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Tropical semi-ring

Tropical semi-ring T is endowed with operations @, ®.

If T is an ordered semi-group then T is a tropical semi-ring with
inherited operations & := min, ® := +.

If T is an ordered (resp. abelian) group then T is a tropical
semi-skew-field (resp. tropical semi-field) w.r.t. © := —.

Examples ¢ Z1 := {0 < a€ Z}, Z} = Z" U {oo} are commutative
tropical semi-rings. oo plays a role of 0, in its turn 0 plays a role of 1;
e 7., 7, are semi-fields;

e N x n matrices over Z., form a non-commutative tropical semi-ring:
(aj) ® (bw) == (B1<j<nalj ® bj).

Tropical polynomials

Tropical monomial x®' .= x @ --- @ x, Q= a@ x" @ --- @ x§", its
tropical degree trdeg = iy + - -+ +ip. Then Q =a+ iy - Xy + -+ +ip - Xn.
Tropical polynomial f = @;(aj @ X{' @ -+ @ x{) = min{ Q;};

X = (X1,...,Xn) is a tropical zero of f if minimum min;{Q;} is attained
for at least two different values of j.
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If T is an ordered semi-group then tropical linear function over T can
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Tropical linear systems
If T is an ordered semi-group then tropical linear function over T can
be written as mini<;<p{a; + x;}.

Tropical linear system
min {g;; +x},1<i<m 1
1§/§n{ " j} )

(or (m x n)-matrix A = (&;;)) has a tropical solution x = (x; ..., Xp) if
for every row 1 < i < mthere are two columns 1 < k < / < n such that

aix+ Xk =aj;+x = min{a;; + x;
ik k il I 1§j§n{ N /}
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If T is an ordered semi-group then tropical linear function over T can
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for every row 1 < i < mthere are two columns 1 < k < / < n such that
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Coefficients a;; € Zo, := Z U {oo}. Not all x; = oo. For a;; € Z we
assume 0 < g;; < M.
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Tropical linear systems
If T is an ordered semi-group then tropical linear function over T can
be written as mini<;<p{a; + x;}.

Tropical linear system

<i< 1
[min{aij+x}h 1<i<m (1)

(or (m x n)-matrix A = (&;;)) has a tropical solution x = (x; ..., Xp) if
for every row 1 </ < mthere are two columns 1 < k < / < n such that

aix+ Xk =aj;+x = min{a;; + x;
ik k il I 1§j§n{ N /}

Coefficients a;; € Zo, := Z U {oo}. Not all x; = oo. For a;; € Z we
assume 0 < g;; < M.

n x n matrix (a; ) is tropically non-singular if

MiNes,{@1,x1) + - + @nx(n)} IS attained for a unique permutation 7
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Complexity of solving tropical linear systems
Theorem

One can solve a tropical linear system (1) within complexity polynomial
inn,m, M. (Akian-Gaubert-Guterman; G.)
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v

Corollary

The problem of solvability of tropical linear systems is in the complexity
class NP N coNP.

v
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Moreover, the algorithm either finds a solution over Z ., or produces an
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Corollary

The problem of solvability of tropical linear systems is in the complexity
class NP N coNP.

v

Remark

My algorithm has also a complexity bound polynomial in 2" log M (as
well as an obvious algorithm which invokes linear programming).
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Complexity of solving tropical linear systems
Theorem

One can solve a tropical linear system (1) within complexity polynomial
in n,m, M. (Akian-Gaubert-Guterman; G.)

Moreover, the algorithm either finds a solution over Z ., or produces an
n x n tropically nonsingular submatrix of A.

Corollary

The problem of solvability of tropical linear systems is in the complexity
class NP N coNP.

Remark

My algorithm has also a complexity bound polynomial in 2" log M (as
well as an obvious algorithm which invokes linear programming).

Open question. Are tropical linear systems solvable within polynomial
(in n, m,log M) complexity (i. e. in the complexity class P)? Is it true for
my algorithm?
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Tropical and Kapranov ranks

Tropical rank irk(A) of matrix A is the maximal size of its tropically
nonsingular square submatrices.
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Tropical and Kapranov ranks

Tropical rank trk(A) of matrix A is the maximal size of its tropically
nonsingular square submatrices.

A lifting of A is a matrix F = (f; ;) over the field of Newton-Puiseux
series K = R((t'/>)) for a field R such that the order ord;(f;;) = a;
where f;j = by - t% 4 by - % + - - - with rational exponents

ajj = g1 < g2 < --- having common denominator, or f; ; = 0 when
aj j = o0.
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Tropical rank trk(A) of matrix A is the maximal size of its tropically
nonsingular square submatrices.

A lifting of A is a matrix F = (f; ;) over the field of Newton-Puiseux
series K = R((t'/>)) for a field R such that the order ord;(f;;) = a;
where f;j = by - t% 4 by - % + - - - with rational exponents

ajj = g1 < g2 < --- having common denominator, or f; ; = 0 when
aj j = o0.

Kapranov rank Krkg(A) = minimum of ranks (over K) of liftings of A.
trk(A) < Krkg(A) and not always equal (Develin-Santos-Sturmfels)

Complexity of computing ranks

e For n x n matrix B testing trk(B) = n (< B is tropically nonsingular)
has polynomial complexity (Hungarian method);

e irk(A) = r is NP-hard, trk(A) > r is NP-complete (Kim-Roush);

¢ Solvability of polynomial equations over R is reducible to

Krkg(A) = 3 (Kim-Roush).

Exami le R =Q or R= GF[p|(t).
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Barvinok rank

Brk(A) is the minimal g suchthat A= (u1 @ v1) @ - - @ (Ug ® vg) for
suitable vectors uy,...,vgover T
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Barvinok rank

Brk(A) is the minimal g suchthat A= (u1 @ v1) @ - - @ (Ug ® vg) for
suitable vectors uy,...,vgover T

Krkg(A) < Brk(A) and the equality is not always true
(Develin-Santos-Sturmfels)

Computing Barvinok rank is NP-hard (Kim-Roush)
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Solvability of a tropical linear system and rank(s)

The theorem on complexity of solving tropical linear systems implies
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Solvability of a tropical linear system and rank(s)

The theorem on complexity of solving tropical linear systems implies
Corollary

The following statements are equivalent

1) a tropical linear system (1) with m x n matrix A has a solution;
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Solvability of a tropical linear system and rank(s)

The theorem on complexity of solving tropical linear systems implies
Corollary

The following statements are equivalent

1) a tropical linear system (1) with m x n matrix A has a solution;
2) trk(A) < n;
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Solvability of a tropical linear system and rank(s)
The theorem on complexity of solving tropical linear systems implies

Corollary

The following statements are equivalent

1) a tropical linear system (1) with m x n matrix A has a solution;
2) trk(A) < n;

3) Krkg(A) < n.

Remark
e The corollary holds for matrices over R..
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Solvability of a tropical linear system and rank(s)

The theorem on complexity of solving tropical linear systems implies
Corollary

The following statements are equivalent

1) a tropical linear system (1) with m x n matrix A has a solution;

2) trk(A) < n;

3) Krkg(A) < n.

Remark
e The corollary holds for matrices over R..

e For matrices A with finite coefficients from R it was proved by
Develin-Santos-Sturmfels.
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Solvability of a tropical linear system and rank(s)

The theorem on complexity of solving tropical linear systems implies
Corollary

The following statements are equivalent

1) a tropical linear system (1) with m x n matrix A has a solution;

2) trk(A) < n;

3) Krkg(A) < n.

Remark
e The corollary holds for matrices over R..

e For matrices A with finite coefficients from R it was proved by
Develin-Santos-Sturmfels.

e Equivalence of 1) and 2) was established by Izhakian-Rowen.
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Testing uniqueness of a tropical solution

Proposition

One can test uniqueness (in the tropical projective space) of a solution
of a tropical linear system (1) within complexity polynomial in n,m, M.
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Testing uniqueness of a tropical solution

Proposition

One can test uniqueness (in the tropical projective space) of a solution
of a tropical linear system (1) within complexity polynomial in n,m, M.

v

Open question. Is it possible to compute the dimension of a tropical
linear space within complexity polynomial in n, m, M?
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Testing uniqueness of a tropical solution

Proposition

One can test uniqueness (in the tropical projective space) of a solution
of a tropical linear system (1) within complexity polynomial in n, m, M.

v

Open question. Is it possible to compute the dimension of a tropical
linear space within complexity polynomial in n, m, M?

Solving tropical nonhomogeneous linear systems

Proposition
One can test solvability of a tropical nonhomogeneous linear system

min {g;; + x;,a}, 1<i<m
1S/§n{ 1,/ YRl 1}7 — P

within complexity polynomial in n, m, M.
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Testing uniqueness of a tropical solution

Proposition

One can test uniqueness (in the tropical projective space) of a solution
of a tropical linear system (1) within complexity polynomial in n, m, M.

v

Open question. Is it possible to compute the dimension of a tropical
linear space within complexity polynomial in n, m, M?

Solving tropical nonhomogeneous linear systems

Proposition
One can test solvability of a tropical nonhomogeneous linear system

min {a;;+ x;,a;}, 1 <i<m
1<<{"/ j aits

within complexity polynomial in n, m, M.

Solvabilitﬁ of troiical iolynomial systems is NP-complete (Theobald).
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”’Dual” (classical) Nullstellensatz

For polynomials g4, ..., gs € C[Xj,..., Xk] consider an infinite Cayley
matrix C with the columns indexed by monomials X' and the rows by
shifts XV - g;
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”’Dual” (classical) Nullstellensatz

For polynomials g4, ..., gs € C[Xj,..., Xk] consider an infinite Cayley

matrix C with the columns indexed by monomials X' and the rows by
shifts XY - g;

Nulistellensatz: system g; = --- = gs = 0 has no solution iff a linear
combination of the rows of a suitable finite submatrix Cy of C
(generated by a set of rows of C) equals vector (1,0,...,0).
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For polynomials g4, ..., gs € C[Xj,..., Xk] consider an infinite Cayley
matrix C with the columns indexed by monomials X' and the rows by
shifts XV - g;

Nulistellensatz: system g; = --- = gs = 0 has no solution iff a linear
combination of the rows of a suitable finite submatrix Cy of C
(generated by a set of rows of C) equals vector (1,0,...,0).

Effective Nullstellensatz: bound on the size of Cy via k and deg(g;).
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”’Dual” (classical) Nullstellensatz

For polynomials g4, ..., gs € C[Xj,..., Xk] consider an infinite Cayley
matrix C with the columns indexed by monomials X' and the rows by
shifts XV - g;

Nulistellensatz: system g; = --- = gs = 0 has no solution iff a linear
combination of the rows of a suitable finite submatrix Cy of C
(generated by a set of rows of C) equals vector (1,0,...,0).

Effective Nullstellensatz: bound on the size of Cy via k and deg(g;).

Dual Nullstellensatz: g; = --- = gs = 0 has a solution iff linear
system Co - (¥o, - -.,¥n) = 0 has a solution with yg # 0.
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”’Dual” (classical) Nullstellensatz

For polynomials g4, ..., gs € C[Xj,..., Xk] consider an infinite Cayley
matrix C with the columns indexed by monomials X' and the rows by
shifts XV - g;

Nulistellensatz: system g; = --- = gs = 0 has no solution iff a linear
combination of the rows of a suitable finite submatrix Cy of C
(generated by a set of rows of C) equals vector (1,0,...,0).

Effective Nullstellensatz: bound on the size of Cy via k and deg(g;).

Dual Nullstellensatz: g; = --- = gs = 0 has a solution iff linear
system Co - (¥o, - -.,¥n) = 0 has a solution with yg # 0.
Infinite dual Nullstellensatz: g; = -- - = gs = 0 has a solution iff

infinite linear system C - (o, ...) = 0 has a solution with y # 0.
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(generated by a set of rows of C) equals vector (1,0,...,0).

Effective Nullstellensatz: bound on the size of Cy via k and deg(g;).

Dual Nullstellensatz: g; = --- = gs = 0 has a solution iff linear
system Co - (¥o, - -.,¥n) = 0 has a solution with yg # 0.
Infinite dual Nullstellensatz: g; = -- - = gs = 0 has a solution iff

infinite linear system C - (o, ...) = 0 has a solution with y # 0.

Remark

Nullstellensatz tells about ideal (g4, . . ., gs), while the (infinite) dual
Nullistellensatz forgets the ideal, and therefore, gives a hope to hold in
the tropical setting
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Conjecture on tropical (dual) Nullstellensatz

Assume w.l.0.g. that for tropical polynomials h = @ (ay ® X®V) in k
variables which we consider, function J — a; is concave on Rk, This
assumption does not change tropical varieties.
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Conjecture on tropical (dual) Nullstellensatz
Assume w.l.0.g. that for tropical polynomials h = @ (ay ® X®V) in k
variables which we consider, function J — a is concave on Rk, This
assumption does not change tropical varieties.

For tropical polynomials hy, ..., hs consider (infinite in all 4 directions)
Cayley matrix H with the rows indexed by X®/ @ h; for | € ZX.
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Assume w.l.0.g. that for tropical polynomials h = @ (ay ® X®V) in k
variables which we consider, function J — a is concave on Rk, This
assumption does not change tropical varieties.

For tropical polynomials hy, ..., hs consider (infinite in all 4 directions)
Cayley matrix H with the rows indexed by X®/ @ h; for | € ZX.
Conjecture. hy, ..., hs have a tropical solution iff infinite tropical linear
system H® (..., Z,...) has a solution with zy # cc.
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Conjecture on tropical (dual) Nullstellensatz
Assume w.l.0.g. that for tropical polynomials h = @ (ay ® X®V) in k
variables which we consider, function J — a is concave on Rk, This
assumption does not change tropical varieties.

For tropical polynomials hy, ..., hs consider (infinite in all 4 directions)
Cayley matrix H with the rows indexed by X®/ @ h; for | € ZX.
Conjecture. hy, ..., hs have a tropical solution iff infinite tropical linear
system H® (..., Z,...) has a solution with zy # cc.

Conjecture. Similar for a finite submatrix Hy of H (generated by a set
of rows of H) with the size bounded via k and trdeg(h;).
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Conjecture on tropical (dual) Nullstellensatz
Assume w.l.0.g. that for tropical polynomials h = @ (ay ® X®V) in k
variables which we consider, function J — a, is concave on RX. This
assumption does not change tropical varieties.

For tropical polynomials hy, ..., hs consider (infinite in all 4 directions)
Cayley matrix H with the rows indexed by X®/ @ h; for | € ZX.
Conjecture. hy, ..., hs have a tropical solution iff infinite tropical linear
system H® (..., Z,...) has a solution with zy # cc.

Conjecture. Similar for a finite submatrix Hy of H (generated by a set
of rows of H) with the size bounded via k and trdeg(h;).

Theorem
Univariate (k = 1) tropical polynomials hy, . . ., hs have a solution iff
tropical linear system Hy ® (2o, . . ., Zy) has a solution with zy # co

where Hj is (finite) submatrix of H generated by its rows X®' ® h; for
0</<4.(trdeg(hy)+ ---+ trdeg(hs)).

Dima Grigoriev (CNRS) Tropical linear systems 21.9.11 10/20



Conjecture on tropical (dual) Nullstellensatz
Assume w.l.0.g. that for tropical polynomials h = @ (ay ® X®V) in k
variables which we consider, function J — a, is concave on RX. This
assumption does not change tropical varieties.

For tropical polynomials hy, ..., hs consider (infinite in all 4 directions)
Cayley matrix H with the rows indexed by X®/ @ h; for | € ZX.
Conjecture. hy, ..., hs have a tropical solution iff infinite tropical linear
system H® (..., Z,...) has a solution with zy # cc.

Conjecture. Similar for a finite submatrix Hy of H (generated by a set
of rows of H) with the size bounded via k and trdeg(h;).

Theorem
Univariate (k = 1) tropical polynomials hy, . . ., hs have a solution iff
tropical linear system Hy ® (2o, . . ., Zy) has a solution with zy # co

where Hj is (finite) submatrix of H generated by its rows X®' ® h; for
0</<4.(trdeg(hy)+ ---+ trdeg(hs)).

For two tropical polynomials (s = 2) the bound trdeg(hy) + trdeg(hy)
holds using the classical resultant and Kapranov’s theorem (Tabera)
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(Convex)-geometrical rephrasing of the conjecture
on a tropical dual Nulistellensatz
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(Convex)-geometrical rephrasing of the conjecture
on a tropical dual Nullstellensatz

For a tropical polynomial h = @ (ay ® X®J) consider the convex hull
G of the graph {(J, a) : a < —ay} c R¥*'. As vertices of G consider all
the points of the form (/,c), I € 7K. Let G; correspondto h;, 1 < i < s.
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(Convex)-geometrical rephrasing of the conjecture
on a tropical dual Nullstellensatz

For a tropical polynomial h = @ (ay ® X®J) consider the convex hull
G of the graph {(J, a) : a < —ay} c R¥*'. As vertices of G consider all
the points of the form (/,c), I € 7K. Let G; correspondto h;, 1 < i < s.
Denote by G) := G + (/,0) a horizontal shift of G.
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(Convex)-geometrical rephrasing of the conjecture
on a tropical dual Nullstellensatz

For a tropical polynomial h = @ (ay ® X®J) consider the convex hull
G of the graph {(J, a) : a < —ay} c R¥*'. As vertices of G consider all
the points of the form (/,c), I € 7K. Let G; correspondto h;, 1 < i < s.
Denote by G) := G + (/,0) a horizontal shift of G.

Solution Y := {(J, y,)} c RK*1 of a tropical linear system H ® Y treat
also as a graph on RX.

Dima Grigoriev (CNRS) Tropical linear systems 21.9.11 11/20



(Convex)-geometrical rephrasing of the conjecture
on a tropical dual Nullstellensatz

For a tropical polynomial h = @ (ay ® X®J) consider the convex hull
G of the graph {(J, a) : a < —ay} c R¥*'. As vertices of G consider all
the points of the form (/,c), I € 7K. Let G; correspondto h;, 1 < i < s.
Denote by G) := G + (/,0) a horizontal shift of G.

Solution Y := {(J, y,)} c RK*1 of a tropical linear system H ® Y treat
also as a graph on RX.

The conjecture is equivalent to the following.
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(Convex)-geometrical rephrasing of the conjecture
on a tropical dual Nullstellensatz

For a tropical polynomial h = @ (ay ® X®J) consider the convex hull
G of the graph {(J, a) : a < —ay} c R¥*'. As vertices of G consider all
the points of the form (/,c), I € 7K. Let G; correspondto h;, 1 < i < s.
Denote by G) := G + (/,0) a horizontal shift of G.

Solution Y := {(J, y,)} c RK*1 of a tropical linear system H ® Y treat
also as a graph on RX.

The conjecture is equivalent to the following.

For any /, i take the maximal b := b, ; such that a vertical shift
G,(I) + (0, b) < Y (pointwise as graphs).
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(Convex)-geometrical rephrasing of the conjecture
on a tropical dual Nullstellensatz

For a tropical polynomial h = @ (ay ® X®J) consider the convex hull
G of the graph {(J, a) : a < —ay} c R¥*'. As vertices of G consider all
the points of the form (/,c), I € 7K. Let G; correspondto h;, 1 < i < s.
Denote by G) := G + (/,0) a horizontal shift of G.

Solution Y := {(J, y,)} c RK*1 of a tropical linear system H ® Y treat
also as a graph on RX.

The conjecture is equivalent to the following.

For any /, i take the maximal b := b, ; such that a vertical shift
G,(I) + (0, b) < Y (pointwise as graphs).
Assume that G,(’) + (0, b) has at least two common points with Y.
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(Convex)-geometrical rephrasing of the conjecture
on a tropical dual Nullstellensatz

For a tropical polynomial h = @ (ay ® X®J) consider the convex hull
G of the graph {(J, a) : a < —ay} c R¥*'. As vertices of G consider all
the points of the form (/, ¢), I € ZX. Let G; correspond to h;, 1 < i < s.
Denote by G) := G + (/,0) a horizontal shift of G.

Solution Y := {(J, y,)} c RK*1 of a tropical linear system H ® Y treat
also as a graph on RX.

The conjecture is equivalent to the following.

For any /, i take the maximal b := b, ; such that a vertical shift

G,(I) + (0, b) < Y (pointwise as graphs).

Assume that G,(’) + (0, b) has at least two common points with Y.
Then there is a hyperplane in R“+! (not containing the vertical line)

which supports (after a parallel shift) each G;, 1 < i < s at least at two
points.
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Proof of the tropical dual NuIIsteIIensatz for k =1
Fix a tropical polynomial h;. Points of intersection (G +(0,b;))NY
call extremal, their union for / € Z denote E; C R?.
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Proof of the tropical dual NuIIsteIIensatz for k =1

Fix a tropical polynomial h;. Points of intersection (G +(0,b;))NY
call extremal, their union for / € Z denote E; C R?.

Lemma

E; are vertices of a convex polygon lying below Y .
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Proof of the tropical dual NuIIsteIIensatz for k =1

Fix a tropical polynomial h;. Points of intersection (G +(0,b;))NY
call extremal, their union for / € Z denote E; C R?.

Lemma

E; are vertices of a convex polygon lying below Y .

Edges of E; are of two sorts. Either an edge (r-principal) is parallel to
r-th edge e, of G;
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Proof of the tropical dual NuIIsteIIensatz for k =1

Fix a tropical polynomial h;. Points of intersection (G +(0,b;))NY
call extremal, their union for / € Z denote E; C R?.

Lemma

E; are vertices of a convex polygon lying below Y .

Edges of E; are of two sorts. Either an edge (r-principal) is parallel to
r-th edge e, of G; or an edge (intermediate) is a parallel shift of a
“diagonal” connecting two vertices of G; not lying in a single edge of G;.
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Proof of the tropical dual NuIIsteIIensatz for k =1
Fix a tropical polynomial h;. Points of intersection (G +(0,b;))NY
call extremal, their union for / € Z denote E; C R?.

Lemma
E; are vertices of a convex polygon lying below Y . J

Edges of E; are of two sorts. Either an edge (r-principal) is parallel to
r-th edge e, of G; or an edge (intermediate) is a parallel shift of a
“diagonal” connecting two vertices of G; not lying in a single edge of G;.

Lemma

1) for each r r-principal edges form an interval (perhaps, infinite) with
the distance between any pair of adjacent extremal points less or
equal to the length of e;;

v
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Proof of the tropical dual NuIIsteIIensatz for k =1
Fix a tropical polynomial h;. Points of intersection (G +(0,b;))NY
call extremal, their union for | € Z denote E; C R2.

Lemma

E; are vertices of a convex polygon lying below Y .

Edges of E; are of two sorts. Either an edge (r-principal) is parallel to
r-th edge e, of G; or an edge (intermediate) is a parallel shift of a
“diagonal” connecting two vertices of G; not lying in a single edge of G;.

Lemma

1) for each r r-principal edges form an interval (perhaps, infinite) with
the distance between any pair of adjacent extremal points less or
equal to the length of e;;

2) the edge adjacent to this interval from the left (resp. right) is
intermediate with the “diagonal” ending (resp. beginning) at e;;
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Proof of the tropical dual NuIIsteIIensatz for k =1
Fix a tropical polynomial h;. Points of intersection (G +(0,b;))NY
call extremal, their union for | € Z denote E; C R2.

Lemma

E; are vertices of a convex polygon lying below Y .

Edges of E; are of two sorts. Either an edge (r-principal) is parallel to
r-th edge e, of G; or an edge (intermediate) is a parallel shift of a
“diagonal” connecting two vertices of G; not lying in a single edge of G;.

Lemma

1) for each r r-principal edges form an interval (perhaps, infinite) with
the distance between any pair of adjacent extremal points less or
equal to the length of e;;

2) the edge adjacent to this interval from the left (resp. right) is
intermediate with the “diagonal” ending (resp. beginning) at e;;

3) for two adjacent intermediate edges the projections onto the first
coordinate of their "diagonals” are also adjacent (intervals).
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Proof of the tropical dual Nullstellensatz for k = 1
(continued)

Corollary

In the convex polygon N1<<sE; the sum of lengths of the intermediate
edges is less than 3 - ;. trdeg(hy)
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Proof of the tropical dual Nullstellensatz for kK = 1
(continued)

Corollary

In the convex polygon N1<<sE; the sum of lengths of the intermediate
edges is less than 3 - ., trdeg(h;) and the sum of lengths of the
principal (not all coinciding for different E;;1 < i < s) edges is less than
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Proof of the tropical dual Nullstellensatz for kK = 1
(continued)

Corollary

In the convex polygon N1<<sE; the sum of lengths of the intermediate
edges is less than 3 - ., trdeg(h;) and the sum of lengths of the
principal (not all coinciding for different E;;1 < i < s) edges is less than

Thus, off an interval of the length 4 - 3, _,_ trdeg(h;) suitable edges of
E;,1 < i < s coincide.
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Algorithm for solving tropical linear systems:
finite coefficients

First assume that the coefficients of system (1) are finite:
Oga,-,ng,1§i§n,1§j§m.
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Algorithm for solving tropical linear systems:

finite coefficients

First assume that the coefficients of system (1) are finite:
Oga,-,ng,1§i§n,1§j§m.

Induction on m. Suppose that (tropical) vector x := (x, ..., x,) fulfils
m — 1 equations (except, perhaps, the first one).
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Algorithm for solving tropical linear systems:
finite coefficients

First assume that the coefficients of system (1) are finite:
Ogal,nga1§I§n71§j§m

Induction on m. Suppose that (tropical) vector x := (x, ..., x,) fulfils
m — 1 equations (except, perhaps, the first one).

The algorithm modifies x and either produces a solution of (1) or finds
n x n tropically nonsingular submatrix of A (in the latter case (1) has no
solution).
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Algorithm for solving tropical linear systems:
finite coefficients

First assume that the coefficients of system (1) are finite:
Oga,-,ng,1§i§n,1§j§m.

Induction on m. Suppose that (tropical) vector x := (x, ..., x,) fulfils
m — 1 equations (except, perhaps, the first one).

The algorithm modifies x and either produces a solution of (1) or finds
n x n tropically nonsingular submatrix of A (in the latter case (1) has no
solution).

After each step of modification a vector is produced (we keep for it the
same notation x) such that it still fulfils m — 1 equations, and m x n
matrix B := (a;; + x;) (after suitable permutations of rows and
columns) has a form below.
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Algorithm for solving tropical linear systems:
finite coefficients

First assume that the coefficients of system (1) are finite:
Oga,-,ng,1§i§n,1§j§m.

Induction on m. Suppose that (tropical) vector x := (x, ..., x,) fulfils
m — 1 equations (except, perhaps, the first one).

The algorithm modifies x and either produces a solution of (1) or finds
n x n tropically nonsingular submatrix of A (in the latter case (1) has no
solution).

After each step of modification a vector is produced (we keep for it the
same notation x) such that it still fulfils m — 1 equations, and m x n
matrix B := (a;; + x;) (after suitable permutations of rows and
columns) has a form below.

If @;; + X; = minj</<p{a@i; + X} mark entry i, j with x. The first row
contains a single x (otherwise, x is a solution of (1)) and every other
row contains at least two x.
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Continuation: producing a candidate for solution

B, B,
B=| B B
Bs Bg
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Continuation: producing a candidate for solution

B, B,
B=| B B
Bs Bg

e a square matrix By contains x on the diagonal and no  above the
diagonal. Hence B; is tropically nonsingular.
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Continuation: producing a candidate for solution

B, B,
B=| B B
Bs Bg

e a square matrix By contains x on the diagonal and no  above the
diagonal. Hence B; is tropically nonsingular.
e B>, B4 contain no .
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Continuation: producing a candidate for solution

B, B,
B=| B B
Bs Bg

e a square matrix By contains x on the diagonal and no  above the
diagonal. Hence B; is tropically nonsingular.

e B>, B4 contain no .

e Each row of B; and of Bg contains at least two .
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Continuation: producing a candidate for solution

B, B,
B = B; B,
Bs Bg

e a square matrix By contains x on the diagonal and no  above the
diagonal. Hence B; is tropically nonsingular.

e B>, B4 contain no .

e Each row of B; and of Bg contains at least two x.

Modify vector xq, ..., x, adding (classically) to it a vector
(b,...,b,0,...,0) for integer b = max;{a;; + x; — a;; — X/} where j
runs right columns, / runs left columns, / runs rows from matrices
(B1 Bg) and (Bs B4)
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Continuation: producing a candidate for solution

B, B,
B = B; B,
Bs Bg

e a square matrix By contains x on the diagonal and no  above the
diagonal. Hence B; is tropically nonsingular.

e B>, B4 contain no .

e Each row of B; and of Bg contains at least two x.

Modify vector xq, ..., x, adding (classically) to it a vector
(b,...,b,0,...,0) for integer b = max;{a;; + x; — a;; — X/} where j
runs right columns, / runs left columns, / runs rows from matrices
(B1 Bg) and (Bs B4)

The modified vector (keeping for it the notation x) still fulfils m — 1
equationsand b > 1.
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Continuation: producing a candidate for solution

B, B
B=| B B
Bs Bg

e a square matrix By contains x on the diagonal and no  above the
diagonal. Hence B; is tropically nonsingular.

e B>, B4 contain no .

e Each row of B; and of Bg contains at least two x.

Modify vector xq, ..., x, adding (classically) to it a vector
(b,...,b,0,...,0) for integer b = max;{a;; + x; — a;; — X/} where j
runs right columns, / runs left columns, / runs rows from matrices
(B1 Bg) and (Bs B4)

The modified vector (keeping for it the notation x) still fulfils m — 1
equationsand b > 1.

If the first row of the modified matrix B contains at least two *, x is a
solution of (1).
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Continuation: producing a candidate for solution

B, B
B=| B B
Bs Bg

e a square matrix By contains x on the diagonal and no  above the
diagonal. Hence B; is tropically nonsingular.

e B>, B4 contain no .

e Each row of B; and of Bg contains at least two x.

Modify vector xq, ..., x, adding (classically) to it a vector
(b,...,b,0,...,0) for integer b = max;{a;; + x; — a;; — X/} where j
runs right columns, / runs left columns, / runs rows from matrices
(B1 Bg) and (Bs B4)

The modified vector (keeping for it the notation x) still fulfils m — 1
equationsand b > 1.

If the first row of the modified matrix B contains at least two x, x is a
solution of (1).

orm as follows.
21.9.11 15/20
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Termination of the algorithm

Construct recursively a set L of the left columns by augmenting. As a
base of recursion the first column belongs to L.
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Termination of the algorithm

Construct recursively a set L of the left columns by augmenting. As a
base of recursion the first column belongs to L.

For current L if there exists a row with single « in a column off L, join
this column to L. These rows and columns form matrix B;.

Dima Grigoriev (CNRS) Tropical linear systems 21.9.11 16/20




Termination of the algorithm

Construct recursively a set L of the left columns by augmenting. As a
base of recursion the first column belongs to L.

For current L if there exists a row with single « in a column off L, join
this column to L. These rows and columns form matrix Bj.

If L coincides with the set of all the columns then By is n x n tropically
nonsingular submatrix of B and therefore, (1) has no solution. This
completes the description of the algorithm.
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Termination of the algorithm

Construct recursively a set L of the left columns by augmenting. As a
base of recursion the first column belongs to L.

For current L if there exists a row with single * in a column off L, join
this column to L. These rows and columns form matrix Bj.

If L coincides with the set of all the columns then By is n x n tropically
nonsingular submatrix of B and therefore, (1) has no solution. This
completes the description of the algorithm.

Tropical norm and complexity bound
To estimate the number of steps of the algorithm define a tropical norm

of a vector (in the tropical projective space) (y1,...,¥n) as
> (= min {y;}).
1<i<n

v

Dima Grigoriev (CNRS) 21.9.11 16/20



Termination of the algorithm

Construct recursively a set L of the left columns by augmenting. As a
base of recursion the first column belongs to L.

For current L if there exists a row with single * in a column off L, join
this column to L. These rows and columns form matrix Bj.

If L coincides with the set of all the columns then By is n x n tropically
nonsingular submatrix of B and therefore, (1) has no solution. This
completes the description of the algorithm.

Tropical norm and complexity bound
To estimate the number of steps of the algorithm define a tropical norm

of a vector (in the tropical projective space) (y1,...,¥n) as
> (= min {y;}).
1<i<n

After every modification step the tropical norm of vector
(a1,1 + Xy,..., 81,0+ Xn) (corresponding to the first row) drops.

v
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Solving tropical linear systems over Z,

For the inductive (again on m) hypothesis assume that (m—1) x n
matrix A’ (obtained from A by removing its first row) has a block form
(after permuting its rows and columns)
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Solving tropical linear systems over Z,

For the inductive (again on m) hypothesis assume that (m—1) x n
matrix A’ (obtained from A by removing its first row) has a block form
(after permuting its rows and columns)

A1 1 00 00 00
A271 A272 o o0
At11 At At 11 o0
At At2 Att—1 Att
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Solving tropical linear systems over Z.,

For the inductive (again on m) hypothesis assume that (m—1) x n
matrix A’ (obtained from A by removing its first row) has a block form
(after permuting its rows and columns)

A1 1 00 00 00
A271 A272 o o0
Ai_11 A1 o0 Apqpq o0
At Ao - A1 Ang

where each entry of upper-triangular blocks equals oc.
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Solving tropical linear systems over Z.,

For the inductive (again on m) hypothesis assume that (m—1) x n
matrix A’ (obtained from A by removing its first row) has a block form
(after permuting its rows and columns)

A1 1 00 00 00
A271 A272 o o0
Ai_11 A1 o0 Apqpq o0
At Ao - A1 Ang

where each entry of upper-triangular blocks equals oc.

A finite vector y = (y1,...,yn) =: (y(,...,y®) € Z" is produced
(where y( ...,y is its partition corresponding to the block
structure) such that each diagonal block A, p, 1 < p <t — 1 has * (with
respect to vector y(P)) everywhere on its diagonal and no * above the
diagonal. Matrix Ap p is of size up x vp With up > vp.
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Solving tropical linear systems over Z.,

For the inductive (again on m) hypothesis assume that (m—1) x n
matrix A’ (obtained from A by removing its first row) has a block form
(after permuting its rows and columns)

A1 1 00 00 00
A271 A272 o o0
Ai_11 A1 o0 Apqpq o0
At Ao - A1 Ang

where each entry of upper-triangular blocks equals oc.

A finite vector y = (y1,...,yn) =: (y(,...,y®) € Z" is produced
(where y( ...,y is its partition corresponding to the block
structure) such that each diagonal block A, p, 1 < p <t — 1 has * (with
respect to vector y(P)) everywhere on its diagonal and no * above the
diagonal. Matrix Ap p is of size up x vp With up > vp.

Vector (oo, ..., 00, y{0) is a (tropical) solution of matrix A, and y(!) is a
solution of A ;.
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Continuation: modifying candidate for a solution

To be closer to the finite case Z extend the lowest block

At1 Atz - A1 Arr of A’ by joining to it the first row of A as its first
row. The resulting extension of matrix A denote by C.
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Continuation: modifying candidate for a solution

To be closer to the finite case Z extend the lowest block

At1 Ao - Ari_1 Ar of A by joining to it the first row of A as its first
row. The resulting extension of matrix A; ; denote by C.

Again as in the finite case assume (after a permutation of the columns)

that a single = (with respect to vector y(9)) in the first row of C is
located in the first column.
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Continuation: modifying candidate for a solution

To be closer to the finite case Z extend the lowest block

Ai1 Atz -+ Arg_1 Arr of A by joining to it the first row of A as its first
row. The resulting extension of matrix A; ; denote by C.

Again as in the finite case assume (after a permutation of the columns)
that a single = (with respect to vector y(9)) in the first row of C is
located in the first column.

The algorithm modifies vector y(!) keeping it to be a solution of A;; and
keeping the same notation for the modified vectors.
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Continuation: modifying candidate for a solution

To be closer to the finite case Z extend the lowest block

Ai1 Atz -+ Arg_1 Arr of A by joining to it the first row of A as its first
row. The resulting extension of matrix A; ; denote by C.

Again as in the finite case assume (after a permutation of the columns)
that a single = (with respect to vector y(9)) in the first row of C is
located in the first column.

The algorithm modifies vector y(!) keeping it to be a solution of A;; and
keeping the same notation for the modified vectors.

If y(9) is a solution of C then vector (oo, ..., 00, (V) is a solution of A
(1) and the algorithm terminates the inductive step.
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Continuation: modifying candidate for a solution

To be closer to the finite case Z extend the lowest block

Ai1 Atz -+ Arg_1 Arr of A by joining to it the first row of A as its first
row. The resulting extension of matrix A; ; denote by C.

Again as in the finite case assume (after a permutation of the columns)
that a single = (with respect to vector y(9)) in the first row of C is
located in the first column.

The algorithm modifies vector y(!) keeping it to be a solution of A;; and
keeping the same notation for the modified vectors.

If y(9) is a solution of C then vector (oo, ..., 00, (V) is a solution of A
(1) and the algorithm terminates the inductive step.

In a similar way as in the finite case the algorithm recursively
constructs a set L of the left columns of C and accordingly modifies
vector y(1),
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Continuation of modifying a candidate: graph of
possibly infinite coordinates

In addition, the algorithm considers an oriented graph with the nodes
being the coordinates of vector y(!) = (y(t) . ,yst)) and with an edge
from node y.(t) to y,(t) when y(t) y(t) < M (remind that all finite
coefficients of matrix A satls(y 0<a; <M).
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Continuation of modifying a candidate: graph of
possibly infinite coordinates

In addition, the algorithm considers an oriented graph with the nodes
being the coordinates of vector y(!) = (y(t) . ,yst)) and with an edge
from node yj(t) to y,(t) when y(t) y(t) < M (remind that all finite
coefficients of matrix A satls(y 0<a; <M).

Denote by S the set of nodes of the graph reachable from the first
node y(’).
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Continuation of modifying a candidate: graph of
possibly infinite coordinates

In addition, the algorithm considers an oriented graph with the nodes
being the coordinates of vector y(!) = (y(t) o ,yst)) and with an edge
from node yj(t) to y,(t) when y(t) y(t) < M (remind that all finite
coefficients of matrix A satls(y 0<a; <M).

Denote by S the set of nodes of the graph reachable from the first
node y(’).

Lemma

L ¢ S and in the course of the algorithm while modifying S, the next S
is a subset of the previous one.
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Continuation of modifying a candidate: graph of
possibly infinite coordinates

In addition, the algorithm considers an oriented graph with the nodes
being the coordinates of vector y(!) = (y(t) o ,yst)) and with an edge
from node yj(t) to y,(t) when y(t) y(t) < M (remind that all finite
coefficients of matrix A satls{y 0<a; <M).

Denote by S the set of nodes of the graph reachable from the first
node y(’).

Lemma

L ¢ S and in the course of the algorithm while modifying S, the next S
is a subset of the previous one.

The algorithm modifies y() while L # S.
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Continuation of modifying a candidate: graph of
possibly infinite coordinates

In addition, the algorithm considers an oriented graph with the nodes
being the coordinates of vector y(!) = (y(t) o ,yst)) and with an edge
from node yj(t) to y,(t) when y(t) y(t) < M (remind that all finite
coefficients of matrix A satls{y 0<a; <M).

Denote by S the set of nodes of the graph reachable from the first
node y(’).

Lemma

L ¢ S and in the course of the algorithm while modifying S, the next S
is a subset of the previous one.

The algorithm modifies y() while L # S.

If L = S then (after suitable permutations of the rows and columns)
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Termination of the algorithm

Ci oo
C=| G
Cs

Cy

= & - = DA
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Termination of the algorithm

Ci oo
C=| G
Cz; C4

e L are columns of a square matrix Cy;
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Termination of the algorithm

Ci oo
C=| G o
Cz; C4

e L are columns of a square matrix Cy;
e (tropically nonsingular) C¢ contains x everywhere on the diagonal
and no * above it;
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Termination of the algorithm

Ci oo
C=| G o
Cz; C4

e L are columns of a square matrix Cy;

e (tropically nonsingular) C¢ contains x everywhere on the diagonal
and no * above it;

e each row of C> and of C4 contains at least two
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Termination of the algorithm

Ci oo
C=| G
Cs C4

e [ are columns of a square matrix Cy;

e (tropically nonsingular) C¢ contains x everywhere on the diagonal
and no * above it;

e each row of C, and of C4 contains at least two

This completes the inductive step of the algorithm and constructing a
new block structure of matrix A.
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Termination of the algorithm

Ci oo
C=| G
Cs C4

e [ are columns of a square matrix Cy;

e (tropically nonsingular) C¢ contains x everywhere on the diagonal
and no * above it;

e each row of C, and of C4 contains at least two

This completes the inductive step of the algorithm and constructing a
new block structure of matrix A.

Vector y() =: (y( y(+1)) (abusing the notations) and vector

(00, ...,00, Y1) is a solution of A (1).
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Termination of the algorithm

Ci oo
C=| G
Cs C4

e [ are columns of a square matrix Cy;

e (tropically nonsingular) C¢ contains x everywhere on the diagonal
and no * above it;

e each row of C, and of C4 contains at least two

This completes the inductive step of the algorithm and constructing a
new block structure of matrix A.

Vector y() =: (y( y(+1)) (abusing the notations) and vector

(00, ...,00, Y1) is a solution of A (1).

The algorithm terminates if either all the columns or all the rows are
exhausted. If all the columns are exhausted then (1) has no solution.
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Termination of the algorithm

Ci oo
C=| G
Cs C4

e [ are columns of a square matrix Cy;

e (tropically nonsingular) C¢ contains x everywhere on the diagonal
and no * above it;

e each row of C, and of C4 contains at least two

This completes the inductive step of the algorithm and constructing a
new block structure of matrix A.

Vector y() =: (y( y(+1)) (abusing the notations) and vector

(00, ...,00, Y1) is a solution of A (1).

The algorithm terminates if either all the columns or all the rows are
exhausted. If all the columns are exhausted then (1) has no solution.

Otherwise, if first all the rows are exhausted then (oo, ..., o0, y(+1)) is
a solution of (1).
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