymptotic expansions of solutions
to the fifth Painlevé equation

17:30 – 18:00 Alexander Ya.Kazakov and Sergey Yu. Slavyanov
Integral Euler symmetries for confluent Heun equation and symmetries of Painlevé
equation P 5

June 20
PETRODVORETS EXCURSION
BANQUETTE (with dances)

June 21

Morning session

10:00 – 11:00 Mikhail V. Babich On rational canonical parametrization of
isomonodromic deformation equations phase space

11:00 – 11:30 Coffee break

11:30 – 12:30 Philip Boalch Simply–laced isomonodromy systems
12:30 – 13:00 Yulia P. Bibilo and Renat R. Gontsov On the Malgrange

isomonodromic deformations of non-resonant meromorphic connections
13:00 – 13:30 Dmitry V. Artamonov The Schlesinger system and isomon-

odromic deformations of bundles with connections on Riemann surfaces

13:30 – 15:00 Lunch

Afternoon session

15:00 – 15:30 Vladimir Tsegel’nik Analytical Properties of Solutions to Some
Nonlinear Differential Equations and Their Systems Associated with Models of
Random-matrix Type
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15:30 – 16:00 Dmitry Korotkin and Peter Zograf From the tau function of
Painlevé VI equation to the geometry of moduli spaces

16:00 – 16:30 Vladimir G. Lysov Asymptotics of Angelesco polynomials and
double scaling limit at pushing point

16:30 – 17:00 Coffee break

17:00 – 17:30 Vladimir P. Leksin Isomonodromic deformations and Jordan-
Pochhammer systems

17:30 – 18:00 Valentina A. Goloubeva On Fuchsian reduction of differential
equations

June 22

Morning session

10:00 – 10:30 Viktor Novokshenov Tronquée solutions of the Painlevé II equa-
tion

10:30 – 11:00 Vladimir Matveev Quasi-rational solutions to the focusing NLS
equation and multiple rogue-waves generation

11:00 – 11:30 Coffee break

11:30 – 12:00 Kohei Iwaki Parametric Stokes phenomenon for the second
Painlevé equation

12:00 – 12:30 A.Kessi and Y.Adjabi Third order differential equation with
Painlevé property

12:30 – 13:00 Pantelis A. Damianou Lotka–Volterra equations in three and
four dimensions satisfying the Kowalevski-Painlevé property

13:00 – 13:30 Rustem N. Garifullin
Phase shift for some special solution Korteweg–de Vries equation

13:30 – 15:00 Lunch

Afternoon session

15:00 – 15:30 I. P. Martynov, V. A. Pronko and T. K. Andreeva Third Order
Equation with an Irrational Right-Hand Side with the Painlevé Property

15:30 – 16:00 Yousuke Ohyama Particular solutions of q-Painlevé equations
and q-hypergeometric equations

16: 00 – 16:30 Pavlos Xenitidis Reductions on the lattice and Painlevé equa-
tions

16:30 – 17:00 Coffee break

17:00 – 17:30 Alexander Tovbis and Marco Bertola Asymptotics at the gra-
dient catastrophe points and Painlevé 1 transcendents: semiclassical focusing NLS
and orthogonal polynomials cases

18:00 BOAT TOUR
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June 23

Morning session
10:00 – 11:00 Irina Astashova Asymptotic Classification of Solutions to 3rd

and 4th Order Emden–Fowler Type Differential Equations

11:00 – 11:30 Coffee break

11:30 – 12:00 Nataliya Dilna and Michal Fečkan About Parametric Weakly
Nonlinear ODE with Time-reversal Symmetries

12:00 – 12:30 Svetlana Ezhak On Dependence of the First Eigenvalue of the
Sturm – Liouville Problem with Dirichlet Boundary Conditions on Parameter of
Integral Condition

12:30 – 13:00 Vera V.Kartak Solution of the equivalence problem for the
second order ODE’s with the degenerate Cartan’s invariants

13:00 – 13:30 Elena Karulina On some estimates of the minimal eigenvalue for
the Sturm—Liouville problem with third-type boundary conditions and integral
condition

14:00 CLOSING THE CONFERENCE
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The sixth Painlevé transcendent as a generator of uniformizable orbifolds 26
AlexanderD.Bruno
Plane Power Geometry for single ODE and Painlevé equations 30
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