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Invited lectures

Complexity of solving tropical linear systems and conjecture on a tropical
effective Nullstellensatz

Dima Grigoriev
Lille, France

An algorithm for solving tropical linear systems is designed and its complexity is studied.
The classical Nullstellensatz can be treated as a reduction of solvability of a polynomial system
to solvability of a linear system with the Cayley matrix. The effective Nullstellensatz reduces
solvability to a submatrix of a bounded size. A conjecture on a tropical effective Nullstellensatz
is discussed. It holds for univariate tropical polynomials.

Current Progress in Majorana Theory
Alexander Ivanov

Imperial College London

In my lecture I will discuss the current state of the Majorana theory.
The Monster book. In April 2009 the book [A.A. Ivanov, The Monster Group and

Majorana Involutions, Cambridge Univ. Press, Cambridge 2009] has been published. This
was a result of over 20 years of research. The main original aim was to provide the first
complete construction and uniqueness proofs for the largest and most famous among the 26
sporadic simple groups, known as the Monster group. The proof was have culminated the proof
by Ivanov and Norton the so-called Y -conjecture during the Durham symposium on ‘Groups
and Geometries’ in July 1990. At that time the Y -conjecture became a theorem which John
Conway called NICE (where ‘N’ is for Norton, ‘I’ is for Ivanov, ‘C’ is for Conway and ‘E’
is for everyone else involved). The proof was the most spectacular example of the so-called
‘Geometric Presentations of Groups’. The classical version of this is precisely the Steinberg
presentations for the groups of Lie type, under this title an invited lecture at the Kyoto 1990
International Congress of mathematicians was given by A.A.Ivanov and this is the title of a
conference to be held in Birmingham this summer.

Halfway through the actual writing up of the book (October 2005–May 2008). The excep-
tional importance of the so-called Monster algebra (also known as the Conway–Griess–Norton
algebra) has been further appreciated. This came through a result of a Japanese mathemati-
cian S. Sakuma, who has classified all the subalgebras in the Monster algebra generated by
pairs of axial vectors corresponding to the 2A (also known as the Baby Monster) involutions.
There are nine isomorphism types of these subalgebras identified and studied by J. Conway
and S. Norton. The outstanding importance of Sakuma’s result was that the subalgebras were
classified under very mild assumptions involving the fusion rules of the eigenspaces of the axial
vectors. The far reaching importance of these properties brought about the need of special
name for them that is how the term ‘Majorana theory’ emerged and for the first time was
announce at the Oberwolfach conference on ‘Groups and Geometries’ in April of 2008.
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During the 2008 Oberwoffact conference the Abel prises of J. Thompson and J. Tits were
also celebrated. At the special session our prominent colleagues shares their memories of the
most exciting period of 1970’s when the finite simple group were classified and when most
spectacular sporadic simple groups. Among them there was Berns Fischer the ’father’ of the
Monster group. Right after the lecture martin Liebeck suggested to make record of Fischer’s
story and this is how the last chapter of the Monster group emerged, which is probably the
most attractive one (especially for the general mathematical readers).

Majorana representations of groups. After the Majorana setting was axioma-tised
it became clear that one should start with classifying the Majorana representations of small
groups. At such circumstances one usually starts looking at the A5’s. There are two classes of
A5-subgroups in the Monster whose involutions are of type 2A. Some preliminary estimates led
to a conjecture that the corresponding axial vectors in the Monster algebra generate 26- and
21-dimensional subalgebras, respectively. A conjecture was posed in Chapter 8 of the Monster
book that A5 possess only two Majorana representations corresponding (in a sense which has
been made explicit and rigorous) to the subalgebras of the Monster algebras. At that time this
was more like a dream and no-one could have believed that in less than two years these con-
jecture will be corrected (the second representations turned out to be just 20-dimensional) and
fully proved. The current status of the classification project of the Majoorana representations
of the small groups is the following:

(i) the representations of the dihedral group have been classified in the original paper by
S. Sakuma.

(ii) the representations of S4 are completely classified and the result os published:
[A.A. Ivanov, D.V. Pasechnik, Á. Seress, and S. Shpectorov, Majorana representations
of the symmetric group of degree 4, J. Algebra 324 (2010), 2432-2463.]

(iii) the representations of A5 are completely classified and the manuscript [A.A. Ivanov and
Á. Seress, Majorana Representations of A5] Math. Z. (submitted)

(iv) the representation of L3(2) are completely classified and the manuscript [A.A. Ivanov
and S. Shpectorov, Majorana Representations of L3(2)] Adv. Geom. (to appear)

(v) an important class of the representations of A6 and A7 has been characterized in
[A.A. Ivanov, On Majorana representations of A6 and A7] Comm. Math. Physics.

(vi) the Majorana representations of L2(11) is the research project of Sophie Docelle [second
year Ph D student at Mathematics Department, Imperial College].

(vii) the Majorana representations of L3(3) is the research project of Alonso Castillo [first
year Ph D student at Mathematics Department, Imperial College].

Certainly larger groups are under consideration including A8, which so far appeared to be
a much harder case.

Refinement of the knowledge of the Monster algebra. Simon Norton from Cambridge pos-
sesses an incredible amount of information about the Monster group and its algebra. A very
small part of this information is published (usually without any proofs and with justification
looked obscure for an outsider). The Majorana theory provides a tool to put this information
is a systematic and checkable form. The true success of this project can be seen in correction
of some information revealed by Norton. These can be illustrated by the A5-algebras: one of

2



them is 20 (rather than 21)-dimensional and the crucial relations in the other one needs certain
signs to be alternated. So to say, the Majorana theory brings us beyond Norton’s expertise of
the Monster.

Classifying subconfigurations. Besides classifying the Majorana representations of specific
groups, another promising direction in developing the Majorana theory is to study some spe-
cific configurations of the Majorana axes and identification of the subalgebras they generate.
The first such problem would be the classification of the subalgebras generated by triples of
Majorana axes containing pairs generating 2A-algebras (there are 36 such configurations in
the Monster as given by S. Norton). Michael Aschbacher is particular keen on this direction
of developing and hopefully at some stage we could have a close cooperation with him on this
project.

Identifying Codes in Graphs: a Special Class of Dominating Sets
Tero Laihonen

Department of Mathematics, University of Turku, Finland

Identifying codes were introduced by Karpovsky, Chakrabarty and Levitin in 1998, and
they can be applied, for example, to locating objects in sensor networks. Let a network be
modelled by a simple, connected and undirected graph G = (V,E) with vertex set V and
edge set E. We can place a sensor in any vertex u. A sensor is able to check its closed
neighbourhood N [u] (i.e., the adjacent vertices and itself) and report to a central controller if
it detects something wrong there (for example, like a smoke detector). The idea is to place as
few sensors as possible in such a way that we can uniquely determine where (that is, in which
vertex) the problem occurs (if any) knowing only the set of sensors which gave us the alarm.

Let us denote the subset of vertices, where we placed the sensors, by C. In order to find
the sought object (like fire in a building) in our network, we need to choose C in the following
way. Denote the set of sensors monitoring a vertex u ∈ V by I(u) = N [u]∩C. Suppose that C
satisfies the following two conditions: (i) I(u) 6= ∅ for every u ∈ V and (ii) I(u) 6= I(v) for all
u, v ∈ V , u 6= v. Hence, I(x) is the set of sensors giving the alarm if there is a problem in x, and
since I(v) is unique and nonempty for each v ∈ V , we can determine the vertex with a problem
(if there is any). Such a subset C ⊆ V satisfying the two requirements is called an identifying
code. Obviously, the set C is a dominating set of a graph if the first condition I(u) 6= ∅ is
satisfied for all vertices u. It should be noticed that not all graphs admit an identifying code.
Moreover, Slater has introduced a closely related concept of locating-dominating sets, where
the second condition is replaced by I(u) 6= I(v) where u, v ∈ V \C. In the seminal paper, the
identifying codes were generalized in two ways: 1) an r-identifying code: a sensor can check
a closed neighourhood within distance r, 2) an (r,≤ `)-identifying code, which can uniquely
locate several (up to `) objects in a network.

The original motivation for identifying codes came from finding malfunctioning processors
in a multiprocessor system. The most studied underlying graphs include, for instance, square
and triangular grids, hexagonal mesh, paths, cycles and binary hypercubes. More general
graph theoretic questions have also been investigated over the years.

In this talk, we will consider recent developments in the field. In particular, conjectures
concerning paths and cycles will be discussed, as well as optimal density of a 2-identifying code
in the infinite hexagonal mesh.
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Recognizing and isomorphism testing schurian tournaments in polynomial time
Ilya Ponomarenko

Steklov Institute of Mathematics at St.Petersburg, Russia

A tournament is a directed graph in which any two distinct vertices are joined by a unique
arc. At present the best algorithm tests the isomorphism of n-vertex tournaments in time
nO(logn), L. Babai-E. Luks (1983). It is based on the two following observations: the automor-
phism group of a tournament has odd order, and the size of odd order primitive permutation
group of degree n is at most n3.

A standard technique in the graph isomorphism problem is to consider colored graphs. A
canonical coloring of vertices and edges can be constructed by the Weisfeiler-Leman algorithm.
In fact, its output is just the coherent configuration associated with the input graph (this
configuration can be regarded as a special partition of a complete directed graph into regular
subgraphs). A typical example of a coherent configuration is obtained from a group G acting
on a set Ω: in this case the partition of Ω2 is formed by the orbits of the componentwise action
of G on Ω2. A colored graph is called schurian, if the associated coherent configuration is
obtained from a permutation group in the above way. For example, a colored tournament T is
schurian, if any color class of arcs is the orbit of the group Aut(T ) acting on the arc set of T .

In general, not every coherent configuration can be obtained from a permutation group in
the above way (if it was so, then the Weisfeiler-Leman algorithm can be used to test isomor-
phism of two graphs in a polynomial time). However, a part of permutation group theory can
be transfered to coherent configurations. In this way one can find a combinatorial analog for
an odd order permutation group. It is much more difficult to find such an analog for the above
mentioned upper bound on the size of odd order primitive permutation group. Doing this we
come to our main result which can be formulated as follows.

Theorem. Let Tn be the class of all schurian tournaments on n vertices. Then the following
problems can be solved in time nO(1):

(1) given a tournament T on n vertices, test whether T ∈ Tn,

(2) given a tournament T ∈ Tn find the group Aut(T ),

(3) given tournaments T1, T2 ∈ Tn find the set Iso(T1, T2).

Exponents of labeled digraphs and synchronizing automata
Mikhail Volkov*

Ural Federal University, Ekaterinburg, Russia

A DFA A = 〈Q,Σ〉 is called synchronizing if the action of some word w ∈ Σ∗ resets A ,
that is, leaves the automaton in one particular state no matter at which state in Q it is applied:
q · w = q′ · w for all q, q′ ∈ Q. Any such word w is said to be a reset word for the DFA. The
minimum length of reset words for A is called the reset threshold of A .

*This talk is based on a joint work of Dmitry Ananichev, Vladimir Gusev and the speaker supported by the
Russian Foundation for Basic Research, grant 10-01-00524, and by the Federal Education Agency of Russia,
grant 2.1.1/13995.
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In 1964 Černý [2] constructed for each n > 1 a synchronizing automaton Cn with n states
whose reset length is (n − 1)2. Soon after that he conjectured that these automata represent
the worst possible case, that is, every synchronizing automaton with n states can be reset by
a word of length (n− 1)2. This simply looking conjecture resists researchers’ efforts for more
than 40 years. Even though the conjecture has been confirmed for various restricted classes of
synchronizing automata, no upper bound of magnitude O(n2) for the reset threshold of n-state
synchronizing automata is known in general. The best upper bound achieved so far is n3−n

6
,

see [6].
One of the difficulties that one encounters when approaching the Černý conjecture is that

there are only very few extreme automata, that is, n-state synchronizing automata with reset
threshold (n − 1)2. In fact, the Černý series Cn is the only known infinite series of extreme
automata. Besides that, only a few isolated examples of such automata have been found.
Moreover, even slowly synchronizing automata, that is, automata with reset length close to
the Černý bound are very rare. This empirical observation is supported also by probabilistic
arguments. For instance, the probability that a composition of 2n random self-maps of a set
of size n is a constant map tends to 1 as n goes to infinity [5]. In terms of automata, this
result means that the reset threshold of a random automaton with n states and at least 2n
input letters does not exceed 2n. For further results of the same flavor see [7, 8]. Thus, there
is no hope to find new examples of slowly synchronizing automata by a lucky chance or via a
random sampling experiment.

We therefore have designed and performed a set of exhaustive search experiments. A brief
description of our experiments and some theoretical analysis of their outcome are presented
in [1]. One of the main observations reported in [1] was a remarkable similarity between the
distribution of reset thresholds of synchronizing automata and the distribution of exponents
of primitive digraphs. In particular, we were able to deduce in a uniform way several series of
slowly synchronizing automata, both new and already known ones, from some classical series
of primitive digraphs with large exponents from [3, 9].

Despite this initial success, it turns out that the notion of exponent is too weak to be
useful for isolating synchronizing automata with maximal reset threshold in some important
classes, e.g. in the class of Eulerian automata. The reason for this is that we discard too
much information when passing from synchronizability to primitivity—we forget anything but
length about paths labeled by reset words. Thus, we have tried another approach in which
more information is preserved, namely, the Parikh vectors of the paths are taken into account.
Let A = 〈Q,Σ〉 be a DFA with |Σ| = k and fix some ordering of the letters in Σ. We define a
subset E1(A ) of Nk

0 as follows: a vector v ∈ Nk
0 belongs to E1(A ) if and only if there is state

r ∈ Q such that for every p ∈ Q, there exists a path from p to r such that v is the Parikh vector
of the path’s label. If the set E1(A ) is non-empty, then the automaton A is called 1-primitive.
The minimum value of the sum i1 + i2 + · · ·+ ik over all k-tuples (i1, i2, . . . , ik) from E1(A ) is
called the 1-exponent of A and denoted by exp1(A ). Clearly, every synchronizing automaton
A is 1-primitive and exp1(A ) serves as a lower bound for the reset threshold of A . One can
find some applications of this lower bound in [4].

Here we suggest a further generalization. Let A = 〈Q,Σ〉 be a DFA with Q = {1, 2, . . . , n}
and let k be a non-negative integer. We say that the automaton A is k-primitive if there
exist words u1, u2, . . . , un such that 1 · u1 = 2 · u2 = · · · = n · un and every word of length
at most k occurs as a factor in each of u1, u2, . . . , un the same number of times. Note that
the last condition implies that the words u1, u2, . . . , un have the same length. The minimal
length of words that witness k-primitivity of A is called the k-exponent of A and is denoted
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by expk(A ).
Consider now an arbitrary synchronizing automaton A . It is clear that A is k-primitive

for every k and expk(A ) serves as a lower bound for the reset threshold of A . Thus, we have
the following non-decreasing sequence:

exp1(A ) ≤ · · · ≤ expk(A ) ≤ expk+1(A ) ≤ . . . . (1)

At every next step we require that words u1, u2, . . . , un get more similar to each other than
they were in previous step. Thus, sooner or later these words “converge” to a reset word and
the sequence stabilizes at the reset threshold of A . Our hope is that studying the sequence (1)
may shed new light on the Černý conjecture.
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IP-sets defined by words of low complexity
Luca Q. Zamboni

Institut Camille Jordan, Université Lyon 1
Department of Mathematics, FUNDIM, University of Turku

Let N = {0, 1, 2, 3, . . .} denote the set of natural numbers, and Fin(N) the set of all
non-empty finite subsets of N. A subset A of N is called an IP-set if A contains {

∑
n∈F xn|F ∈

Fin(N)} for some infinite sequence x0 < x1 < x2 · · · of natural numbers. An IP-set A ⊆ N is
called an IP∗-set if its complement Ac is not an IP-set. In this talk we show how certain fami-
lies of aperiodic words of low subword complexity can be used to generate a wide assortment
of IP-sets or IP∗-sets having additional nice properties inherited from the rich combinatorial
structure of the underlying word. For example, we will show that in the Fibonacci word W
(fixed by the morphism 0 7→ 01, 1 7→ 0) the position of 0s in W is an IP∗-set. In contrast, in
the infinite word 0W, both the position of the 0s and the positions of the 1s are IP-sets, and
hence neither set is IP∗. While we focus primarily on Sturmian and episturmian words, we also
consider a broad class of words generated by substitution rules. For instance, by considering
partitions of N defined by words generated by a generalization of the Thue-Morse substitution
to an alphabet of size r ≥ 2, we show that

Theorem 1. For each pair of positive integers r and N there exists a partition of

N = A1 ∪ A2 ∪ · · · ∪ Ar

such that

• Ai − n is an IP-set for each 1 ≤ i ≤ r and 1 ≤ n ≤ N.

• For each n > N, exactly one of the sets {A1 − n,A2 − n, . . . , Ar − n} is an IP-set.

By considering partitions defined by words generating minimal subshifts which are topologically
weak mixing (for example the subshift generated by the substitution 0 7→ 001 and 1 7→ 11001)
we prove that

Theorem 2. For each positive integer r there exists a partition of N = A1∪A2∪ · · · ∪Ar such
that for each 1 ≤ i ≤ r and n ≥ 0, the set Ai − n is an IP-set.

Finally, by considering infinite words on infinite alphabets generated by iterated palindromic
closure, we construct infinite partitions of N such that each element of the partition is an
IP-set:

Theorem 3. There exists an infinite partition

N =
∞⋃
i=1

Ai

such that each of the sets Ai is an IP-set.

Our methods simultaneously exploit the general theory of combinatorics on words, the
arithmetic properties of numeration systems defined by substitutions, various notions arising in
topological dynamics including proximality and equicontinuity, the spectral theory of symbolic
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dynamical systems, and the beautiful and elegant theory, developed primarily by N. Hindman
and D. Strauss linking IP-sets to the algebraic/topological properties of the Stone-Čech com-
pactification of N. Using the key notion of p-limn, regarded as a mapping from words to words,
we are able to apply ideas from combinatorics on words in the framework of ultrafilters. Time
permitting, we will discuss a connection between IP-sets and the strong coincidence condition
for primitive irreducible substitutions of Pisot type. This talk is based on joint work with M.
Bucci and S. Puzynina both from the University of Turku.
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Contributed talks

Chromatic uniqueness of elements of height ≤3 in lattices of complete
multipartite graphs

Vitaly A. Baransky, Tatiana A. Senchonok
Ural State University, Ekaterinburg

Let G be arbitrary graph. Given a positive integer t, a t-coloring of G is a mapping φ from
the set of vertices V into the set {1, 2, . . . , t} such that φ(u) 6= φ(v) if u and v are adjacent
in G. The chromatic number χ of a graph G is the smallest value of t possible to obtain a
t-coloring.

For a natural number x, denote by P (G, x) the number of all possible colorings of the graph
G into x given colors. It is well known (see [1]) that the function P (G, x) is a polynomial of
degree n in the variable x. This polynomial is called the chromatic polynomial of the graph G.
Two graphs are called chromatically equivalent, or χ-equivalent, if they have equal chromatic
polynomials.

A graph G is called chromatically unique, or χ-unique, if it is isomorphic to any graph
chromatically equivalent to it. This notion was introduced in [2]. Numerous investigations
have been carried out by different authors, in which chromatic equivalence and chromatic
uniqueness of graphs have been studied. Much attention was paid to studying the chromatic
uniqueness of complete multipartite graphs.

A t-partite graph is a graph whose graph vertices can be partitioned into t disjoint
sets so that no two vertices within the same set adjacent. A complete t-partite graph is a
t-partite graph such that every pair of graph vertices in the t-sets are adjacent. We denote
by K(n1, . . . , nt) the complete n-vertices t-partite graph with partite sets of size n1, . . . , nt.
Koh and Teo [3] proved that a complete bipartite graph K(n1, n2) is chromatically unique for
n1 ≥ n2 ≥ 2. Li N.Z. and Liu R.Y. [4] proved that a graph K(1, n2, . . . , nt) is χ-unique if and
only if max{n2, . . . , nt} ≤ 2.

The main problem here is the following: is any complete multipartite graph
K(n1, n2, . . . , nt) chromatically unique for t ≥ 3 and n1 ≥ n2 ≥ . . . ≥ nt ≥ 2?

A partition of a positive integer n is a nonincreasing sequence on nonnegative integers
u = (u1, u2, . . .) such that n = Σ∞i=1ui. It is clear that u contains only a finite number l = l(u)
of nonempty components. The number l is called the length of a partitionn u. Denote by
NPL(n, t) the set of all partitions of a positive integer n of length t. In [5] introduce the
relation ≥ on the set NPL(n, t) by setting u = (u1, u2, . . . , ut) ≥ (v1, v2, . . . , vt) = v for any
u, v ∈ NPL(n, t) if u1 + u2 + . . . + ui ≥ v1 + v2 + . . . + vi for any i = 1, 2, . . . , t. It is proved
that NPL(n, t) is a lattice with respect to ≥. It is clear that there exists, up to isomorphism,
a bijection between complete n-vertex t-partite graphs and elements of the lattice NPL(n, t).
Therefore, the order ≤ on NPL(n, t) induces the corresponding order on the set of such graphs.
We can identify a complete multipartite n-graph with the corresponding partition of n.

Chao and Novacky Jr. [6] showed that complete t-partite n-graphs of the form K(q +
1, . . . , q+1, q, . . . , q) are chromatically unique. In the over words, complete multipartite graphs
that a minimal elements in lattices NPL(n, t) are chromatically unique. Baransky and Korol-
eva [7] proved that atoms in lattices NPL(n, t) are chromatically unique too.
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The main our result is the following theorem.

Theorem. Let integers n, t, and h be such that 0 < t < n and h ≤ 3. Then, any complete
t-partite graph with nontrivial parts that has height h in the lattice NPL(n, t) is chromatically
unique.

Assume that each graph is assigned a number according to some rule. This number is called
a chromatic invariant if it is the same for any two chromatically equivalent graphs.

For proving Theorem we have used invariant I2(G) — the number of edges of the graph
G, invariant I3(G) — the number of triangles in a graph G and invariant pt(G,χ + 1) — the
number of partitions of the set of vertices of the graph G into χ+1 nonempty subsets consisting
of pairwise nonadjacent vertices.
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Some Methods Related to the Černý Conjecture
Mikhail Berlinkov

Ural Federal University, Ekaterinburg, Russia

We consider basic methods related to the Černý conjecture and related open questions.
Suppose A is a complete deterministic finite automaton whose input alphabet is Σ and

whose state set is Q. The automaton A is called synchronizing if there exists a word w ∈ Σ∗

whose action resets A , that is, w leaves the automaton in one particular state no matter at
which state in Q it is applied: q.w = q′.w for all q, q′ ∈ Q. Any such word w is called reset for
the automaton. Below by n we denote the number of states in Q.
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In 1964 Černý introduced the notion of synchronizing automata and proved a simple syn-
chronization criterion which can be checked in a quadratic time. Thus the main point here is
the minimum length of reset words which we refer to as reset length. Černý also constructed for
each n > 1 an n-state synchronizing automaton whose reset length equals (n− 1)2. Soon after
that he conjectured that those automata represent the worst possible case, thus formulating
the following hypothesis:

Conjecture 1 (Černý). Each n-state synchronizing automaton has a reset word of length at
most (n− 1)2.

By now this simply looking conjecture is arguably the most longstanding open problem in
the combinatorial theory of finite automata. The best upper bound known so far is due to
Pin [10]: the reset length for each n-state synchronizing automaton is at most n3−n

6
. Thus the

main open problem in this theory is to prove quadratic (in n) upper bounds on reset length
and to find some more precise bounds for important special classes. There are several partial
results in this direction. A majority of these results has been proved by using either merge
(top-down) or extension (bottom-up) methods. Each of these methods constructs a finite
sequence of words V = (v1, v2, . . . , vm) such that the concatenation v1v2 · · · vm of the words in
the sequence is a reset word for A .

In methods of the merge type, the words in the sequence V subsequently merge the set Q
to some state p, i.e.

|Q| > |Q.v1| > |Q.v1v2| > · · · > |Q.v1v2 · · · vm| = |{p}|.

In methods of the extension type, the words in V subsequently extend some state p to the set
Q, i.e.

|{p}| < |p.v−1m | < |p.v−1m v−1m−1| < · · · < |p.v−1m v−1m−1 · · · v−11 | = |Q|.

Merge Methods. A merge method was used to reduce general case to the case of strongly
connected automata [8] and to prove the aforementioned upper bound n3−n

6
. Some merge

methods were also used to prove the Černý conjecture for a few special classes of automata.
Let us consider one of them given in [12]. It gives a quadratic upper bound n(n−1)

2
for aperiodic

automata, that is automata without non-trivial cycles induced by some word v. The underlying
idea of the proof is to consider the transitive closure ρ(A ) of a relation on the states induced
by minimal strongly connected component of the square automaton. One can show that the
relation ρ(A ) is always stable under the action of the words and it becomes a non-trivial partial
order for strongly connected aperiodic automata. It allows one to achieve an upper bound of
order n2/6 + o(n2) for the strongly connected case and thus yields an upper bound n(n− 1)/2
for the general case of aperiodic automata. However, no matching lower bound is known, and
the best lower bound for reset length of aperiodic automata known so far is of order Θ(1.5n)
(see [1]). Our contribution here is that we could reduce the general case of aperiodic automata
to the case of aperiodic automata with zero and also we could slightly improve the upper bound
in this case to e

4(e−1)n
2 + o(n2) (unpublished). Thus if one will prove a (linear) upper bound

for this case it would imply the same upper bound for all aperiodic automata.
Extension Methods. Extension methods have become popular over the last 15 years and

brought a number of impressive achievements. For instance, by using approaches of this sort
the Černý conjecture has been proved for circular automata [7] and Eulerian automata [9].
Some quadratic upper bounds were also proved for regular automata [11] and for strongly
transitive automata [4, 5]. This line of research has led to a number of natural conjectures
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whose validity in the general case would imply the validity of the Černý conjecture or at least
some quadratic upper bounds for reset length. In [3] we refuted several conjectures of this kind
and suggested some modifications for them. One of these modifications was used to prove a
quadratic upper bound for one-cluster automata [2].
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Abstract

We define natural decompositions of Sturmian words in Christoffel words, called re-
versible Christoffel (RC) factorizations. They arise from the sequence of Abelian equiva-
lent prefixes of two Sturmian words with the same language. Our main result shows that
each RC factorization has 2 or 3 distinct Christoffel words as its terms.

1 Introduction

In combinatorics on words and symbolic dynamics, it is often meaningful to locate the segments
where two infinite words w,w′ coincide, i.e., find maximal occurrences of factors u such that
w = pus, w′ = p′us′ for some p, p′, s, s′ with |p| = |p′|.

If w and w′ are two fixed points of an irreducible Pisot substitution, the strong coincidence
conjecture (proved in [2] in the binary case) implies that w and w′ agree on arbitrarily long
segments (they are proximal); moreover, w and w′ have arbitrarily long prefixes which are
Abelian equivalent, i.e., an “anagram” of each other. In general, we say that two infinite words
w,w′ satisfying this last condition are Abelian comparable. This induces two factorizations
(comparison)

w = x1x2 · · ·xn · · · ,
w′ = x′1x

′
2 · · ·x′n · · ·

(2)

defined so that each pair of Abelian equivalent prefixes of w and w′ can be written as
(x1 · · ·xk, x′1 · · ·x′k) for some k ≥ 0.

In this work we look at Sturmian words over A = {0, 1} from a similar point of view. Recall
that an infinite word over A is Sturmian if it has exactly n+ 1 distinct factors of each length
n ≥ 0. The language (of factors) of a Sturmian word is determined by its slope (frequency of
the letter 1). As is well known, a Sturmian word of slope α encodes rotations by angle 2πα on
a circle. For each irrational slope α ∈ ]0, 1[, there is a single characteristic Sturmian word c,
such that p ∈ Pref(c) if and only if 0p, 1p ∈ Fact(c). Among aperiodic binary words, Sturmian
words are characterized by the balance property: the number of occurrences of the letter 1 in
two factors of the same length may differ at most by 1.

If 0u1 and 1u0 are both factors of a Sturmian word, then u is necessarily a palindrome, and
0u1 (resp. 1u0) is called a lower (resp. upper) Christoffel word ; 0 and 1 are also considered to
be Christoffel words, both lower and upper. For more general information on Sturmian and
Christoffel words, we refer the reader to [3, 4].

Trivially, if two Sturmian words w,w′ are Abelian comparable then they have the same
slope, and hence the same language. By the balance property, the converse also holds, the only
exceptions arising when {w,w′} = {0c, 1c}, where c is characteristic.
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Our main result (Theorem 1) shows that in all other cases, each of the factorizations in (2)
has at most 3 distinct terms; furthermore, all such terms are Christoffel words. This implies
a result previously proved in [5]: if w and w′ do not eventually coincide (i.e., if there are no
words p, p′ such that |p| = |p′|, w = pc, and w′ = p′c for some characteristic c), then they
cannot be proximal.

2 Reversible Christoffel factorizations

Let w,w′ be two Sturmian words having the same language, and suppose {w,w′} 6= {0c, 1c}
so that w and w′ are then Abelian comparable; let (2) be their comparison.

For all i ≥ 1, xi and x′i are Abelian equivalent. By the balance property, it follows either
xi = x′i ∈ A, or {xi, x′i} = {0u1, 1u0} for some factor u of w. Hence in all cases, xi and x′i are
Christoffel words, with x′i = x̃i. Thus we can write:

w = x1x2 · · ·xn · · · ,
w′ = x̃1x̃2 · · · x̃n · · · .

(3)

Conversely, if (xn)n>0 is a sequence of Christoffel words such that both infinite words in (3)
are Sturmian, then comparing w and w′ yields exactly the same factorizations.

This motivates the following definition: we call reversible Christoffel (RC) factorization of
a Sturmian word w any sequence (xk)k>0 of Christoffel words such that

1. w = x1x2 · · ·xn · · · , and

2. w′ := x̃1x̃2 · · · x̃n · · · is a Sturmian word.

A trivial RC factorization is obtained by choosing all xk’s to be single letters, so that
w′ = w. The definition implies that every choice of w′ determines a distinct factorization of w,
so that each Sturmian word admits uncountably many distinct RC factorizations. Using the
balance property, it is also easy to prove that the terms of an RC factorization are either all
lower Christoffel words, or all upper.

Let us now state our main theorem.

Theorem 1. Let w be a Sturmian word, and w = x1x2 · · ·xn · · · be an RC factorization of w.
The cardinality of the set X = {xn | n > 0} is either 2 or 3, and in the latter case, the longest
element of X is obtained concatenating the other two.

The proof relies on the following well known result [6], deeply related to the three distance
theorem proved in [7] (see also [1]):

Theorem 2 (Three gap theorem). Let α be an irrational number in ]0, 1[ and let β ∈]0, 1/2[.
The gaps between the successive integers j such that αj − bαjc < β take either two or three
values, one being the sum of the other two.

Theorem 1 allows to consider RC factorizations as infinite words on the finite alphabet X.
We conclude this note with two preliminary results on the structure of such words.

Proposition 3. Let w = x1x2 · · · and X be defined as in Theorem 1. If X = {u, v, z} with
z = uv, then substituting each occurrence of z in the chosen RC factorization with u·v produces
a new RC factorization of w, which is also a Sturmian word on the alphabet {u, v}.
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Recall that if u, v are Christoffel words such that uv is Christoffel too and a factor of a
Sturmian word w, then exactly one among u2v and uv2 is a factor of w. This gives rise to the
following “converse” of Proposition 3:

Proposition 4. Under the hypotheses of Proposition 3, if u2v ∈ Fact(w) and x1 6= v
(resp. uv2 ∈ Fact(w) and x1 6= u), then each occurrence of v (resp. u) in the factorization
is immediately preceded and followed by u (resp. v); replacing each occurrence of u · v with one
of z produces a new RC factorization, which is also a Sturmian word over {u, z} (resp. {v, z}).
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[1] P. Alessandri and V. Berthé. Three distance theorems and combinatorics on words. Enseign.
Math. (2), 44:103–132, 1998.

[2] M. Barge and B. Diamond. Coincidence for substitutions of Pisot type. Bull. Soc. Math.
France, 130:619–626, 2002.
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Using Relevance Queries for Identification of Read-Once Functions
Dmitry V. Chistikov

Faculty of Computational Mathematics and Cybernetics, Moscow State University, Russia

A Boolean function is called read-once if it can be expressed by a formula over {∧,∨,¬}
where no variable appears more than once. The problem of identifying an unknown read-once
function f depending on a known set of variables x1, . . . , xn by making queries is considered.
Algorithms are allowed to perform standard membership queries (MQ), which reveal the value
of f on a given input vector, and queries of two special types.

These latter queries answer the following questions about projections of the target function
f : given a projection fp induced by a partial assignment of variables p,

(RQ) is a variable xi relevant to fp?
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(ARQ) how many relevant variables does fp have?

Queries of the first type (denoted RQ for relevance queries) take arguments p and xi, and
queries of the second type (denoted ARQ for aggregated relevance queries), take only one
argument p. As usual, a variable xi is called relevant to a function f if there exist two input
vectors α and β disagreeing only on xi (in ith position) such that f(α) 6= f(β).

Our main results are as follows. We develop two algorithms (one for each type of relevance
queries) running in polynomial time and identifying an unknown n-variable read-once function.
These algorithms can be expressed by deterministic decision trees. The first algorithm makes
O(n2) membership and relevance queries (RQ), and the second algorithm makes O(n log2 n)
membership and aggregated relevance queries (ARQ).

Since the logarithm of the number of read-once functions of variables x1, . . . , xn is Θ(n log n)
(see, e. g., [1]), this expression gives a lower bound on the number of bits returned as answers to
algorithms’ queries in the worst case. Therefore, information-theoretic lower bounds for exact
identification complexity (number of queries performed in the worst case) are Ω(n log n) (for
MQ and RQ) and Ω(n) (for MQ and ARQ), so the second algorithm is suboptimal only by a
factor of O(log2 n). If we count the number of bits received from oracles instead of the total
number of queries, the second algorithm achieves O(n log3 n) and the lower bound is Ω(n log n).

The notion of relevance plays a major role in the study of read-once functions. In 1963,
Subbotovskaya proved a criterion for determining whether a function is read-once, which in-
volved the concepts of relevant and irrelevant variables [2]. In the context of learning, if the
set of all relevant variables is known in advance, the problem of distinguishing an individual
read-once function from all other read-once functions can be solved by checking its value on a
polynomial number of input vectors [3]. If, however, this information is not available a priori,
then the complexity of the problem is exponential: to distinguish f(x1, . . . , xn) ≡ 0 from all
read-once conjunctions of literals, all 2n input vectors must be tested.

For exact identification problems, similar results are known. Suppose that, in addition to
standard membership queries, algorithms are allowed to ask whether a given projection has
at least one irrelevant variable. The problem of exact identification with these queries can be
solved polynomially if and only if the set of relevant variables is known a priori [4, 5].

Acknowledgements. This research was supported by Russian Foundation for Basic Re-
search, project number 09-01-00817, and by Russian Presidential grant MD–757.2011.9.
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On complexity of quadratic permutations
Anna E. Frid

Sobolev Institute, Novosibirsk

We say that two sequences a = {ai}i∈N and b = {bi}i∈N of pairwise distinct reals are
equivalent if ai < aj if and only if bi < bj for all i, j. An equivalence class of such sequences
is called an infinite permutation and denoted by α = a = b [6]. An infinite permutation can
be considered as a combinatorial object somehow analogous to an infinite word: for example,

a factor of length n of a permutation is a (finite) permutation {ai}i0+n−1i=i0
. We can consider

complexity of permutations (defined as the number of distinct factors of a given length) and
its variations [6, 2, 8, 9, 11, 12, 13], as well as other combinatorial properties [10, 7].

In this study we consider permutations defined by the sequences of fractional parts
{{n2α}∞n=0} for some irrational α. Unlike the complexity of words defined by means of such
quadratic sequences of reals [3, 1], the complexity of such permutations grows as O(n4) not
O(n3). The precise formulas involve sums of the Euler’s totient function and are obtained by
a geometric method similar to that for words [1, 4, 5, 3].
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Dynamical systems generating the extremal representations in a negative base
Tomáš Hejda, Zuzana Masáková, Edita Pelantová

Doppler Institute for Mathematical Physics and Applied Mathematics,
Department of Mathematics, FNSPE, Czech Technical University in Prague

A positional number system is given by a real base β with |β| > 1 and by a finite set alphabet
A ⊂ R. A sequence {xi}i6k with xi ∈ A is a β-representation of x ∈ R if x =

∑
i6k xiβ

i. For
any x to have a β-representation the cardinality of the alphabet must satisfy #A > |β|.

It is well known that if the base β is a positive integer and the alphabet A = {0, 1, 2, . . . , β−
1} then any positive real x has a β-representation and almost all positive reals (up to a
countable number of exceptions) have unique representation. For example, in the decimal
numeration system

1
2

= 0.5000000 . . . = 0.4999999 . . . , whereas 1
3

= 0.333333 . . .

If the base β is not an integer and the alphabet A is rich enough to represent all positive reals,
then almost all x > 0 have infinitely many representations and one can choose among them
“the nicest” one from some point of view.1

The study of greedy representations for non-integer bases β > 1 was initialized by Rényi in
1957, his representations are lexicographically largest (“greedy”) in his alphabet. An interest
in lexicographically smallest (“lazy”) representations for bases β ∈ (1, 2) with Rényi alphabet
{0, 1} started in 1990 by the work of Erdős, Joó and Komornik. The systematic study of lazy
representation for all bases β > 1 can be found in the work of Dajani and Kraaikamp from
2002.

Recently, in 2009, Ito and Sadahiro introduced numeration system with a negative base
−β < −1 with the alphabet A = {0, 1, 2, . . . , bβc}. They gave an algorithm for computing
a (−β)-representation of x ∈

[ −β
1+β

, 1
1+β

)
and showed that the natural order on R correspond

to the alternate order on such (−β)-representations. Using a negative base, we can represent
positive and negative numbers without an additional bit for the signum ±.

In this article, we focus on the base β = −φ, where φ = 1+
√
5

2
is the golden mean. We

compare several algorithms for obtaining (−φ) representations, all of which can be seen as
dynamical systems on some finite sub-intervals of R. We show that the Ito-Sadahiro algorithm
produces neither minimal nor maximal (−β)-representation with respect to the alternate order
and we give algorithms for determination of these extremal strings. Dajani and Kalle shown in
2010 that there exist no transformation generating the extremal representations; our algorithm
regularly switches two transformations—one for the even positions and one for the odd ones.
We also show that both extremal representations and even the Ito-Sadahiro representation can
be obtained using the positive base φ2 and an exotic non-integer alphabet B = −A+ φA.

1Note that although most people prefer writing 1
2 = 0.5, the shopkeepers consider the representation

0.4999 . . . nicer than 0.5000 . . . for x = 1
2 .
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On an optimal randomized acceptor for graph nonisomorphism*

Edward A. Hirsch, Dmitry Itsykson
Steklov Institute of Mathematics at St.Petersburg, Russia

While most complexity theorists believe in the P 6= NP conjecture, the existence of the
fastest algorithm for any problem in NP \ P is an intriguing open question. Here by “the
fastest” we mean the minimum possible running time (compared to other algorithms) for every
possible input, up to a polynomial; such algorithm is called optimal. Many years ago Levin
presented an optimal algorithm [Lev73] for NP search problems, but it does not translate to
decision problems, which can be possibly solved more efficiently for some inputs.

Solving a decision problem L can be “split” into two complementary tasks: to give the
answer “yes” on the positive instances (x ∈ L) and diverge (do not stop) on the negative ones
(x /∈ L), and to give the answer “no” on the negative instances and diverge on the positive
ones. The running time matters on those instances where the algorithm stops. A semi-decision
procedure that performs the first task as fast as any other such procedure is called an optimal
acceptor for L. Optimal acceptors were introduced in [KP89] and studied in connection to
p-optimal proof systems (see, e.g., a survey [Hir10]).

To the date, no optimal acceptors are known for languages in (co -NP ∪ NP) \ P. The
same applies to randomized acceptors in (co -NP∪NP) \BPP, i.e., the procedures that can
have either one- or two-sided bounded probability of error. The only optimal acceptors for
co -NP-languages are heuristic randomized acceptors, i.e., acceptors with unbounded proba-
bility of error for a small fraction of the inputs [HIMS10].

Graph (non)isomorphism and optimality up to permutations of vertices. The prob-
lem of graph isomorphism is a natural thoroughly studied problem in NP. While there is a
fast algorithm for it working for almost all instances according to the “uniform” distribution
[BK79], the problem is not known to be in BPP and it is still possible that there are probability
distributions that make it hard on the average.

We study acceptors for graph nonisomorphism, i.e., algorithms that give (presumably fast)
answer for nonisomorphic graphs and do not stop on isomorphic ones (the latter can be, of
course, compensated by running a brute-force search algorithm in parallel). Most algorithms
for graph (non)isomorphism are invariant-based: that is, they compute functions (invariants)
that have the same value for isomorphic graphs and different values for nonisomorphic ones.
For nonisomorphic input graphs G1 and G2, it usually matters what are their classes under
permutations of their vertices and not which members of the classes are chosen (i.e., changing
the order of vertices in G1 hardly helps such an algorithm). This gives a motivation to the
following relaxed notion of the optimality. For the pair of graphs (G1, G2), call its cluster the
set of pairs (π1(G1), π2(G2)) for all possible pairs of permutations (π1, π2) of their vertices. An
acceptor A is called optimal up to permutations if for every algorithm B and every instance
(G1, G2), the algorithm A runs in time polynomial in the size of the input and the maximum
possible running time of the algorithm B on the cluster of (G1, G2).

We construct a randomized acceptor that is optimal up to permutations. Namely, we con-
struct an algorithm that is always correct on nonisomorphic graphs, has a bounded probability

*Supported in part by Federal Target Programme “Scientific and scientific-pedagogical personnel of the
innovative Russia” 2009-2013, by the grants NSh-5282.2010.1 and MK-4089.2010.1 from the President of RF,
by the Programme of Fundamental Research of RAS, and by RFBR grant 11-01-12135-офи-м-2011. The second
author is also supported by Rokhlin Fellowship.
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of error on isomorphic graphs, and has the best possible median running time on every cluster.
Moreover, our acceptor remains optimal if we strengthen the maximum running time on the
cluster to the median running time on the cluster or even replace it by the order statistics
min{t | Pr[running time ≤ t] ≥ p} for a constant p. This permits to reformulate the result in
terms of the average-case complexity.

Average-case optimality. The basic notions of the average-case complexity were formu-
lated by Levin [Lev73]. For a probability distribution D on the inputs, an algorithm is called
average-case polynomial-time if there exists k such that the expectation of the k-th root of the
running time is at most linear.

We introduce the notion of an average-case optimal algorithm: this is an algorithm that
is as fast on average as any other algorithm for the same problem. The formal definition
mimics Levin’s definition of an average-case polynomial-time algorithm; in particular, if a
problem can be solved in an average-case polynomial time, then the average-case optimal
algorithm is an average-case polynomial one. Note that this notion lies in between of the
conventional (pointwise) optimality and the worst-case optimality (an algorithm is worst-case
optimal if it is polynomial-time if a polynomial-time algorithm for the same problem exists).
For graph nonisomorphism, our optimality under permutations is a particular case of the
average-case optimality for every distribution D that is stable under permutations of ver-
tices (i.e., D((G1, G2)) = D((π1(G1), π2(G2))) for every pair of nonisomorphic graphs (G1, G2)
and permutations of their vertices (π1, π2)). Therefore, the acceptor that we constructed is
average-case optimal with respect to every such distribution.
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On an optimal randomized acceptor for graph nonisomorphism*†
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Steklov Institute of Mathematics at St.Petersburg, Russian Academy of Sciences

Valeria Nikolaenko
St.Petersburg Academic University, Russian Academy of Sciences

Alexander Smal
Steklov Institute of Mathematics at St.Petersburg, Russian Academy of Sciences

When we face a computational problem that is not known to be solved in a reasonable (say,
polynomial) amount of time, we are still interested to solve it as fast as possible. The existence
of an optimal algorithm that for every possible input returns its answer at least as fast (up to
a polynomial) as any other algorithm for the same problem does, is an important structural
feature of the problem and the model of computation (deterministic algorithms, bounded-error
randomized algorithms, etc.).

While Levin’s optimal algorithm for NP search problems is known for decades [5], it does
not give an optimal algorithm for any decision problem, because, while for NP-complete prob-
lems the worst-case complexity of search and decision are polynomially related, a decision
algorithm still can be exponentially faster for some inputs. Also Levin’s algorithm does not
stop at all on the negative instances. For many interesting languages including the language
of Boolean tautologies TAUT, the existence of an algorithm that is optimal on the positive
instances only (such algorithm is called an optimal acceptor) is equivalent to the existence of
a p-optimal proof system (that is, a proof system that has the shortest possible proofs, and
these proofs can be constructed by a polynomial-time algorithm given proofs in any other proof
system) [4, 7, 6] (see [2] for survey).

Optimal heuristic randomized acceptors An obvious obstacle to constructing an optimal
algorithm by enumeration is that no efficient procedure is known for enumerating the set of
all correct algorithms for, say, TAUT or SAT. A possible workaround is to check the correctness
for a particular input; however, even for SAT, a search-to-decision reduction maps the input
instance to a different instance and thus potentially increases the complexity.

The correctness can be, however, checked in the heuristic setting. A heuristic algorithm for
a language L and probability distribution D on the inputs is allowed to make errors for some

*The full version of the paper is available as ECCC technical report TR11-091.
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inputs; the probability of error according to D must be kept below 1
d
, where d is an integer

parameter given to the algorithm. In [3] an optimal heuristic randomized acceptor for every
r.e. language L and every polynomial-time samplable D concentrated on L is constructed. In
other words, this is an algorithm that accepts (with bounded probability of error) every x ∈ L
in the fastest possible way, and accepts x /∈ L for inputs of total D-probability at most 1

d
.

Our results: derandomization and optimal heuristic algorithms We consider the
decision problem for the image of an injective function (under the uniform distribution) that
maps n-bit strings to (n+1)-bit strings. Its study is motivated, for example, by the fact that a
particular case of this problem is the problem of recognizing the image of an injective pseudo-
random generator, which has no polynomial-time heuristic randomized algorithm [3, Theorem
5.2]. It is well known that injective pseudorandom generators exist if one-way permutations
exist.

For this problem, we extend the previous results in two directions. First, we devise an
optimal algorithm, while [3] gave a construction of an optimal acceptor. In [3], the correctness
test was performed by repeated sampling inputs in L and running a candidate acceptor on
them. In our case L is the image of an injective function and we can still sample it. However,
we still do not have a samplable distribution on L, i.e., on the complement to the image. The
check is then done by testing the algorithm on a random input from {0, 1}n and computing its
overall probability of acceptance.

Our second result is a derandomization of this construction, namely, a deterministic algo-
rithm that is optimal on the average. To do this, we use an expander-based construction of
Goldreich and Wigderson [1] of small families of functions with good mixing properties, and
also use the input as a source of pseudorandomness. It also derandomizes the construction of
[3] of optimal acceptors if we consider it for the same class of problems (i.e., recognizing the
complement of the image of an injective function).
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A Method for Computing the Characteristic Polynomial and Determining
Semidefiniteness

Mika Hirvensalo
Department of Mathematics, University of Turku

In this note we point out that to determine whether a given self-adjoint matrix A is pos-
itive semidefinite is equivalent to determining whether the characteristic polynomial of A is
alternating, and present an algorithm for computing the characteristic polynomial.

The algorithm is essentially division-free, and hence it can be also used to compute the
determinant for n × n matrices over a great variety of commutative rings. Together with
multiplications and additions, the method requires only one Z-module division to compute the
determinant.

The correctness of the presented method is based on formula analogous to those of
Newton-Girard, but the efficiency is due to the dynamic programming method presented in
this note.

Minimal uncompletable words
Sandrine Julia

Université de Nice - Sophia Antipolis

Abstract

Given a rational set X, we investigate the set of uncompletable words in X∗. These
words cannot appear as factor of any word in X∗. Some of them are called minimal
uncompletable as soon as all their proper factors are factors of some words in X∗. We
study the deep structure of the set of minimal uncompletable words and then focus on
the finite case. We find a quadratic upper bound for the length of the shortest minimal
uncompletable words in terms of the length of the longest words in X.

The problem

Given an alphabet Σ, a subset X of Σ+ is complete if every word w in Σ∗ is completable in a
word in X∗ or equivalently, if every w in Σ∗ is a factor of some word in X∗. If X is complete,
the set Fact(X∗) is said universal. If not, the first words responsible of this lack are called the
minimal uncompletable words.
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For a given code, the equivalence between the properties of maximal code and of complete set
is established in [6]. In [3], the authors studied minimal complete sets which are not necessarily
codes. In [5], the problem about the length of the shortest minimal uncompletable words with
respect to a finitely generated set X∗ arises. The complexity is conjectured to be quadratic
in terms of the length of the longest words in X. Yet, as mentionned in [4]: The problem
of the complexity of determining, given a finite set of finite words X included in Σ∗, whether
Fact(X∗) = Σ∗, is still open. We can also address the question of the shortest word not in
Fact(X∗), given that Fact(X∗) differs from Σ∗. Minimal uncompletable words consist in a
particular case of minimal forbidden words studied in [2, 1].

Uncompletable words

The set U of uncompletable words verifies: U = Σ∗ \ Fact(X∗). A word is minimal in U if all
its proper factors belong to Fact(X∗). The subset M containing the minimal uncompletable
words verifies: U = Σ∗ M Σ∗.
From now on, A denotes the minimal finite automaton recognizing X∗. We need some
specific definitions and their symmetrical, when changing the direction of reading: S =
Suff(X) \ X+, P = Pref(X) \ X+. If the sink state qZ exists, we set: Z = {w ∈
PΣ such that w labels a path in A from the start state to qZ}; otherwise Z = ∅.

Proposition 1. Let X be a rational language. The set M verifies:

M = ( (SX∗Z) \ Pref(SX∗) )
⋂ ( ←−−−−−−−−−−−−−−−−−−−

(S←
←−
X ∗Z←) \ Pref(S←

←−
X ∗)

)
Moreover, if at least one of the automata A and A← has no sink state, the set M and
consequently U are empty.

The finite case

If X is finite, the length of its words is bounded by an integer k and then S is finite. Given s
in S, we build a deterministic automaton As induced by A to recognize Pref({s}X∗). Every As
is neither complete nor minimal but its A-like part is complete.
If an element w does not belong to Fact(X∗), none of the automata As recognizes it. So, w
labels a path from the start state to qZ in every automaton As, in so far s is compatible from
the start with w.
The words in Z allow to attract in the state qZ of the automata As a word outside the
set Fact(X∗), for every s in S and once the word s is read.
Before giving a new characterization for complete sets, we need two more notations: for some
set E and some integer n, E<n stands for the union

⋃
0≤i<nE

n. We also set Y = {y = q−1z/ q ∈
Suff(Z) and z ∈ Z}.

Proposition 2. Let X be a finite language and k be the length of the longest words in X.
Fact(X∗) = Σ∗ if and only if S

(
Z ∪ (X+Z ∩XZ(SZ ∪ Y )<2k−1)

)
is a subset of Fact(X∗).

So we get an upper bound on the length of the shortest uncompletable words and consequently,
on the shortest minimal uncompletable words.

Theorem 1. Let X be a finite language such that k is the length of the longest words in X.
If the set M is not empty, it contains a word of length at most 4k2 − 3k + 1 .
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On Maximal Chains of Systems of Word Equations*

Juhani Karhumäki, Aleksi Saarela
Turku Centre for Computer Science TUCS,

Department of Mathematics University of Turku

Theory of word equations is a fundamental part of combinatorics on words. It is a challenging
topic of its own which has a number of connections and applications. There have also been
several important achievements in the theory over the last few decades.

A fundamental property of word equations is the Ehrenfeucht compactness property, proved
independently by Albert and Lawrence and by Guba. It guarantees that any system of word
equations is equivalent to some of its finite subsystems. In free monoids an equivalent formu-
lation is that each independent system is finite, independent meaning that the system is not
equivalent to any of its proper subsystems.

As a related problem we define the notion of decreasing chains of word equations. This
asks how long chains of word equations exist such that the set of solutions always properly
diminishes when a new element of the chain is taken into the system. Or more intuitively,
how many proper constraints we can define such that each constraint reduces the set of words
satisfying these constraints. It is essentially the above compactness property which guarantees
that these chains are finite.

The goal of this note is to analyze the above maximal independent systems of equations and
maximal decreasing chains of word equations. An essential part is to propose open problems
on this area. The most fundamental problem asks whether the maximal independent system
of word equations with n unknowns is bounded by some function of n. Amazingly, the same

*Supported by the Academy of Finland under grant 121419
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problem is open for three unknown equations, although we do not know larger than three
equation systems in this case.

If the number of unknowns is n, then the maximal size of an independent system is denoted
by IS(n). We use two special symbols ub and ∞ for the infinite cases: if there are infinite
independent systems, then IS(n) = ∞, and if there are only finite but unboundedly large
independent systems, then IS(n) = ub. Similarly the maximal size of a decreasing chain is
denoted by DC(n).

These definitions work in arbitrary semigroups, but from now on we will consider free
monoids and semigroups. The bounds related to free monoids are denoted by IS and DC, and
the bounds related to free semigroups, by IS+ and DC+. The maximal size of an independent
system in a free monoid having a nonperiodic solution is denoted by IS′(n). Similar notation
can be used for free semigroups.

Ehrenfeucht’s compactness property means that DC(n) ≤ ub for every n. No better upper
bounds are known, when n > 2. Even the seemingly simple question about the size of IS′(3)
is still completely open; the only thing that is known is that 2 ≤ IS′(3) ≤ ub.

The cases of three and four variables have been studied in an article by Czeizler. The article
gives examples showing that IS′+(3) ≥ 2, DC+(3) ≥ 6, IS′+(4) ≥ 3 and DC+(4) ≥ 9. We are
able to give better bounds in some cases: DC+(3) ≥ 7 and DC(4) ≥ 12.

It was proved by Karhumäki and Plandowski that IS(n) = Ω(n4) and IS+(n) = Ω(n3). The
original bound for IS(n) is asymptotically n4/10000. By “reusing” some of the unknowns we
get a bound that is asymptotically n4/1536.

To summarize, we list a few fundamental open problems.

Question 1: Is IS(3) finite?

Question 2: Is DC(3) finite?

Question 3: Is IS(n) finite for every n?

Question 4: Is DC(n) finite for every n?

We know that each of these values is at most ub. If the answer to any of the questions is
“yes”, a natural further question is: What is an upper bound for this value, or more sharply,
what is the best upper bound, that is, the exact value? For the lower bounds the best what is
known, according to our knowledge, is the following:

1. IS(3) ≥ 3, 2. DC(3) ≥ 7, 3. IS(n) = Ω(n4), 4. DC(n) = Ω(n4).

A natural sharpening of Question (and ) asks whether these values are exponentially bounded.
A related question to Question is the following amazing open problem:

Question 5: Does there exist an independent system of three equations with three unknowns
having a nonperiodic solution?

As we see it, Question is a really fundamental question on word equations or even on
combinatorics on words as a whole. Its intriguity is revealed by Question : we do not know
the answer even in the case of three unknowns. This becomes really amazing when we recall
that still the best known lower bound is only 3!

To conclude, we have considered equations over word monoids and semigroups. All of the
questions can be stated in any semigroup, and the results would be different. For example,
in commutative monoids the compactness property holds, but in this case the value of the
maximal independent system of equations is ub.
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Dynamic proper vertex colorings of a graph*

Dmitry V. Karpov
Steklov Institute of Mathematics at St.Petersburg, Russian Academy of Sciences

Abstract

Let a subdivision of the complete graph Kn be any graph, which can be constructed
from Kn by replacing some edges of Kn by chains of two edges (every such chain adds to
a graph a new vertex of degree 2).

Let d ≥ 8 and G be a connected graph with maximal vertex degree d. We proof that
there is a proper dynamic vertex coloring of G with d colors if and only if G is distinct
from Kd+1 and its subdivisions.

1 Introduction

We consider simple finite graphs without loops and multiple edges and their vertex color-
ings. A vertex coloring of a graph is proper, if every two adjacent vertices have different
colors.

Let V (G) denote the set of vertices of the graph G, ∆(G) denote the maximal vertex
degree of the graph G. For any vertex v ∈ V (G) let dG(v) denote the degree of the vertex
v in the graph G and NG(v) denote the neighborhood of the vertex v, i.e. the set of all
vertices of G adjacent to v.

Definition 1. The vertex coloring of a graph G is dynamic, if for every vertex v ∈ V (G)
with dG(v) ≥ 2 its neighborhood NG(v) contains vertices of at least two colors.

According to the classic notion of the chromatic number we define the dynamic chro-
matic number of a graph.

Definition 2. The dynamic chromatic number χ2(G) of a graph G is the least positive
integer n such that there is a dynamic proper vertex coloring of G with n colors.

The classic Brooks Theorem tells us that χ(G) ≤ ∆(G) for every connected graph G
with ∆(G) = d ≥ 3 except for the complete graph Kd+1 on d + 1 vertices. In [6] (2003)
it is proved, that χ2(G) ≤ ∆(G) + 1 for every graph G with ∆(G) ≥ 3.

2 Results

Below we formulate the main results of this paper.

Definition 3. Let n ≥ 3. Consider any graph H, constructed from the complete graph
Kn by replacing of some edges by chains of 2 edges (each chain adds new vertex of degree
2). We call such graph a subdivision of Kn.

Let the set Kn consist of the complete graph Kn and all its subdivisions.

Theorem 1. Let d ≥ 8.
1) If H ∈ Kd+1 then χ2(H) = d+ 1.
2) Let G be a connected graph, ∆(G) ≤ d and let G be not isomorphic to any graph

in Kd+1. Then χ2(G) ≤ d.

*Supported by RFBR grant 11-01-00760-a
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Complementary Reset Words Problem
Alica Kelemenová
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The problem presented in this contribution deals with deterministic finite automata with
reset words. These continue studies started in the second half of the last century.

A deterministic finite automaton posses a reset word if this word transforms all states of
the automaton to the identical state. I.e. no matter in which state the automaton starts to
work with the reset word, it ends in the same state. Well known long time open question for
reset automata is to find definite upper bound for the length of the minimal reset words for all
n state automata.

In the present contribution we will call the attention in some sense to a complementary
task. Given the word w we will look for (a collection of) automata, such that w is their minimal
reset word. Following questions arise:
- For given w to characterize all such (strongly connected) automata.
- To find the automaton with minimal number of states among the all reset automata with
minimal reset word w.
- To establish the relation between the length of the minimal reset word w and the minimal
number of states of reset automata with minimal reset word w.
Let A = (Q,Σ, δ) be a finite automaton with set of states Q, alphabet Σ and deterministic
transition function δ : Q×Σ→ Q. Word w ∈ Σ∗ is a reset word of automaton A = (Q,Σ, δ) if
there is a state qw such that δ(q, w) = qw for all q ∈ Q. Denote by RDFA(Σ) the family of all
reset automata over Σ, and by RDFA(Σ, w) the subfamily of RDFA(Σ) with minimal reset
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word w. In the contribution we will deal with function which associate with the word w the
minimal number of states of automata with minimal reset word w. Formally,

q(w) = min{|Q| : Q is the set of states of A in RDFA(Σ,w)}

kQ(n) = min{q(w) : |w| = n}.

In the contribution we present following preliminary results concerning the values of the
functions kQ and q.
Lemma: For every w ∈ Σ∗ there is an automaton in RDFA(Σ, w) with |w| + 1 states.
Therefore q(w) ≤ |w|+ 1 for every w ∈ Σ∗ and kQ(n) ≤ n+ 1.
Lemma: q((10)i1) ≤ i+ 2 for every i ≥ 1, q((10i−1)i−21) ≤ i for every i ≥ 2.
Corollary: kQ(2i+ 1) ≤ i+ 2 and kQ((i− 1)2) ≤ i for every i ≥ 1.
It holds kQ(13) ≤ 5 using w = (1000)31 and kQ(17) ≤ 6 for w = 10010001000110001.
This gives for small numbers n following values

n = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .
kQ(n) ≤ 3 3 3 4 7 5 9 4 11 7 13 5 15 9 5 6 19 11 21 . . .

On Moessner’s Theorem
Dexter Kozen

Computer Science Department, Cornell University, USA
Alexandra Silva*

Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

Consider the following procedure for generating n ≥ 1 infinite sequences of positive integers.
To generate the first sequence, write down the positive integers 1, 2, 3, . . . , then cross out every
nth element. For the second sequence, compute the prefix sums of the first sequence, ignoring
the crossed-out elements, then cross out every (n − 1)st element. For the third sequence,
compute the prefix sums of the second sequence, then cross out every (n− 2)nd element, and
so on. For example, for n = 4,

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 3 6 11 17 24 33 43 54 67 81 96 113 131 150 171 193 216

1 4 15 32 65 108 175 256 369 500 671 864

1 16 81 256 625 1296

Moessner’s theorem says that the final sequence is 1n, 2n, 3n, . . . .
This construction is an interesting combinatorial curiosity that has attracted much attention over the years.

Moessner’s theorem was never proved by its eponymous discoverer. The first proof was given later by Perron.
Since then, the theorem has been the subject of several popular accounts.

In the construction of Moessner’s theorem, the initial step size n is constant. What happens if we increase
it in each step? Let us repeat the construction starting with a step size of one and increasing the step size by
one each time. Thus, in the first sequence, we cross out 1, 3, 6, 10, . . . ,

(
k+1
2

)
, . . . .

*Until August 2011: Computer Science Department, Cornell University, Ithaca, NY 14853-7501, USA
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2 6 11 18 26 35 46 58 71 85 101 118 136 155 175

6 24 50 96 154 225 326 444 580 735

24 120 274 600 1044 1624

120 720 1764

720

Now the final sequence consists of the factorials 1, 2, 6, 24, 120, . . . = 1!, 2!, 3!, 4!, 5!, . . . .
Let us now increment the increment by one in each step, thus incrementing the step size by 1, 2, 3, 4, . . .

in successive steps, crossing out 1, 4, 10, 20, . . . ,
(
k+2
3

)
, . . . .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...

2 5 10 16 23 31 40 51 63 76 80 95 ...

2 12 28 51 82 133 196 272 352 ...

12 40 91 224 420 692 ...

12 52 276 696 ...

12 288 984 ...

288 1272 ...

288 ...

288 ...

288 ...

The final sequence consists of the superfactorials

1, 2, 12, 288, . . . = 1!, 2!1!, 3!2!1!, 4!3!2!1!, . . . = 1!!, 2!!, 3!!, 4!!, . . . .

The generalization of Moessner’s theorem that handles these cases is known as Paasche’s theorem.
Long discovered the following alternative procedure and generalization. Consider the figure illustrating the

Moessner construction for n = 4 above. Breaking the figure into separate triangles and adding a row of 1’s at
the top, the first four triangles are

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 3 6 11 17 24 33 43 54 67 81 96

1 4 15 32 65 108 175 256

1 16 81 256

Call these the level-n Moessner triangles. The first triangle is the well-known Pascal triangle. However, note
that all the triangles satisfy the Pascal property : each interior element is the sum of the elements immediately
above it and to its left. Note also that the first column of each triangle consists of the prefix sums of the nth
northeast-to-southwest row of the previous triangle. For example, the first column of the third triangle is 1,
9, 33, 65, 81, which are the prefix sums of 1, 8, 24, 32, 16, the last northeast-to-southwest row of the second
triangle. Thus, to generate the next triangle in the sequence, let its first column be the prefix sums of the nth
northeast-to-southwest row of the previous triangle, let the top horizontal row consist of all 1’s, and complete
the triangle using the Pascal property.

Long and Salié also generalized Moessner’s result to apply to the situation in which the first sequence
is not the sequence of successive integers 1, 2, 3, . . . but the arithmetic progression a, a + d, a + 2d, . . . . This
corresponds to a sequence of triangles with d, d, d, . . . along the top and d, a, a, a, . . . as the first column of the
first triangle. They showed that the final sequence obtained by the Moessner construction is a · 1n−1, (a+ d) ·
2n−1, (a+ 2d) · 3n−1, . . . .

Very recently, Hinze, Niqui and Rutten have given proofs involving concepts from functional programming,
Hinze using calculational scans and Niqui and Rutten using coalgebra of streams. The proof of Hinze covers
Moessner’s and Paasche’s result whereas Rutten and Niqui only provide a proof of the original Moessner’s
theorem.

The proof we present has the advantage of covering all the theorems mentioned above and, furthermore,

opening the door to new generalizations of Moessner’s original result.
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Synchronization of automata with one undefined transition
Pavel V. Martyugin

Ural Federal University, Ekaterinburg, Russia

The theory of synchronizing automata is a classical area of research. A deterministic finite
automaton is synchronizing if there is a word which maps all states of the automaton to one
state. The survey of main results about synchronizing automata see in [1]. It is natural to
generalize the notion of synchronizing words to the case of automata with a partial transition
function (PFA) and to the case of nondeterministic finite automata (NFA).

A partial finite automaton (PFA) is a triple A = (Q,Σ, δ), where Q is a finite set of states,
Σ is a finite alphabet and δ is a partial function from Q × Σ to Q. The function δ can be
undefined on some pairs from the set Q×Σ. Denote by 2Q the set of all subsets of the set Q.
The function δ can be naturally extended to 2Q ×Σ∗ by a usual way. A PFA A = (Q,Σ, δ) is
called carefully synchronizing, if there is a word w ∈ Σ∗ such that the value δ(Q,w) is defined
and |δ(Q,w)| = 1. Clearly, DFA is a partial case of PFA and in this case any c.s.w. is also
synchronizing.

The checking whether a given PFA is carefully synchronizing is harder then the checking
whether a given DFA is synchronizing. A DFA can be checked in polynomial time, but the
checking whether a given PFA is carefully synchronizing is PSPACE-complete (see [4]). The
restriction of this problem to the class of 2-letter PFA is also PSPACE-complete.

The length of the shortest synchronizing word for a classical deterministic finite automaton
is always polynomial. At the same time the length of the shortest carefully synchronizing word
for PFA A with n states can have length Ω(3n/3) (see [3]). This means that the length of the
carefully synchronizing word can be not polynomial in n.

The synchronization of DFA is fast and easy to check, the careful synchronization for an
arbitrary PFA is slow and hard to check. We have a problem: where is the border between
simplicity and hardness? In this work, we consider PFA with only one undefined transition.
Already in this simple case the checking whether a given PFA with only one undefined transition
carefully synchronizing is PSPACE-complete. We also prove same facts for PFA with a binary
alphabet. By the same way we obtain that the length of the shortest carefully synchronizing
word for PFA with one undefined transition can not be bounded by a polynomial in the size
of automaton.

We also can consider an undefined transition not as a forbidden transition, but as a tran-
sition which maps a state to some unknown state. Thus, it is natural to consider synchroniza-
tion for nondeterministic automata. A nondeterministic finite automaton (NFA) is the triple
A = (Q,Σ, δ) such that Q is a finite set of states, Σ is a finite alphabet, and δ is a function
from Q×Σ to 2Q. The function δ can be naturally extended to the set 2Q ×Σ∗ as usual. Let
A = (Q,Σ, δ) be an NFA and w ∈ Σ∗. The word w is D1-directing if δ(q, w) 6= ∅ for all q ∈ Q
and |δ(Q,w)| = 1. The word w is D2-directing if δ(q, w) = δ(Q,w) for all q ∈ Q. The word
w is D3-directing if

⋂
q∈Q

δ(q, w) 6= ∅. The D1, D2 and D3-directability is a generalization of the

ordinal synchronization then the considered NFA is a DFA. An additional information about
the D1, D2 and D3-directability and references can be found in [2].

For NFA, there is the same problem as for PFA: where is a border between the simplicity
and the hardness. In this work we consider a class of NFA with a totally defined transition
relation such that there exists only one ambiguous transition which map one state to a set of
two states. In such NFA A = (Q,Σ, δ) for any q ∈ Q, a ∈ Σ we have |δ(q, a)| ∈ {1, 2} and
|δ(q, a)| = 2 for only one pair (q, a).
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The class of such NFA is very close to the class of all DFA, but we prove that the problem
of checking the D1 and D2-directability are PSPACE-complete for NFA with one ambiguous
transition even if only 2-letter automata are considered. We also obtain that the length of the
shortest D1 or D2-directing word for NFA with one ambiguous transition can not be bounded
by a polynomial is the size of automaton.

Acknowledgement. The author acknowledges support from the Federal Education
Agency of Russia, project 2.1.1/3537, and from the Russian Foundation for Basic Research,
grant 09-01-12142.
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A complete one-way function based on finite rank free (Z× Z)-modules
Sergey I. Nikolenko

Steklov Institute of Mathematics at St.Petersburg, Russian Academy of Sciences

In theoretical computer science, complete problems are an invaluable tool for studying
complexity classes. A complete problem allows one to reduce all problems in a certain class
to a single problem, basically reducing the whole class to one representative problem. In
cryptography, on the other hand, complete problems are virtually unknown. For one-way
functions, however, the first complete one-way functions were presented by Leonid A. Levin
[4, 1]. The first known construction of a (weakly) one-way function, developed by Levin,
is the universal one-way function that uses a universal Turing machine U to compute the
function funi(desc(M), x) = (desc(M),M(x)). In [5], Levin devised a clever trick of completely
forbidding indeterministic choice in the computation of the function itself, allowing it only
for the inverse function, and formulated the problem of finding other combinatorial complete
one-way function. In [2, 3, 7], new combinatorial complete one-way functions were presented,
functions based on semi-Thue systems, Post correspondence, and tiling problems.

In this work, we propose a new combinatorial complete one-way function based on the
tiling-based Turing machine simulation presented in [6]. In [6], Lohrey and Steinberg showed
undecidability of several decision problems related to (Z×Z)-modules based on simulating Tur-
ing machines by tiling. Modifying their construction, we present a complete one-way function
based on finite rank free (Z× Z)-modules.

Our underlying constructions follow [6] and are based on the group (Z × Z) and the
corresponding Cayley graph. By E we denote the edge set of the Cayley graph Γ of
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the group (Z × Z). The set of vertices of Γ is (Z × Z), and the set of edges is E =
{{(p, q), (r, s)} | p, q, r, s ∈ Z, |u− x|+ |v − y| = 1}. M is the abelian group of all finitely sup-
ported functions from E × C to Z.

Proposition 1 (formal generalization of Theorem 4, [6]). Each tiling system T with an unde-
cidable zero tiling problem corresponds to a finitely generated subsemimodule of a certain free
(Z× Z)-module of finite rank with an undecidable membership problem.

To make use of Proposition 1, Lohrey and Steinberg construct a tiling for which the zero
tiling problem encodes the halting problem for a deterministic Turing machine. Therefore,
this tiling problem is clearly undecidable for those tilesets for which the halting problem is
undecidable.

To get a complete one-way function along the lines of [3, 7], we need to modify the tiling
presented in [6, Theorem 7] so that it becomes deterministic in the sense that there is always
a single candidate for the next tile to be placed. The properties of this tiling modification are
summarized in Theorem 2. The proof from [6] comes through with no change at all, and this
tiling also simulates the original Turing machine M . However, now this tiling is deterministic:
if we begin with a correct encoding of a Turing machine input then during our simulation,
every time we can place a new tile, we have no choice in what tile to place. This makes it
possible for the functions Ftile and Falg (defined below) to both be polynomial.

Theorem 2. For every deterministic Turing machine M = 〈Q,Γ, B,Σ, π, s,H〉 working for
at most n2 steps on inputs of length n there exists a tileset TM over a set of labels C and a
mapping ϕC : Γ→ C such that:

1. for every input x, the zero tiling problem for the tiling set TM with labels on the bottom
row ϕC(x) is deterministic;

2. there is a correct tiling of the n2 × n2 square with labels on the top row ϕC(y) if and only
if M(x) = y.

Given Theorem 2, we can define a function that polynomially simulates the tiling process
(as long as it stays deterministic, which is guaranteed by Theorem 2 for tilesets corresponding
to Turing machines) and thus simulates deterministic Turing machines that work in time at
most n2.

Definition 1. Fix an alphabet A and an unambiguous encoding of tilesets and tile labels as
strings in A∗. The tiling sum function Ftile : A∗ → A∗ acts as follows: for an input string
s ∈ A∗,

1. if s is an encoding of 〈T, x〉 for some tileset T and a string x, |x| = n, and x′ ⇒∗n2 y′

where x′ is x padded with n2 − n symbols “�”, then return y, where y is y′ stripped from
“�” symbols at the end;

2. otherwise, return s.

Theorem 3. If one-way functions exist then Ftile with uniform distribution over its input
strings is a weakly one-way function.

We can now go back to subsemimodules of free (Z× Z)-modules and formulate the corre-
sponding complete one-way function. A tiling sum f =

∑n
i=1 τxi,yiJtiK can be regarded as an

element of the subsemimodule of M generated by {JtK | t ∈ T} (see proof of Proposition 1).

33



Placing a new tile t at position (x, y) corresponds to adding τx,yJtK to that sum. Note that even
if we have no access to the tiling itself, we can distinguish in polynomial time whether τx,yJtK cor-
responds to placing a new tile correctly and on an empty space. Namely, τx,yJtK is correct iff for
some 1 ≤ i ≤ n, e ∈ {{(0, 0), (1, 0)} , {(1, 0), (1, 1)} , {(1, 1), (0, 1)} , {(0, 1), (0, 0)}}, and c ∈ C
τx,yJtK(e, c) = −τxi,yiJtiK(e, c), where JtiK is a tile that already belongs to f , τxi,yiJtiK(e, c) 6= 0,
and there is no j 6= i such that τxj ,yjJtjK(e, c) = −τxi,yiJtiK(e, c) (i.e., the new tile has canceled
at least one preexisting edge that has not been canceled already).

We can now define a polynomial time function on general subsemimodules of free (Z ×
Z)-modules that emulates correct tile placement. We define a relation f

alg⇒ f ′ for two formal
sums f and f ′ with equal number of nonzero coefficients if there is a deterministic sequence of

correct placements of new generators that transforms f into f ′. We extend
alg⇒ to its transitive

closure
alg⇒
∗

and partial transitive closure
alg⇒
∗
k.

Definition 2. Fix an alphabet A and an unambiguous encoding of elements of M and their
formal sums in A∗. The algebraic tiling sum function Falg : A∗ → A∗ acts as follows: for an
input string s ∈ A∗,

1. if s is an encoding of 〈N , f〉 for some set of generators N = {ni} and a formal sum

f =
∑n

i=1 τxi,yini, and f
alg⇒
∗
n2 f ′ for some other formal sum f ′ then return f ′;

2. otherwise, return s.

Theorem 4. If one-way functions exist then Falg with uniform distribution over its input
strings is a weakly one-way function.
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About vertices of degree k of minimally and contraction critically k-connected
graphs: upper bounds

†

Svetlana A. Obraztsova, Alexei V. Pastor
Steklov Institute of Mathematics at St.Petersburg, Russian Academy of Sciences

In his paper R. Halin (in “Recent Progress in Combinatorics”, Academic Press, 1969) dis-
cusses, what is the constant ck such that any minimally and contraction critically k-connected
graph has at least ck|V (G)| vertices of degree k. Twenty years later the exact bound for k = 4
(c4 = 1) was found by N. Martinov and, independently, by M. Fontet. For larger k no upper
bound is known yet.

We found upper bounds for ck for k ≥ 5. Particularly three series of minimally and
contraction critically k-connected graphs were constructed. The procedure of construction for
k > 5 is the following.

Step 1. Take a graph on
⌊
3(k−2)

2

⌋
vertices with empty set of edges. Using special procedure attach

a triangle with vertices of degree k to this graph and repeat this operation
⌊
k+1
2

⌋
for odd

k and
⌊
k
2

⌋
for even k. Name this graph T0.

Step 2. Take
⌊
3(k−2)

2

⌋
copies of graph Ti. For odd k repeat attaching the same triangle as at

step 1 k times. For even k the procedure is slightly different. As a result graph Ti+1 is
obtained.

The construction for k = 5 is quite similar to the one considered above. Using these series of
graphs, it is easy to see, that c5 <

17
22

, ck <
3k2−2k−9

6k2+18k+12
for odd k > 5 and ck <

9k3−24k2−28k+12
18k3−84k2+104k

for even k.

Formal grammars: reappraising the foundations*

Alexander Okhotin
Department of Mathematics, University of Turku

Whenever the syntax of any language has to be rigorously described, one typically employs
descriptions of such a form as “a subject followed by a predicate is a sentence” or “expression
plus expression is an expression”, which define the properties of longer strings on the basis of
the properties of shorter strings. Such descriptions can be found, for instance, in 19th century

†
Supported in part by RFBR grant 11-01-00760-а.

*Supported by the Academy of Finland under grant 134860.
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grammars of the English language [8], as well as in the early drafts of Algol 60 [7]. This is the
intuitively obvious way of representing syntax.

A complete formalization of such syntactic descriptions was first undertaken by Chom-
sky [2]. Having introduced formal grammars at the right time, Chomsky has influenced their
subsequent mathematical study by defining the basic tools and notation. According to Chom-
sky, a grammar is understood as a system for nondeterministic rewriting of strings comprised of
symbols of the alphabet and abstract notions defined in the grammar, and this rewriting even-
tually ends with a well-formed sentence of the language. The intuitively obvious grammars are
obtained by using context-free rewriting, in which one abstract symbol is rewritten by a string
of symbols at every step. Henceforth, they have been called context-free grammars. Other
types of rewriting considered by Chomsky led to important models of computation unrelated
to syntax (which are equivalent to finite automata, Turing machines, and the NSPACE(n)
complexity class), but to no other syntactic formalisms.

Nowadays, the definition of context-free grammars by rewriting is by far the most
well-known definition, and it is admittedly nice and clear. However, it does not answer the
question of what makes a context-free grammar the intuitively obvious model of syntax. Fur-
thermore, it has misdirected a whole generation of researchers into investigating numerous
variants of this rewriting, none of which described anything related to syntax. Something
seems to be wrong with the outlook on formal grammars based upon rewriting.

In this talk, the basics of context-free grammars shall be reinvestigated in light of their
actual meaning of an applied logic for representing the syntax. An alternative equivalent defi-
nition shall be presented in terms of a deduction system, manipulating items of the form [α,w],
indicating that a string w has the property α according to a grammar. This deduction can
also be regarded as a fixpoint iteration in systems of equations with languages as unknowns, as
defined by Ginsburg and Rice [3]. Though these might be not very convenient definitions, and
though they are obviously equivalent to Chomsky’s rewriting, they are useful for providing a
proper outlook on the model. In particular, these definitions easily lead to two natural vari-
ants of context-free grammars: the conjunctive grammars [4, 5], which allow expressing logical
conjunction, and Boolean grammars [6], in which all Boolean operations may be expressed.

The latter two families of grammars are essentially context-free, in the general meaning
of the word, and can be regarded as a variant of the definition of the context-free grammars.
They share the key properties of the standard context-free grammars, including numerous
parsing algorithms. Together, these families of grammars form a hierarchy of applied logics
for representing the syntax, in which the standard context-free grammars are the disjunctive
fragment. In addition, the concept of context-sensitivity, that is, of grammar rules applicable
in a certain context, as investigated by Chomsky [2], can be reinvestigated in terms of these
logics, resulting in an inequivalent model [1]. The natural upper bound for such families is the
logic proposed by Rounds [9].

It is the author’s belief that the slight alteration of the outlook on grammars, proposed
in this talk, puts the basic mathematical models of syntax and their variants in a proper
perspective. This reappraisal of the foundations shows that the subject of formal grammars is
far from being fully researched and understood, and leaves hope for further discoveries.
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On some new abelian properties of infinite words*

Svetlana Puzynina
University of Turku, Finland

Sobolev Institute of Mathematics, Novosibirsk, Russia

In combinatorics of words, different abelian properties of words are widely studied nowa-
days, such as abelian complexity, abelian avoidance, abelian powers and their generalizations.
In the talk we consider abelian analogues of the Critical Factorization Theorem (joint work
with S. Avgustinovich, J. Karhumäki) and abelian analog of the notion of return word (joint
work with L. Zamboni).

One of the main results of combinatorics on words, the Critical Factorization Theorem,
relates local periodicities of a word to its global periodicity. It was first proved by Y. Césari
and M. Vincent, 1978, and in the present form it is due to J. Duval, 1979. This theorem states,
roughly speaking, a connection between local and global periods of a word; the local period
at any position of the word is defined as the shortest repetition centered in this position. The
theorem says that the global period of a word is the maximum of its local periods. In 1998,
F. Mignosi, A. Restivo and S. Salemi proposed a different notion of a local period: a local period
at a position is defined as the length of the shortest repetition to the left from this position. In
such a definition of local periods squares are not enough to ensure the global periodicity, but
the threshold is surprisingly given by the golden ratio ϕ. Jointly with S. Avgustinovich and
J. Karhumäki we study abelian versions of these problems. We seek for constraints for local
abelian powers enforcing a word to be (ultimately) periodic. By local abelian powers we mean
abelian powers with bounded periods centered at or immediately to the right/left from every
position. We investigate both similarities and differences between the abelian powers and the
usual powers. The results we obtained show that the constraints for abelian powers implying
periodicity should be quite strong, but still natural analogies exist.

*The talk is based on joint results with S. Avgustinovich, J. Karhumäki and L. Zamboni.
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Sturmian words can be defined as infinite words having the lowest subword complexity
among all aperiodic words. They have been widely studied due to their fundamental impor-
tance in different fields of theoretical computer science. Sturmian words have many equivalent
characterizations, e. g. using balanced words, cutting sequences, mechanical words, and via
morphisms. Jointly with L. Zamboni we develop the approach based on the concept of return
words. The notion of a return word is a powerful tool for studying various problems of combina-
torics on words, symbolic dynamical systems and number theory. Considering each occurrence
of a factor v in an infinite word, the set of return words of v is defined to be the set of all
distinct words beginning with an occurrence of v and ending just before the next occurrence
of v. This notion was introduced by F. Durand in 1998 and was used for a characterization
of primitive substitutive sequences. Sturmian words can be characterized via return words:
a word is Sturmian if and only if each of its factors has two returns (L. Vuillon, J. Justin,
2000–2001). We establish a similar characterization of Sturmian words for an abelian analogue
of the notion of return word. Namely, we prove that an aperiodic recurrent infinite word is
Sturmian if and only if each of its factors has two or three abelian returns.
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Word Equations and Linear Algebra*

Aleksi Saarela
Turku Centre for Computer Science TUCS,

Department of Mathematics University of Turku

Word equations are a fundamental part of combinatorics on words. One of the basic results in
the theory of word equations is that a nontrivial equation causes a defect effect. Not much is
known about the additional restrictions caused by several independent relations.

In fact, even the following simple question is still unanswered: how large can an independent
system of word equations on three unknowns be? The largest known examples consist of three
equations. The only known upper bound comes from the Ehrenfeucht compactness property:
an independent system cannot be infinite. Some results concerning independent systems on
three unknowns can be found, but the open problem seems to be very difficult to approach
with current techniques.

We will use polynomials to study some questions related to systems of word equations. If
Σ ⊂ N1 is an alphabet of numbers and w = a0 . . . an−1 ∈ Σn, then we define a polynomial

Pw = a0 + a1X
1 + · · ·+ an−1X

n−1.

Similar polynomials have been used before but the way in which we use them is quite different
and allows us to apply linear algebra to the problems.

One of our main contributions is the development of new methods for attacking problems on
word equations. Let Ξ = {x1, . . . , xn} be the set of unknowns. The length type of a morphism
h : Ξ∗ → Σ∗ is the vector

L = (|h(x1)|, . . . , |h(xn)|) ∈ n.

The first result states that if a system has a solution of length type L that has rank r, then
the rank of a certain polynomial matrix is at most n − r, and if the rank of the matrix is 1
and at most one component of L is zero and the equations are nontrivial, then they have the
same solutions of length type L.

When L is not fixed, the exponents of X in the polynomials behave like linear polynomials.
These can be analyzed with tools from linear algebra, and we get the second result: If two
equations don’t have the same sets of solutions of rank n−1, then the length types of solutions
of the pair of rank n− 1 are covered by a union of |E1|2 (n− 1)-dimensional subspaces, and if
V1, . . . , Vm is a minimal such cover and L ∈ Vi for some i, then the equations have the same
solutions of length type L and rank n− 1.

Other contributions include simplified proofs and generalizations for old results and study-
ing maximal sizes of independent systems of equations.

As an example of the former, we state that it has been proved that if an independent pair of
equations on three unknowns has a nonperiodic solution, then the equations must be balanced.
The proof is very long. Using the above results we can give a short proof for a generalization
of this result.

Let us finally return to independent systems. We prove that if a system is independent
even when considering only solutions of rank n− 1, then there is an upper bound for the size
of the system depending quadratically on the length of the shortest equation. Even though it
does not give a fixed bound even in the case of three unknowns, it is a first result of its type.

*Supported by the Academy of Finland under grant 121419
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We hope that these theorems show that the connection between word equations and linear
algebra is not only theoretically interesting, but is also very useful at establishing simple-looking
results that have been previously unknown, or that have had only very complicated proofs. In
addition to the results of the paper, we believe that the techniques may be useful in further
analysis of word equations.

Lower bounds for weakly k-min-wise independent families of permutations
Maxim Vsemirnov

Steklov Institute of Mathematics at St.Petersburg, Russian Academy of Sciences

Let Sym(n) be the set of all permutations on {1, . . . , n} and let G ⊆ Sym(n), K ⊆
{1, . . . , n}. The set G is called K-restricted min-wise independent, if for any X ⊆ {1, . . . , n}
such that |X| ∈ K and for any x ∈ X, we have

|{π ∈ G : minπ(X) = π(x)}| = |G|
|X|

.

If K = {1, . . . , k} then G is also called k-restricted min-wise independent. If K = {k} then G
is called weakly k-restricted min-wise independent.

The case K = {1, . . . , k} was studied first by Broder et al. [1], [2], while J. Matoušek and
M. Stojaković [5] considered K = {k}. The original motivation was related to a mathematical
model used in web-indexing software, but later other applications , e.g. to derandomisation,
were found; see [3].

For k ≥ 3, polynomial (with resect to n) lower bounds on the size of k-restricted min-wise
independent sets were found in [4], [6], [5]. But for weakly k-restricted min-wise independent
sets only the bound

|G| ≥ log log n− C.

was known. The aim of this talk is to report a significant improvement of that bound. Namely,
we prove the following theorem.

Theorem. Let k ≥ 3 and G ⊆ Sym(n) be a weakly k-restricted min-wise independent set.
Then

|G| ≥ n− k + 2

k − 1
.

The proof uses some modification of the methods from [4], [6] based on simple linear algebra.
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Short communications

Bounds of a number of leafs of spanning trees in graphs without triangles
Anton V. Bankevich

St.Petersburg State University

We denote the minimum degree of a vertex of G, as usual, by δ(G). The girth of a graph G
is denoted by g(G). The number of vertices of G of degree not equal to 2 is denoted by s(G).

For a connected graph G we denote the maximum number of leafs in a spanning tree of G
by u(G).

A number of works consider spanning trees in classes of graphs with various additional
constraints like ban on certain subgraph. At first Griggs, Kleitman, and Shastri ([3], 1989)

proved that u(G) ≥ v(G)+4
3

in a connected cubic graph with no K−4 (complete subgraph on
four vertices minus one edge). Later Bonsma ([1],2008) demonstrated two interesting bounds

for a connected graph with δ(G) ≥ 3: u(G) ≥ v(G)+4
3

for graph without triangles (that is, with

g(G) ≥ 4) and u(G) ≥ 2v(G)+12
7

for the graph with no K−4 .
It is proved in [8] that u(G) ≥ v3+4

3
for a connected graph G with g(G) ≥ 4 and v3 vertices

of degree at least 3. In [9] for a connected graph G with δ(G) ≥ 3, v3 vertices of degree 3 and
v4 vertices of degree at least 4 the estimate u(G) ≥ 2v4

5
+ 2v3

15
is proven.

In [1] the author and D.V.Karpov proved, that u(G) ≥ 1
4
(s(G) − 2) + 2. One can assume

that u(G) ≥ g−2
2g−2(s(G)−2)+2 for a graph G with girth at least g. There are series of examples

showing that if the conjecture holds for specific values of g, then the bound of the hypothesis
for g is precise. The case g = 4 is the main result of this work.

Theorem 1. Let G be a graph without triangles with s vertices of degree different from two.
Then u(G) ≥ 1

3
(s− 2) + 2.

But despite a good start, it turned out that our conjecture is false for g ≥ 10, which will
be proved in the following theorem.

Theorem 2. For any positive integer g there exists an arbitrarily large graph G with girth at
least g, for which u(G) ≤ 1

2
s(G)− 1

16
s(G).

The question for 5 ≤ g ≤ 9 remains open.
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Straight-line Programs: A Practical Test*

Ivan Burmistrov, Lesha Khvorost
Ural State University, Ekaterinburg

Abstract

We present an improvement of Rytter’s algorithm that constructs a straight-line pro-
gram for a given text and show that the improved algorithm is optimal in the worst case
with respect to the number of AVL-tree rotations. Also we compare Rytter’s and ours
algorithms on various data sets and provide a comparative analysis of compression ratio
achieved by these algorithms, by LZ77 and by LZW.

Nowadays searching algorithms on huge data sets attract much attention. To reduce the
input size one needs algorithms that can work directly with a compressed representation of
input data.

Various compressed representations of strings are known: straight-line programs (SLPs) [4],
collage-systems [1], string representations using antidictionaries [5], etc. Nowadays text com-
pression based on context-free grammars such as SLPs has become a popular research direction.
The reason for this is not only that grammars provide well-structured compression but also that
the SLP-based compression is, in a sense, polynomially equivalent to the compression achieved
by the Lempel-Ziv algorithm that is widely used in practice. It means that, given a text S,
there is a polynomial relation between the size of an SLP that derives S and the size of the
dictionary stored by the Lempel-Ziv algorithm, see [4]. It should also be noted that classical
LZ78 [8] and LZW [7] algorithms can be considered as special cases of grammar compression.
(At the same time other compression algorithms from the Lempel-Ziv family—such as LZ77
and run-length compression—do not fit directly into grammar compression model.)

*The authors acknowledge support from the Ministry for Education and Science of Russia, grant 2.1.1/13995,
and from the Russian Foundation for Basic Research, grant 10-01-00524.
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Using the fact that SLPs are nicely structured, several researchers keep developing analogues
of classical string algorithms that (at least theoretically) perform quite well on SLP-compressed
representations: Pattern matching [2], Longest common substring [3], Computing all
palindromes [3], some versions of Longest common subsequence [6]. At the same time,
constants hidden in big-O notation for algorithms on SLPs are often very big. Also the afore-
mentioned polynomial relation between the size of an SLP for a given text and the size of the
LZ77-dictionary for the same text does not yet guarantee that SLPs provide good compression
ratio in practice. Thus, a major questions is whether or not there exist SLP-based compression
models suitable to practical usage? This question splits into two sub-questions addressed in
the present paper: How difficult is it to compress data to an SLP-representation? How large
compression ratio do SLPs provide as compared to classic algorithms used in practice?

In this paper we present an improved algorithm for SLP construction. The algorithm is
similar to Rytter’s algorithm proposed in [4] but practical results show that it is more efficient
on large inputs.

In the paper we also present practical tests of SLPs as compression model. As a result
we should conclude that the existing ways of SLP construction are quite slow. On the other
hand, the tests confirm that compression ratio provided by SLPs is close to compression ratio
provided by the family of Lempel-Ziv algorithms.
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Generalized flowers in k-connected graphs. Application to the case k = 4
Alexander L. Glazman

Steklov Institute of Mathematics at St.Petersburg

1 Introduction

For every graph G, we denote the set of its vertices by V (G) and the set of its edges by E(G).
As usual, for any set F ⊆ E(G) we denote the graph with the set of vertices V (G) and the set
of edges E \ F by G− F . For any set U ⊂ V of vertices, let G− U be the induced subgraph
of the graph G with the set of vertices V \ U .

Definition 1. A set R of vertices of a graph G is a cutset if the graph G−R is disconnected.
If necessary to indicate the number of elements of a cutset, a cut consisting of x elements is
called an x-cutset.

A cut R splits a set X ⊂ V (G) of vertices if the vertices of X \ R are disconnected in the
graph G−R.

The decomposition of a connected graph by its cut-vertices is well-known. It’s convenient
to use a tree of blocks and cut-vertices to describe this structure. W.T.Tutte [1] described
the structure of 2-vertex cutsets in biconnected graphs. It happened to have much common
with the structure of a connected graph, separated by cut-vertices. A construction of a tree of
blocks for biconnected graphs was also proposed in [1].

We study k-connected graphs. Every cutset in k-connected graph has at least k vertices.

Definition 2. 1) We say that cuts R and T are independent if R does not split T and T does
not split R. Otherwise the cuts R and T are dependent.

2) Let S ⊂ Rk(G). The dependence graph Dep(S) is a graph with vertex set S and two
vertices are adjacent iff corresponding sets are dependent.

It is proved in [4, 2], that if R and T are k-cutsets in k-connected graph G such that R does
not split T , then T does not split R, i. e., the cuts R and T are independent. The main obstacle
to construct something like the tree of blocks and cut-vertices is dependency of k-cutsets.

D. Karpov [5] invented a new method for studying a structure of k-connected graphs.
The power of this method is well-illustrated in case k = 2 — in fact the structure is the
same as in W.T.Tutte’s work. After this D.Karpov with A.Pastor [4] described the structure
of 3-connected graph using the new invented method. All cutsets are divided in some groups
which are called complexes, and due to this definition it is possible to construct a hypertree on
these complexes.

Definition 3. A part of the decomposition of G by cutset S is a subgraph of G, induced on a
maximal (by inclusion) set of vertices which is not split by S. The set of all such parts we will
denote by Part(S).

A part of the decomposition of G by a set of cutsets S is a subgraph of G, induced on a
maximal set of vertices which is not split by any cutset from S. The set of all such parts we
will denote by Part(S).

The boundary of a part A ∈ Part(S) is the set of all vertices of A which lie in any set
from S. We will denote it by Bound(A).
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2 Definition of a flower

The most important construction in the method of [5] is a flower. It can be drawn as several
equal petals lying on a circle with several vertices in the center of this circle, two nonneighboring
petals together with the center forms a cutset. But the strict definition of a flower is much
more complicated.

Let m ≥ 4, and P,Q1, . . . , Qm ∈ V (G) satisfy the following conditions for all i ∈ {1, . . . ,m}:

0 ≤ |P | < k, Qi ∩ P = ∅, |Qi| =
k − |P |

2
.

Let’s consider F = (P ;Q1, . . . , Qm). Sets Q1, . . . , Qm (we name them petals) are cyclic ordered,
i.e. the cyclic shift of them doesn’t change F . Let’s consider Qi,j = Qi ∪Qj ∪ P . We say that
petals Qi and Qj are close, if for all k from i to j we have Qk ⊂ Qi,j or for all k from j to i we
have Qk ⊂ Qi,j.

Definition 4. Assume that exist such S ⊂ Rk(G) consisting of sets Qi,j (where i and j are not
neighbors), that decomposition Part(S) = {G1,2, G2,3, . . . , Gm,1}, and Bound(Gi,i+1) = Qi,i+1

for every i.
Besides assume that if Qi ∩Qj 6= ∅ for some i, j then the petals Qi and Qj are close.
Then we say that F is a flower. The set P is the center and sets Q1, . . . , Qm are petals of

this flower.

Definition 5. The decomposition of G by flower F is Part(F ) = {G1,2, . . . , Gm,1}, sub-
graphs Gi,i+1 are parts of this decomposition. If no two petals of F intersect then the flower F
is regular. We say that S generates a flower F .

It turned out that for studying k-connected graphs, where k > 3, we have to make a
generalization. At first, it is convenient to generalize the notion of part.

Definition 6. Let T ∈ Rk(G), Part(T ) = {A1, . . . , Am}, ` ≥ 2. Let I1 ∪ · · · ∪ I` = {1, . . . ,m}
be a disjunctive union and B1,. . . ,B` be induced subgraphs of the graph G with V (Bj) =
∪i∈IjV (Ai). Then PartI(T ) = {B1, . . . , Bk} is a generalized decomposition of G by cutset S.

When generalized parts are defined it is easy to define the notion of generalized flower –
the definition is the same but instead of parts we consider generalized parts.

3 Results

Lemma 1. Let S ⊂ Rk(G) generate a generalized flower. Then the dependence graph D(S)
is connected.

Definition 7. Let R(F ) be the set of inner sets of flower, i.e. sets Qi,j, where petals Qi

and Qj are not close. Bounds of a flower are sets Qi,i+1.

Theorem 1. Let F = (P ;Q1, . . . , Qm) be a generalized flower. Then R(F ) ⊂ Rk(G), and
Qi,j ∈ R(F ) separates Gi,j from Gj,i.

Theorem 2. Let sets S, T ∈ Rk(G) generate generalized flowers FS and FT respectively with
the same center and set of petals. Then Part(S) = Part(T) and FS = FT (i.e. cyclic order of
petals in these two flowers is the same).
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Definition 8. There are two types of flowers in a 4-connected graph — with an empty center
and with a 2-vertex center. Those with an empty center we will call 0-flowers and others are
called 2-flowers.

Theorem 3. Every 4-cutset lying in a set of vertices of a 2-flower F contains the center of
F , i.e. is either inner set or boundary of F .

Definition 9. 1) Let us call a petal Qi of 0-flower F = (P ;Q1, . . . , Qm) a switch if Qi = {x, y},
Qi ⊂ Qi−1 ∪Qi+1.

If Qi is a swich of 0-flower F then a switching is a replacement of Qi by Q′i = Qi−1∪Qi+1\Qi.
2) Two 0-flowers are similar if one can be obtained from the other by several operations of

switching.
3) Quasiinner sets of a 0-flower are inner sets of flowers similar to it.

It is not very difficult to show that similarity of 0-flowers is an equivalence.

Theorem 4. Every 4-cutset T lying in a set of vertices of a 0-flower F , contains the center
of F . Moreover, T is an inner set or quasiinner set, or a boundary of F .
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Observations and Problems on k-abelian avoidability*

Mari Huova, Juhani Karhumaki
Department of Mathematics and TUCS, University of Turku, Finland

Theory of avoidability is among the oldest and the most studied topics in combinatorics
on words. The first results in this area are the well-known results by Axel Thue, [Th1, Th2],
showing the existence of an infinite cube-free binary word and an infinite square-free ternary
word. Since late 1960’s commutative, i.e. abelian, variants of the above problems were studied.
For example, Evdokimov [Ev], Pleasant [Pl] and finally Keranen [Ke] with the optimal result

*Supported by the Academy of Finland under the grant 121419 and by the Vaisala Foundation.
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showed, respectively, that there exists an infinite word over a 25-, 5- and 4-letter alphabet
avoiding abelian squares. The optimal value three for the size of the alphabet avoiding abelian
cubes was proved by Dekking [De].

We introduce new variants of the problems by defining repetitions via new equivalence
relations which lie properly in between equality and commutative equality, i.e. abelian equality.

Let k ≥ 1 be a natural number. We say that words u and v in Σ+ are k-abelian equivalent,
in symbols u ≡a,k v, if

1. prefk−1 (u) = prefk−1 (v) and sufk−1 (u) = sufk−1 (v), and

2. for all w ∈ Σk, the number of occurrences of w in u and v coincide.

Here prefk−1 (resp. sufk−1) denotes the prefix (resp. suffix) of length k − 1.
Now, notions like k-abelian repetitions are naturally defined. For instance, w = uv is a

k-abelian square if and only if u ≡a,k v. In the binary case 2- and 3-abelian words are fairly
easy to characterize which allows us to estimate the sizes of the corresponding equivalence
classes. They are of order Θ (n2) and Θ (n4), see [HKSS].

The essential goal of this presentation is to point out that the natural variants of the Thue’s
problems asking the sizes of the smallest alphabets avoiding k-abelian squares and cubes are
not trivial, even in the case k = 2. The following table 1 summarizes the results we mentioned
at the beginning and at the same time tells the limits of our problems.

Avoidability of squares Avoidability of cubes
type of rep. type of rep.

size of the alph. = ≡a,2 ≡a size of the alph. = ≡a,2 ≡a
2 − − − 2 + ? −
3 + ? − 3 + + +
4 + + +

Table 1: Avoidability of different types of repetitions in infinite words.

We were able to settle the first one of the question marks in table 1 by computer checking
and the result was that the longest ternary word which is 2-abelian square-free has length
537 showing that there does not exist an infinite 2-abelian square-free word over any ternary
alphabet. To solve the other question mark we also did some computer checking - and obtained
evidence that the answer is likely to be different compared to the first one. For example, we were
able to construct a binary word of more than 100000 letters that still avoids 2-abelian cubes.
This shows that there exist, at least, very long binary 2-abelian cube-free words. We counted
also the number of 2-abelian square-free words with respect to their lengths and compared
these to the sizes of different sets of 2-abelian cube-free words. To mention an example we
have that the maximal number of ternary 2-abelian square-free words with a fixed length (105)
is 404286 and the number of binary 2-abelian cube-free words of length 60 is already 478456030.
In addition, in many cases the number of binary 2-abelian cube-free words grows exponentially
with a factor approximately 1,3 with respect to the length of words.

As a conclusion, our two considered problems would seem to behave differently: one like
words and the other like abelian words.
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Lower bounds for myopic DPLL algorithms with a cut heuristic
Dmitry Itsykson*, Dmitry Sokolov

†

Steklov Institute of Mathematics at St.Petersburg, Russian Academy of Sciences

We introduce a lower bounds on the time complexity of DPLL algorithms that solve the
satisfiability problem using a splitting strategy. We prove the theorem about effectiveness vs.
correctness trade-off for deterministic myopic DPLL algorithms with cut heuristic.

DPLL (are named by the authors: Davis, Putnam, Logemann and Loveland) algorithms are
one of the most popular approach to the problem of satisfiability of Boolean formulas (SAT).
DPLL algorithm is a recursive algorithm that takes the input formula φ, uses a procedure A to
choose a variable x, uses a procedure B that chooses the value a ∈ {0, 1} for the variable x that
would be investigated first, and makes two recursive calls on inputs φ[x := a] the φ[x := 1−a].
Note that the second call is not necessary if the first one returns the result, that the formula
is satisfiable.

There is a number of works concerning lower bounds for DPLL algorithms: for unsatisfiable
formulas exponential lower bounds follow from lower bounds on the complexity of resolution
proofs [1], [2]. In case of satisfiable formulas we have no hope to prove superpolynomial lower
bound since if P = NP, then procedure B may always choose the correct value of the variable
according to some satisfying assignment. The paper [3] gives exponential lower bounds on
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and MK-4089.2010.1 and by RFBR.

†
Partially supported by CS Club Scholarship.

49



satisfiable formulas for two wide enough classes of DPLL algorithms: myopic and drunken
algorithms. In the myopic case procedures A and B can see formula with erased signs of
negation, they can request the number of positive and negative occurrences for every variable
and also may read K = n1−ε clauses precisely.

All lower bounds for satisfiable instances are based on the fact that during several first
steps algorithm falls into a hard unsatisfiale formula, and algorithm should investigate the
whole it’ splitting tree. In this work we extend the class of DPLL algorithms by adding the
procedure C that may decide that some branch of the splitting tree will not be investigated
since it is not too “perspective”. More precisely, before each recursive call an algorithm calls
the procedure C that decides whether to make this recursive call or not. DPLL algorithms
with cut heuristic are always give a correct answer on unsatisfiable formulas; however they
may err on satisfiable formulas. On the other hand if the presence of a cut heuristic gives the
substantial improvement on the time complexity while the bad instances (i.e. instances on
which the algorithm errs) are not easy to find, then such algorithms become reasonable.

In this work we show that it is possible to construct the family of unsatisfiable formulas Φ(n)

in polynomial time such that for every myopic deterministic heuristics A and C there exists
a polynomial time samplable ensemble of distributions Rn such that the DPLL algorithm
based on procedures A,B and C for some B either errs on 99% of random inputs according
Rn or runs exponential time on formulas Φ(n). In case A and C are not restricted we show
that a statement similar to above is equivalent to P 6= NP. The case of randomized myopic
procedures A and C is left open.

Heuristic acceptors. The study of DPLL algorithms with cut heuristic was also motivated
by the study of heuristic acceptors [4] The distributional proving problem is a pair (L,D) of a
language L and a polynomial time samplable distribution D concentrated on the complement
of D. An algorithm A is called a heuristic acceptor if it has additional input d that represents
the parameter of the error and for every x ∈ L and d ∈ N, A(x, d) returns 1 and Prx←Dn [A(x) =
1] < 1/d for every integer n. We call an acceptor polynomially bounded if for every x ∈ L
running time of A(x, d) is bounded by polynomial in |x| · d. The paper [4] shows that the
existence of distributed proving problems that have no polynomially bounded acceptors is
equivalent to the existence of infinitely often one-way functions.

Let D be some distribution concentrated on satisfiable formulas. We consider DPLL al-
gorithm with a cut heuristic supplied with an additional parameter d that is available for
procedures A,B,C. We call such an algorithm a heuristic DPLL acceptor if it satisfies the
definition of a heuristic acceptor. Our result implies that there are no deterministic polynomi-
ally bounded myopic DPLL acceptors for the proving problem (UNSAT,Q).
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Reset complexity of ideal languages
Marina I. Maslennikova

Ural Federal University, Ekaterinburg, Russia

We present a new characteristic of a regular ideal language called reset complexity. We find
some bounds on the reset complexity in terms of the state complexity of a given language.
We also compare the reset complexity and the state complexity for languages related to slowly
synchronizing automata and study the uniqueness question for automata yielding the minimum
of reset complexity.

A DFA A = 〈Q,Σ, δ〉 is called synchronizing if there exists a word w ∈ Σ∗ which leaves the
automaton in one particular state no matter which state in Q it starts at: δ(q, w) = δ(q′, w)
for all q, q′ ∈ Q. Any such word is said to be synchronizing (or reset) for the DFA A . By
Syn(A ) we denote the language of all words synchronizing A .

Synchronizing automata are of interest, motivated mostly by the Černý conjecture.
Černý [2] produced for each n > 1 a synchronizing automaton Cn with n states over a bi-
nary alphabet whose shortest synchronizing word has length (n − 1)2. Later he conjectured
that each synchronizing automaton with n states possesses a synchronizing word of length at
most (n− 1)2. This conjecture has been proved for various classes of synchronizing automata,
nevertheless in general it remains one of the most longstanding open problems in automata
theory. For more details on synchronizing automata see the survey [3].

Recall that a DFA with a distinguished initial state and a distinguished set of final states
is called minimal if it contains no (different) equivalent states and all states are reachable
from the initial state. For a given regular language L, the minimal automaton recognizing L
is unique up to isomorphism. The number of states in the minimal DFA is denoted by sc(L)
and is called state complexity of the language L.

In what follows we consider only ideal languages, that is, languages L satisfying the property
L = Σ∗LΣ∗. It is obvious that the language of synchronizing words of a given synchronizing
automaton satisfies this property. We have the following

Lemma 1. Let L be an ideal language and A the minimal automaton recognizing L. Then A
is synchronizing and Syn(A ) = L.

Lemma 1 shows that for every ideal language L there is a synchronizing automaton A such
that Syn(A ) = L. Thus, it is rather natural to find out how many states such an automaton A
may have. We define the reset complexity rc(L) of an ideal language L as the minimal possible
number of states in a synchronizing automaton A such that Syn(A ) = L. By Lemma 1 we
have rc(L) ≤ sc(L). Now it is of interest how big a gap between rc(L) and sc(L) can be. For
a unary alphabet we obtain that the two numbers coincide.

Proposition 1. Let L be an ideal language over a unary alphabet. Then sc(L) = rc(L) = `+1,
where ` is the minimum length of words in L.
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In contrast, for a binary alphabet the gap between rc(L) and sc(L) can be exponentially
large. To prove this fact we consider examples of “slowly” synchronizing automata, i.e. au-
tomata whose shortest synchronizing words have length close to (n − 1)2. The first example
belongs to Černý [2], the others are taken from [1]. For all these examples we have the following

Proposition 2. For every “slowly” synchronizing automaton An with n states,

sc(Syn(An)) = 2n − n and rc(Syn(An)) = n.

Thus, we see that the description of an ideal language L by means of an automaton for
which L serves as the language of synchronizing words can be exponentially more succinct than
the “standard” description via minimal automaton recognizing L.

Another interesting question concerns the uniqueness of automata yielding the minimum
of reset complexity. Here we exhibit a strongly connected 6-state synchronizing automaton C6

and a 6-state synchronizing automaton S6 having a sink state (a state fixed by all letters) such
that C6 and S6 have the same language of synchronizing words, namely L = (a+ b)∗(b3ab2a+
a2b3a+abab3a+ab2ab3a)(a+b)∗. By an exhaustive computer search we have shown that L is not
the language of synchronizing words for any synchronizing automaton with less than 6 states
whence both C6 and S6 are minimal in terms of reset complexity. However the question that
remains open is whether or not the uniqueness takes places within the class of automata with
sink and within the class of strongly connected automata.
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An Upper bound on the chromatic number of circle graphs without K4

Gleb V. Nenashev
St.Petersburg State University

Let G be a circle graph without clique on 4 vertices. We proof that the chromatic number
of G doesn’t exceed 30.

Definition 1. Let us fix a circle. A circle graph is an intersection graph of a set of chords of
the circle.
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Definition 2. A vertex coloring of a graph is proper, if any two adjacent vertices have different
colors. The chromatic number χ(G) of a graph G is the least positive integer n such that there
is a proper vertex coloring of G with n colors.

As usual w(G) denote the clique number of a graph G (the size of maximal clique of a
graph G).

Let G be a circle graph. A lot of results about the chromatic numbers of circle graphs are
known. In 1988 A. V. Kostochka [1] proved that χ(G) ≤ 5 for a circle graph G without K3. In
1996 A. A. Ageev [2] constructed a circle graph G without K3 and χ(G) = 5, i.e. the bound
from [1] is tight. In 1997 A. V. Kostochka and J. Kratochvil [3] proved that χ(G) ≤ 2w(G)+6

. In 1999 A. A. Ageev [4] proved the bound χ(G) ≤ 3 for a circle graph G without K3 with
girth at least 5 (i.e. without cicles of length 3 and 4).

In 2011 A. V. Kostochka and K. G. Milans [7] showed, that a circle graph without K4 can
be colored in 38 colors. We prove a stronger theorem.

Theorem 1. Let G be a circle graph without K4. Then χ(G) ≤ 30.

In fact, we prove a more general statement.

Theorem 2. Suppose that every circle graph with clique number at most k can be colored in
n colors. Then every circle graph with clique number k + 1 can be colored in 6n colors.

This statement together with the results of [1] provide the result of theorem 1.
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Constructing Premaximal Binary Cube-free Words of Any Level
Elena A. Petrova, Arseny M. Shur

Ural State University Ekaterinburg, Russia

Abstract

We study the structure of the language of binary cube-free words. Namely, we are in-
terested in the cube-free words that cannot be infinitely extended preserving cube-freeness.
We show the existence of such words with arbitrarily long finite extensions, both to one
side and to both sides.

The study of repetition-free words and languages remains quite popular in combinatorics
of words: lots of interesting and challenging problems are still open. The most popular
repetition-free binary languages are the cube-free language CF and the overlap-free language
OF. The language CF is much bigger and has much more complicated structure. For example,
the number of overlap-free binary words grows only polynomially with the length [7], while
the language of cube-free words has exponential growth [3]. The most accurate bounds for
the growth of OF is given in [6] and for the growth of CF in [11]. Further, there is essentially
unique nontrivial morphism preserving OF [8], while there are uniform morphisms of any length
preserving CF [5]. The sets of two-sided infinite overlap-free and cube-free binary words also
have quite different structure, see [10].

Any repetition-free language can be viewed as a poset with respect to prefix, suffix, or factor
order. In case of prefix [suffix] order, the diagram of such a poset is a tree; each node generates a
subtree and is a common prefix [respectively, suffix] of its descendants. The following questions
arise naturally. Does a given word generate finite or infinite subtree? Are the subtrees generated
by two given words isomorphic? Can words generate arbitrarily large finite subtrees? For some
power-free languages, the decidability of the first question was proved in [4] as a corollary of
interesting structural properties. The third question for ternary square-free words constitutes
Problem 1.10.9 of [1]. For all kth power-free languages, it was shown in [2] that the subtree
generated by any word has at least one leaf. Note that considering the factor order instead
of the prefix or the suffix one, we get a more general acyclic graph instead of a tree, but still
can ask the same questions about the structure of this graph. For the language OF, all these
questions were answered in [9, 12], but almost nothing is known about the same questions for
CF.

In this paper, we answer the third question for the language CF in the affirmative. Namely,
we construct cube-free words that generate subtrees of any prescribed depth and then extend
this result for the subgraphs of the diagram of factor order.

Let L ⊂ Σ∗ and W ∈ L. Any word U ∈ Σ∗ such that UW ∈ L is called a left context of
W in L. The word W is left maximal [left premaximal ] if it has no nonempty left contexts
[respectively, finitely many left contexts]. The level of the left premaximal word W is the length
of its longest left context; thus, left maximal words are of level 0. The right counterparts of the
above notions are defined in a symmetric way. We say that a word is maximal [premaximal] if
it is both left and right maximal [respectively, premaximal]. The level of a premaximal word
W is the pair (n, k) ∈ N such that n and k are the length of the longest left context of W and
the length of its longest right context, respectively.
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The aim of this paper is to prove the following theorems:

Theorem 1. In CF, there exist left premaximal words of any level n ∈ N0.

Theorem 2. In CF, there exist premaximal words of any level (n, k) ∈ N2
0.
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Function and Image Manipulation with Automata
Turo Sallinen

Department of Mathematics and Turku Centre for Computer Science (TUCS)
University of Turku

Finite automata are among the simplest models of conventional computing. They operate
on words over a finite alphabet. Instead of mere acceptance, we can use nondeterministic
automata equipped with weights, first introduced by Schützenberger, to compute real valued
functions.

We start by giving the basic definitions for computing functions in one and two dimensions.
In the one dimensional case we see that integration is an easy operation and our class of
automata is closed with respect to it. Even a fractal type function is simple to integrate, unlike
in traditional calculus. In two dimensions functions are depicted in grayscale images and we
see that many basic image transformations – such as product, adding, change of contrast,
squeezing, zooming, rotation, integration and (partial) derivation – are simple to implement.
Most importantly, all the transformations can be done directly on the automata representation
without computing the function itself.

On Abelian Repetition Threshold
Alexey V. Samsonov, Arseny M. Shur

Ural State University, Ekaterinburg, Russia

Abstract

We study the avoidance of Abelian powers of words and consider three reasonable
generalizations of the notion of Abelian power to fractional powers. Our main goal is to
find an Abelian analogue of the repetition threshold, i. e. a numerical value separating
k-avoidable and k-unavoidable Abelian powers for each size k of the alphabet. We prove
lower bounds for the Abelian repetion threshold for large alphabets and all definitions of
Abelian fractional power. We develop a method estimating the exponential growth rate
of Abelian-power-free languages. Using this method, we get non-trivial lower bounds for
Abelian repetition threshold for small alphabets. We suggest that some of the obtained
bounds are the exact values of Abelian repetition threshold.

Introduction

The study of avoidable powers of words has more than a centennial history since the paper by
Thue [15]. If w is a word, |w| is its length, β > 1 is a number, then wβ is a unique prefix v of
the infinite word www . . ., whose length satisfies the conditions |v|/|w| ≥ β, (|v|−1)/|w| < β.
A word u is β-free, if none of its factors, including u itself, is a β-power. A β-power is said
to be k-avoidable if there are infinitely many β-free words (or, equivalently, an infinite β-free
word) over the k-letter alphabet, and k-unavoidable otherwise.

For any k-letter alphabet (k ≥ 2), the repetition threshold is the number RT (k) which
separates k-unavoidable and k-avoidable powers of words. Famous Dejean’s conjecture [8]
(proven in [3, 5, 12]) states that RT (3) = 7/4, RT (4) = 7/5, and RT (k) = k/(k−1) otherwise.
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Abelian powers of words were first considered in [10]. The word w1w2 . . . wn is an Abelian
n-th power, if each of the words w2, . . . , wn is an anagram of w1. The avoidability of Abelian
integral powers is well studied ([1, 4, 4, De, Ke]). In contrast with the usual powers, there
are several ways to generalize the notion of Abelian power to fractional exponents. We define
weak, semistrong and strong Abelian fractional powers and then work with all three definitions.
Once a definition of Abelian fractional power is chosen, Abelian repetition threshold can be
defined in the same way as the “usual” repetition threshold. We study the values of Abelian
repetition threshold for all alphabets and three suggested definitions.

Definitons

Let Σ = {1, . . . , k} be an alphabet and w ∈ Σ∗ be an arbitrary k-ary word. The Parikh vector
~p(w) is the vector of length k whose ith component equals the number of occurrences of the
letter i in w, for any i = 1, . . . , k. If v ∈ Σ∗, then the notation ~p(w) ≤ ~p(v) means that the ith
component of ~p(w) is not greater than the ith component of ~p(v), for any i = 1, . . . , k.

Let m ≥ 2 be an integer. An Abelian m-power is a word of the form w1w2 . . . wm, where wi
is an anagram of w1 for 2 ≤ i ≤ m, or ~p(w1) = . . . = ~p(wm). Now we extend this definition to
the rational numbers in the range (1,∞). Let β > 1, |w1| = q, m = bβc, t = d{β}qe, where
{β} stands for the fractional part of β. Consider a word of the form w = w1 . . . wmv, where
w1 . . . wm is an abelian m-power and |v| = t. The terms root and tail denote the words w1 and
v respectively. We consider three different restrictions upon the Parikh vector of the tail, thus
obtaining three definitions of Abelian fractional power. Let pref(u, l) be the prefix of length l
of the word u.

A weak Abelian β-power is a word w of the form described above such that ~p(v) ≤ ~p(w1).
That is, the tail is a prefix of an anagram of the root.

A strong Abelian β-power is a word w of the form described above such that ~p(v) =
~p(pref(w1, t)). That is, the tail is an anagram of a prefix of the root.

A semistrong Abelian β-power is a word w of the form described above such that ~p(v) ≤∨
i=1,m

~p(pref(wi, t)), where
∨

is the operation of taking maximum componentwise.

Example. The word abc cba ac is a semistrong and a weak Abelian (8/3)-power, but not a
strong Abelian (8/3)-power, because ac is not a permutation of ab. The word abcaa is not even
a weak Abelian (5/3)-power, but is a strong, semistrong and weak Abelian (5/4)-power.

Abelian exponent of a word w is the maximal rational number β such that w is an Abelian
β-power. A word w is Abelian-β-free if all its factors have Abelian exponents less than β.
By Abelian-β-free languages we mean the languages of all Abelian-β-free words over a given
alphabet. We consider three types of Abelian-power-free languages (weak, semistrong and
strong).

Results

We prove uniform lower bounds for both strong and weak Abelian repetition threshold (denoted
by ARTs(k) and ARTw(k), respectively). In view of the numerical results, it looks highly
probable that our bound for ARTs(k) is exact, while the bound for ARTw(k) can be improved.

Theorem 1. ARTw(k) ≥ k
k−2 for all k ≥ 10.

Theorem 2. ARTs(k) ≥ k−2
k−3 for all k ≥ 5.
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We use method proposed in [14] to obtain upper bounds for the growth rates of certain
Abelian power-free languages. These bounds provide a strong evidence that Abelian repetition
thresholds for strong and semistrong Abelian powers coincide, so we are able to formulate the
following

Conjecture 1. The Abelian repetition threshold for strong and semistrong Abelian powers
is given by

ARTs(k) =


11/3, k = 2,

2, k = 3,

9/5, k = 4,

(k−2)/(k−3), k ≥ 5.
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Abstract

The paper deals with the synchronization of a random automaton that is sampled
uniformly at random from the set of all automata with n states and m letters. We show
that for m = 4 the probability that a random automaton is synchronizing is larger than a
positive constant.

Let A = (Q,Σ, δ) be a deterministic finite automaton (DFA), where Q denotes a state set,
Σ stands for an input alphabet, and δ : Q×Σ→ Q is a transition function defining an action
of the letters in Σ on Q. A word w is said to be a reset word for DFA A if its action leaves A
in one particular state no matter what state it starts at: δ(q1, w) = δ(q2, w) for all q1, q2 ∈ Q.
A DFA A is called synchronizing if it possesses a reset word.

Since synchronizing automata are applied in different areas: robotics, model-based testing
of reactive systems, symbolic dynamics, DNA computing and many others (for example, [6]),
efficient algorithms finding a reset word are of utmost necessity. One of the parameters defining
the quality of such algorithms is the length of the reset word and this draws attention to the
problem of estimating this length.

The best up do date upper bound on the length of the shortest reset word for DFA with
n states equals (n3 − n)/6; it was obtained by Pin [4] in 1983. The conjecture that the length
cannot be larger than (n − 1)2 formulated by Černý has been proved for some classes of the
automata but remains unproven in the general case.

In fact, slowly synchronizing automata, i.e. automata with the shortest reset word of length
Θ(n2) are known to be exceptional. For a long time the only infinite series of such automata
was the original one proposed by Černý [3]. The other substantially different ones [1, 2] have
only recently been constructed. This fact in combination with the results of the numerical
experiments make the random case more important in practical sense than the extremal one.

Let us define the notion of random automaton and state the questions of interest concerning
its synchronization properties.

Consider a set of states Q and an alphabet Σ. Let us pick uniformly at random a transition
function δ from the set {δ : Q × Σ → Q}. A resulting triple (Q,Σ, δ) defines a random
deterministic finite automaton. It is important to note that a random automaton can be
constructed as follows: for each q ∈ Q and for each a ∈ Σ we choose q′ = δ(q, a) uniformly at
random from Q.

We are interested in the following questions:

• What size of an alphabet does imply that a random automaton with the alphabet of this
size is synchronizing with high probability (whp) and what is the length of the shortest
reset word in this case? (By “high probability” we mean that the probability tends to 1
with n going to infinity.)

• What size of an alphabet does imply that a random automaton with the alphabet of this
size is synchronizing and complies with the Černý conjecture whp?

• What size of an alphabet does imply that a random automaton with the alphabet of
this size is synchronizing with constant probability (wcp)? (By “constant probability” we
mean that the probability is bounded from below by a positive constant with n going to
infinity.)
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In [5] we give partial answers to the first two questions for automata with n states and m(n)
letters. In this paper we address the third question and show that a random automaton with
the alphabet size independent of the number of states is synchronizing though with constant
probability. Our main result is the following theorem.

Theorem 1. There is a constant p0 > 0 such that for any natural number n a random au-
tomaton A = (Q,Σ, δ) with |Q| = n, |Σ| = 4 is synchronizing with the probability greater than
p0.
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