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Tropical semi-ring
Tropical semi-ring T is endowed with operations ⊕, ⊗.
If T is an ordered semi-group then T is a tropical semi-ring with
inherited operations ⊕ := min, ⊗ := +.
If T is an ordered (resp. abelian) group then T is a tropical
semi-skew-field (resp. tropical semi-field) w.r.t. � := −.
Examples • Z+ := {0 ≤ a ∈ Z}, Z+

∞ := Z+ ∪ {∞} are commutative
tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1;
• Z, Z∞ are semi-fields;
• n × n matrices over Z∞ form a non-commutative tropical semi-ring:
(aij)⊗ (bkl) := (⊕1≤j≤naij ⊗ bjl).

Tropical polynomials

Tropical monomial x⊗i := x ⊗ · · · ⊗ x , Q = a⊗ x⊗i1
1 ⊗ · · · ⊗ x⊗in

n , its
tropical degree trdeg = i1 + · · ·+ in. Then Q = a + i1 · x1 + · · ·+ in · xn.
Tropical polynomial f =

⊕
j(aj ⊗ x ij1

1 ⊗ · · · ⊗ x ijn
n ) = minj{Qj};

x = (x1, . . . , xn) is a tropical zero of f if minimum minj{Qj} is attained
for at least two different values of j .

Dima Grigoriev (CNRS) Tropical linear systems 21.9.11 2 / 20



Tropical semi-ring
Tropical semi-ring T is endowed with operations ⊕, ⊗.
If T is an ordered semi-group then T is a tropical semi-ring with
inherited operations ⊕ := min, ⊗ := +.
If T is an ordered (resp. abelian) group then T is a tropical
semi-skew-field (resp. tropical semi-field) w.r.t. � := −.
Examples • Z+ := {0 ≤ a ∈ Z}, Z+

∞ := Z+ ∪ {∞} are commutative
tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1;
• Z, Z∞ are semi-fields;
• n × n matrices over Z∞ form a non-commutative tropical semi-ring:
(aij)⊗ (bkl) := (⊕1≤j≤naij ⊗ bjl).

Tropical polynomials

Tropical monomial x⊗i := x ⊗ · · · ⊗ x , Q = a⊗ x⊗i1
1 ⊗ · · · ⊗ x⊗in

n , its
tropical degree trdeg = i1 + · · ·+ in. Then Q = a + i1 · x1 + · · ·+ in · xn.
Tropical polynomial f =

⊕
j(aj ⊗ x ij1

1 ⊗ · · · ⊗ x ijn
n ) = minj{Qj};

x = (x1, . . . , xn) is a tropical zero of f if minimum minj{Qj} is attained
for at least two different values of j .

Dima Grigoriev (CNRS) Tropical linear systems 21.9.11 2 / 20



Tropical semi-ring
Tropical semi-ring T is endowed with operations ⊕, ⊗.
If T is an ordered semi-group then T is a tropical semi-ring with
inherited operations ⊕ := min, ⊗ := +.
If T is an ordered (resp. abelian) group then T is a tropical
semi-skew-field (resp. tropical semi-field) w.r.t. � := −.
Examples • Z+ := {0 ≤ a ∈ Z}, Z+

∞ := Z+ ∪ {∞} are commutative
tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1;
• Z, Z∞ are semi-fields;
• n × n matrices over Z∞ form a non-commutative tropical semi-ring:
(aij)⊗ (bkl) := (⊕1≤j≤naij ⊗ bjl).

Tropical polynomials

Tropical monomial x⊗i := x ⊗ · · · ⊗ x , Q = a⊗ x⊗i1
1 ⊗ · · · ⊗ x⊗in

n , its
tropical degree trdeg = i1 + · · ·+ in. Then Q = a + i1 · x1 + · · ·+ in · xn.
Tropical polynomial f =

⊕
j(aj ⊗ x ij1

1 ⊗ · · · ⊗ x ijn
n ) = minj{Qj};

x = (x1, . . . , xn) is a tropical zero of f if minimum minj{Qj} is attained
for at least two different values of j .

Dima Grigoriev (CNRS) Tropical linear systems 21.9.11 2 / 20



Tropical semi-ring
Tropical semi-ring T is endowed with operations ⊕, ⊗.
If T is an ordered semi-group then T is a tropical semi-ring with
inherited operations ⊕ := min, ⊗ := +.
If T is an ordered (resp. abelian) group then T is a tropical
semi-skew-field (resp. tropical semi-field) w.r.t. � := −.
Examples • Z+ := {0 ≤ a ∈ Z}, Z+

∞ := Z+ ∪ {∞} are commutative
tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1;
• Z, Z∞ are semi-fields;
• n × n matrices over Z∞ form a non-commutative tropical semi-ring:
(aij)⊗ (bkl) := (⊕1≤j≤naij ⊗ bjl).

Tropical polynomials

Tropical monomial x⊗i := x ⊗ · · · ⊗ x , Q = a⊗ x⊗i1
1 ⊗ · · · ⊗ x⊗in

n , its
tropical degree trdeg = i1 + · · ·+ in. Then Q = a + i1 · x1 + · · ·+ in · xn.
Tropical polynomial f =

⊕
j(aj ⊗ x ij1

1 ⊗ · · · ⊗ x ijn
n ) = minj{Qj};

x = (x1, . . . , xn) is a tropical zero of f if minimum minj{Qj} is attained
for at least two different values of j .

Dima Grigoriev (CNRS) Tropical linear systems 21.9.11 2 / 20



Tropical semi-ring
Tropical semi-ring T is endowed with operations ⊕, ⊗.
If T is an ordered semi-group then T is a tropical semi-ring with
inherited operations ⊕ := min, ⊗ := +.
If T is an ordered (resp. abelian) group then T is a tropical
semi-skew-field (resp. tropical semi-field) w.r.t. � := −.
Examples • Z+ := {0 ≤ a ∈ Z}, Z+

∞ := Z+ ∪ {∞} are commutative
tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1;
• Z, Z∞ are semi-fields;
• n × n matrices over Z∞ form a non-commutative tropical semi-ring:
(aij)⊗ (bkl) := (⊕1≤j≤naij ⊗ bjl).

Tropical polynomials

Tropical monomial x⊗i := x ⊗ · · · ⊗ x , Q = a⊗ x⊗i1
1 ⊗ · · · ⊗ x⊗in

n , its
tropical degree trdeg = i1 + · · ·+ in. Then Q = a + i1 · x1 + · · ·+ in · xn.
Tropical polynomial f =

⊕
j(aj ⊗ x ij1

1 ⊗ · · · ⊗ x ijn
n ) = minj{Qj};

x = (x1, . . . , xn) is a tropical zero of f if minimum minj{Qj} is attained
for at least two different values of j .

Dima Grigoriev (CNRS) Tropical linear systems 21.9.11 2 / 20



Tropical semi-ring
Tropical semi-ring T is endowed with operations ⊕, ⊗.
If T is an ordered semi-group then T is a tropical semi-ring with
inherited operations ⊕ := min, ⊗ := +.
If T is an ordered (resp. abelian) group then T is a tropical
semi-skew-field (resp. tropical semi-field) w.r.t. � := −.
Examples • Z+ := {0 ≤ a ∈ Z}, Z+

∞ := Z+ ∪ {∞} are commutative
tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1;
• Z, Z∞ are semi-fields;
• n × n matrices over Z∞ form a non-commutative tropical semi-ring:
(aij)⊗ (bkl) := (⊕1≤j≤naij ⊗ bjl).

Tropical polynomials

Tropical monomial x⊗i := x ⊗ · · · ⊗ x , Q = a⊗ x⊗i1
1 ⊗ · · · ⊗ x⊗in

n , its
tropical degree trdeg = i1 + · · ·+ in. Then Q = a + i1 · x1 + · · ·+ in · xn.
Tropical polynomial f =

⊕
j(aj ⊗ x ij1

1 ⊗ · · · ⊗ x ijn
n ) = minj{Qj};

x = (x1, . . . , xn) is a tropical zero of f if minimum minj{Qj} is attained
for at least two different values of j .

Dima Grigoriev (CNRS) Tropical linear systems 21.9.11 2 / 20



Tropical semi-ring
Tropical semi-ring T is endowed with operations ⊕, ⊗.
If T is an ordered semi-group then T is a tropical semi-ring with
inherited operations ⊕ := min, ⊗ := +.
If T is an ordered (resp. abelian) group then T is a tropical
semi-skew-field (resp. tropical semi-field) w.r.t. � := −.
Examples • Z+ := {0 ≤ a ∈ Z}, Z+

∞ := Z+ ∪ {∞} are commutative
tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1;
• Z, Z∞ are semi-fields;
• n × n matrices over Z∞ form a non-commutative tropical semi-ring:
(aij)⊗ (bkl) := (⊕1≤j≤naij ⊗ bjl).

Tropical polynomials

Tropical monomial x⊗i := x ⊗ · · · ⊗ x , Q = a⊗ x⊗i1
1 ⊗ · · · ⊗ x⊗in

n , its
tropical degree trdeg = i1 + · · ·+ in. Then Q = a + i1 · x1 + · · ·+ in · xn.
Tropical polynomial f =

⊕
j(aj ⊗ x ij1

1 ⊗ · · · ⊗ x ijn
n ) = minj{Qj};

x = (x1, . . . , xn) is a tropical zero of f if minimum minj{Qj} is attained
for at least two different values of j .

Dima Grigoriev (CNRS) Tropical linear systems 21.9.11 2 / 20



Tropical semi-ring
Tropical semi-ring T is endowed with operations ⊕, ⊗.
If T is an ordered semi-group then T is a tropical semi-ring with
inherited operations ⊕ := min, ⊗ := +.
If T is an ordered (resp. abelian) group then T is a tropical
semi-skew-field (resp. tropical semi-field) w.r.t. � := −.
Examples • Z+ := {0 ≤ a ∈ Z}, Z+

∞ := Z+ ∪ {∞} are commutative
tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1;
• Z, Z∞ are semi-fields;
• n × n matrices over Z∞ form a non-commutative tropical semi-ring:
(aij)⊗ (bkl) := (⊕1≤j≤naij ⊗ bjl).

Tropical polynomials

Tropical monomial x⊗i := x ⊗ · · · ⊗ x , Q = a⊗ x⊗i1
1 ⊗ · · · ⊗ x⊗in

n , its
tropical degree trdeg = i1 + · · ·+ in. Then Q = a + i1 · x1 + · · ·+ in · xn.
Tropical polynomial f =

⊕
j(aj ⊗ x ij1

1 ⊗ · · · ⊗ x ijn
n ) = minj{Qj};

x = (x1, . . . , xn) is a tropical zero of f if minimum minj{Qj} is attained
for at least two different values of j .

Dima Grigoriev (CNRS) Tropical linear systems 21.9.11 2 / 20



Tropical semi-ring
Tropical semi-ring T is endowed with operations ⊕, ⊗.
If T is an ordered semi-group then T is a tropical semi-ring with
inherited operations ⊕ := min, ⊗ := +.
If T is an ordered (resp. abelian) group then T is a tropical
semi-skew-field (resp. tropical semi-field) w.r.t. � := −.
Examples • Z+ := {0 ≤ a ∈ Z}, Z+

∞ := Z+ ∪ {∞} are commutative
tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1;
• Z, Z∞ are semi-fields;
• n × n matrices over Z∞ form a non-commutative tropical semi-ring:
(aij)⊗ (bkl) := (⊕1≤j≤naij ⊗ bjl).

Tropical polynomials

Tropical monomial x⊗i := x ⊗ · · · ⊗ x , Q = a⊗ x⊗i1
1 ⊗ · · · ⊗ x⊗in

n , its
tropical degree trdeg = i1 + · · ·+ in. Then Q = a + i1 · x1 + · · ·+ in · xn.
Tropical polynomial f =

⊕
j(aj ⊗ x ij1

1 ⊗ · · · ⊗ x ijn
n ) = minj{Qj};

x = (x1, . . . , xn) is a tropical zero of f if minimum minj{Qj} is attained
for at least two different values of j .

Dima Grigoriev (CNRS) Tropical linear systems 21.9.11 2 / 20



Tropical linear systems
If T is an ordered semi-group then tropical linear function over T can
be written as min1≤i≤n{ai + xi}.

Tropical linear system

min
1≤j≤n

{ai,j + xj}, 1 ≤ i ≤ m (1)

(or (m × n)-matrix A = (ai,j)) has a tropical solution x = (x1 . . . , xn) if
for every row 1 ≤ i ≤ m there are two columns 1 ≤ k < l ≤ n such that

ai,k + xk = ai,l + xl = min
1≤j≤n

{ai,j + xj}

Coefficients ai,j ∈ Z∞ := Z ∪ {∞}. Not all xj =∞. For ai,j ∈ Z we
assume 0 ≤ ai,j ≤ M.

n × n matrix (ai,j) is tropically non-singular if
minπ∈Sn{a1,π(1) + · · ·+ an,π(n)} is attained for a unique permutation π
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Complexity of solving tropical linear systems
Theorem
One can solve a tropical linear system (1) within complexity polynomial
in n,m,M. (Akian-Gaubert-Guterman; G.)
Moreover, the algorithm either finds a solution over Z∞ or produces an
n × n tropically nonsingular submatrix of A.

Corollary
The problem of solvability of tropical linear systems is in the complexity
class NP ∩ coNP.

Remark
My algorithm has also a complexity bound polynomial in 2nm, log M (as
well as an obvious algorithm which invokes linear programming).

Open question. Are tropical linear systems solvable within polynomial
(in n,m, log M) complexity (i. e. in the complexity class P)? Is it true for
my algorithm?
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Tropical and Kapranov ranks
Tropical rank trk(A) of matrix A is the maximal size of its tropically
nonsingular square submatrices.
A lifting of A is a matrix F = (fi,j) over the field of Newton-Puiseux
series K = R((t1/∞)) for a field R such that the order ordt(fi,j) = ai,j
where fi,j = b1 · tq1 + b2 · tq2 + · · · with rational exponents
ai,j = q1 < q2 < · · · having common denominator, or fi,j = 0 when
ai,j =∞.
Kapranov rank KrkR(A) = minimum of ranks (over K ) of liftings of A.
trk(A) ≤ KrkR(A) and not always equal (Develin-Santos-Sturmfels)

Complexity of computing ranks
• For n × n matrix B testing trk(B) = n (⇔ B is tropically nonsingular)
has polynomial complexity (Hungarian method);
• trk(A) = r is NP-hard, trk(A) ≥ r is NP-complete (Kim-Roush);
• Solvability of polynomial equations over R is reducible to
KrkR(A) = 3 (Kim-Roush).
Example R = Q or R = GF [p](t).
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Barvinok rank
Brk(A) is the minimal q such that A = (u1 ⊗ v1)⊕ · · · ⊕ (uq ⊗ vq) for
suitable vectors u1, . . . , vq over T
KrkR(A) ≤ Brk(A) and the equality is not always true
(Develin-Santos-Sturmfels)
Computing Barvinok rank is NP-hard (Kim-Roush)
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Solvability of a tropical linear system and rank(s)
The theorem on complexity of solving tropical linear systems implies

Corollary
The following statements are equivalent

1) a tropical linear system (1) with m × n matrix A has a solution;

2) trk(A) < n;

3) KrkR(A) < n.

Remark
• The corollary holds for matrices over R∞.

• For matrices A with finite coefficients from R it was proved by
Develin-Santos-Sturmfels.

• Equivalence of 1) and 2) was established by Izhakian-Rowen.
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Testing uniqueness of a tropical solution

Proposition
One can test uniqueness (in the tropical projective space) of a solution
of a tropical linear system (1) within complexity polynomial in n,m,M.

Open question. Is it possible to compute the dimension of a tropical
linear space within complexity polynomial in n,m,M?

Solving tropical nonhomogeneous linear systems

Proposition
One can test solvability of a tropical nonhomogeneous linear system

min
1≤j≤n

{ai,j + xj ,ai}, 1 ≤ i ≤ m

within complexity polynomial in n,m,M.

Solvability of tropical polynomial systems is NP-complete (Theobald).
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”Dual” (classical) Nullstellensatz
For polynomials g1, . . . ,gs ∈ C[X1, . . . ,Xk ] consider an infinite Cayley
matrix C with the columns indexed by monomials X I and the rows by
shifts X J · gi

Nullstellensatz: system g1 = · · · = gs = 0 has no solution iff a linear
combination of the rows of a suitable finite submatrix C0 of C
(generated by a set of rows of C) equals vector (1,0, . . . ,0).
Effective Nullstellensatz: bound on the size of C0 via k and deg(gi).

Dual Nullstellensatz: g1 = · · · = gs = 0 has a solution iff linear
system C0 · (y0, . . . , yN) = 0 has a solution with y0 6= 0.
Infinite dual Nullstellensatz: g1 = · · · = gs = 0 has a solution iff
infinite linear system C · (y0, . . . ) = 0 has a solution with y0 6= 0.

Remark
Nullstellensatz tells about ideal 〈g1, . . . ,gs〉, while the (infinite) dual
Nullstellensatz forgets the ideal, and therefore, gives a hope to hold in
the tropical setting
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Conjecture on tropical (dual) Nullstellensatz
Assume w.l.o.g. that for tropical polynomials h =

⊕
J(aJ ⊗ X⊗J) in k

variables which we consider, function J → aJ is concave on Rk . This
assumption does not change tropical varieties.
For tropical polynomials h1, . . . ,hs consider (infinite in all 4 directions)
Cayley matrix H with the rows indexed by X⊗I ⊗ hi for I ∈ Zk .
Conjecture. h1, . . . ,hs have a tropical solution iff infinite tropical linear
system H ⊗ (. . . , z0, . . . ) has a solution with z0 6=∞.
Conjecture. Similar for a finite submatrix H0 of H (generated by a set
of rows of H) with the size bounded via k and trdeg(hi).

Theorem
Univariate (k = 1) tropical polynomials h1, . . . ,hs have a solution iff
tropical linear system H0 ⊗ (z0, . . . , zN) has a solution with z0 6=∞
where H0 is (finite) submatrix of H generated by its rows X⊗l ⊗ hi for
0 ≤ l ≤ 4 · (trdeg(h1) + · · ·+ trdeg(hs)).

For two tropical polynomials (s = 2) the bound trdeg(h1) + trdeg(h2)
holds using the classical resultant and Kapranov’s theorem (Tabera)
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(Convex)-geometrical rephrasing of the conjecture
on a tropical dual Nullstellensatz

For a tropical polynomial h =
⊕

J(aJ ⊗ X⊗J) consider the convex hull
G of the graph {(J,a) : a ≤ −aJ} ⊂ Rk+1. As vertices of G consider all
the points of the form (I, c), I ∈ Zk . Let Gi correspond to hi , 1 ≤ i ≤ s.
Denote by G(I) := G + (I,0) a horizontal shift of G.
Solution Y := {(J, yJ)} ⊂ Rk+1 of a tropical linear system H ⊗ Y treat
also as a graph on Rk .

The conjecture is equivalent to the following.

For any I, i take the maximal b := bI,i such that a vertical shift
G(I)

i + (0,b) ≤ Y (pointwise as graphs).
Assume that G(I)

i + (0,b) has at least two common points with Y .
Then there is a hyperplane in Rk+1 (not containing the vertical line)
which supports (after a parallel shift) each Gi , 1 ≤ i ≤ s at least at two
points.
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Proof of the tropical dual Nullstellensatz for k = 1
Fix a tropical polynomial hi . Points of intersection (G(l)

i + (0,bl,i)) ∩ Y
call extremal, their union for l ∈ Z denote Ei ⊂ R2.

Lemma
Ei are vertices of a convex polygon lying below Y .

Edges of Ei are of two sorts. Either an edge (r -principal) is parallel to
r -th edge er of Gi or an edge (intermediate) is a parallel shift of a
”diagonal” connecting two vertices of Gi not lying in a single edge of Gi .

Lemma
1) for each r r -principal edges form an interval (perhaps, infinite) with
the distance between any pair of adjacent extremal points less or
equal to the length of er ;
2) the edge adjacent to this interval from the left (resp. right) is
intermediate with the ”diagonal” ending (resp. beginning) at er ;
3) for two adjacent intermediate edges the projections onto the first
coordinate of their ”diagonals” are also adjacent (intervals).
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Proof of the tropical dual Nullstellensatz for k = 1
(continued)

Corollary
In the convex polygon ∩1≤i≤sEi the sum of lengths of the intermediate
edges is less than 3 ·

∑
1≤i≤s trdeg(hi) and the sum of lengths of the

principal (not all coinciding for different Ei ,1 ≤ i ≤ s) edges is less than∑
1≤i≤s trdeg(hi).

Thus, off an interval of the length 4 ·
∑

1≤i≤s trdeg(hi) suitable edges of
Ei ,1 ≤ i ≤ s coincide.
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Algorithm for solving tropical linear systems:
finite coefficients
First assume that the coefficients of system (1) are finite:
0 ≤ ai,j ≤ M, 1 ≤ i ≤ n, 1 ≤ j ≤ m.
Induction on m. Suppose that (tropical) vector x := (x1, . . . , xn) fulfils
m − 1 equations (except, perhaps, the first one).

The algorithm modifies x and either produces a solution of (1) or finds
n× n tropically nonsingular submatrix of A (in the latter case (1) has no
solution).
After each step of modification a vector is produced (we keep for it the
same notation x) such that it still fulfils m − 1 equations, and m × n
matrix B := (ai,j + xj) (after suitable permutations of rows and
columns) has a form below.

If ai,j + xj = min1≤l≤n{ai,l + xl} mark entry i , j with ∗. The first row
contains a single ∗ (otherwise, x is a solution of (1)) and every other
row contains at least two ∗.
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Continuation: producing a candidate for solution

B =

 B1 B2
B3 B4
B5 B6


• a square matrix B1 contains ∗ on the diagonal and no ∗ above the
diagonal. Hence B1 is tropically nonsingular.
• B2, B4 contain no ∗.
• Each row of B3 and of B6 contains at least two ∗.

Modify vector x1, . . . , xn adding (classically) to it a vector
(b, . . . ,b,0, . . . ,0) for integer b = maxi{ai,j + xj − ai,l − xl} where j
runs right columns, l runs left columns, i runs rows from matrices
(B1 B2) and (B3 B4).
The modified vector (keeping for it the notation x) still fulfils m − 1
equations and b ≥ 1.

If the first row of the modified matrix B contains at least two ∗, x is a
solution of (1).
Otherwise, bring modified matrix B to a similar form as follows.
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Termination of the algorithm
Construct recursively a set L of the left columns by augmenting. As a
base of recursion the first column belongs to L.
For current L if there exists a row with single ∗ in a column off L, join
this column to L. These rows and columns form matrix B1.

If L coincides with the set of all the columns then B1 is n × n tropically
nonsingular submatrix of B and therefore, (1) has no solution. This
completes the description of the algorithm.

Tropical norm and complexity bound
To estimate the number of steps of the algorithm define a tropical norm
of a vector (in the tropical projective space) (y1, . . . , yn) as∑

1≤i≤n

(yi − min
1≤j≤n

{yj}).

After every modification step the tropical norm of vector
(a1,1 + x1, . . . ,a1,n + xn) (corresponding to the first row) drops.
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Solving tropical linear systems over Z∞
For the inductive (again on m) hypothesis assume that (m − 1)× n
matrix A′ (obtained from A by removing its first row) has a block form
(after permuting its rows and columns)

A1,1 ∞ · · · ∞ ∞
A2,1 A2,2 · · · ∞ ∞
· · · · · · · · · · · · · · ·

At−1,1 At−1,2 · · · At−1,t−1 ∞
At ,1 At ,2 · · · At ,t−1 At ,t


where each entry of upper-triangular blocks equals∞.

A finite vector y = (y1, . . . , yn) =: (y (1), . . . , y (t)) ∈ Zn is produced
(where y (1), . . . , y (t) is its partition corresponding to the block
structure) such that each diagonal block Ap,p, 1 ≤ p ≤ t − 1 has ∗ (with
respect to vector y (p)) everywhere on its diagonal and no ∗ above the
diagonal. Matrix Ap,p is of size up × vp with uP ≥ vp.
Vector (∞, . . . ,∞, y (t)) is a (tropical) solution of matrix A′, and y (t) is a
solution of At ,t .
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Continuation: modifying candidate for a solution

To be closer to the finite case Z extend the lowest block
At ,1 At ,2 · · · At ,t−1 At ,t of A′ by joining to it the first row of A as its first
row. The resulting extension of matrix At ,t denote by C.
Again as in the finite case assume (after a permutation of the columns)
that a single ∗ (with respect to vector y (t)) in the first row of C is
located in the first column.

The algorithm modifies vector y (t) keeping it to be a solution of At ,t and
keeping the same notation for the modified vectors.
If y (t) is a solution of C then vector (∞, . . . ,∞, y (t)) is a solution of A
(1) and the algorithm terminates the inductive step.

In a similar way as in the finite case the algorithm recursively
constructs a set L of the left columns of C and accordingly modifies
vector y (t).
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Continuation of modifying a candidate: graph of
possibly infinite coordinates

In addition, the algorithm considers an oriented graph with the nodes
being the coordinates of vector y (t) =: (y (t)

1 , . . . , y (t)
s ) and with an edge

from node y (t)
j to y (t)

l when y (t)
j − y (t)

l ≤ M (remind that all finite
coefficients of matrix A satisfy 0 ≤ ai,j ≤ M).
Denote by S the set of nodes of the graph reachable from the first
node y (t)

1 .

Lemma
L ⊂ S and in the course of the algorithm while modifying S, the next S
is a subset of the previous one.

The algorithm modifies y (t) while L 6= S.

If L = S then (after suitable permutations of the rows and columns)
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Termination of the algorithm

C =

 C1 ∞
C2 ∞
C3 C4


• L are columns of a square matrix C1;
• (tropically nonsingular) C1 contains ∗ everywhere on the diagonal
and no ∗ above it;
• each row of C2 and of C4 contains at least two ∗

This completes the inductive step of the algorithm and constructing a
new block structure of matrix A.
Vector y (t) =: (y (t), y (t+1)) (abusing the notations) and vector
(∞, . . . ,∞, y (t+1)) is a solution of A (1).

The algorithm terminates if either all the columns or all the rows are
exhausted. If all the columns are exhausted then (1) has no solution.
Otherwise, if first all the rows are exhausted then (∞, . . . ,∞, y (t+1)) is
a solution of (1).
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