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Definition of ideal 1/f noises:

Random signals such that spectral power associated with a given Fourier harmonic
is inversely proportional to the frequency. Believed to be frequently encountered
in Nature: voltage fluctuations, non-equilibrium phase transitions, spontaneous brain activity, etc.

• Periodic version: random Fourier series of the form

V (t) =
∑∞

n=1
1√
n

[
vneint + vne−int

]
, t ∈ [0, 2π)

where vn, vn are complex Gaussian i.i.d. with zero mean and the variance
〈vnvn〉 = 1. It implies

〈V (t1)V (t2)〉V = 2
∑∞

n=1
1
n cos n(t1 − t2) ≡ −2 ln |2 sin t1−t2

2 |, t 6= t′

• Aperiodic version: similarly, random Gaussian Fourier integral defines a
Gaussian process on the whole line −∞ < t < ∞ by

V (t) =
∫∞
0

dω√
ω

[
eiωtv(ω) + e−iωtv(ω)

]
, 〈V (t1)V (t2)〉V = −2 ln |t1 − t2|

with δ−correlated complex Gaussian v(ω). The corresponding definitions are formal, as
sums/integrals do not converge pointwise, and should be understood as random generalized
functions (e.g. 1D "projections" of the Gaussian Free Field) or after a proper regularization.



A regularization:

Subdivide the interval t ∈ [0, 2π) by finite number of points tk = 2π
M k where k =

1, . . . , M < ∞ and associate with each k Gaussian-distributed real variables Vk

with covariances

〈VkVm〉 = −2 ln |2 sin tk−tm
2 |, for k 6= m

For the problem to be well-defined we have to choose the variance accordingly:

〈V 2
k 〉 = 2 ln M + W, with any W > 0

In the limit M →∞ this is expected to approximate the 2π− periodic 1/f noise with
the covariance 〈V (t1)V (t2)〉V = −2 ln |2 sin t1−t2

2 |, t 6= t′ ∈ [0, 2π).

• Our aim is to understand the statistics of high/low and extreme values of this
strongly correlated sequence. The problem turns out to be intimately connected to the
mechanism of freezing transitions in disordered systems theory (Random Energy Models,
Dirac fermions in random magnetic field). It has also interesting relations to Liouville Quantum
Gravity, random conformal weldings, to multifractal random measures in turbulence and
mathematical finance, as well as to various aspects of the Random Matrix Theory and value
distribution of the Riemann zeta-function along the critical line.



Part I: mapping to Statistical Mechanics:

We interpret the sequence Vk for k = 1, . . . , M < ∞ as a set of random energies
and consider the associated equilibrium Statistical Mechanics by introducing the
temperature T = β−1 and defining the partition function Z(β) =

∑M
i=1 e−βVi.

In this way we arrive to 1D generalization of the Derrida’s Random Energy Model
to be studied in the thermodynamic limit M → ∞. In particular, minimal energy
can be extracted from the zero-temperature limit of the free energy as

Vmin = min (V1, . . . , VM) = limβ→∞ f(β), f(β) = −β−1 log Z(β)

Conclusion: We need to know the statistics of the free energy to extract the
extreme value statistics of the energy sequence.

Observation: The positive integer moments 〈Zn(β)〉 , n = 1, 2, . . . of the partition function
Z(β) =

∑M
i=1 e−βVi for the (regularized) periodic 1/f noise sequence Vk in the high-

temperature phase 0 < β < 1 turn out to be given in the thermodynamic limit M À 1

by the Dyson-Morris-Selberg integral:

〈Zn(β)〉 =





M1+β2n2
O(1) for n > 1/β2

Mn(1+β2)Γ(1−nβ2)

Γn(1−β2)
for 1 < n < 1/β2

We reconstruct the probability density P(Z) from its moments.



Outcome of the analysis: The probability density P(Z) of the partition function
Z(β) in the high-temperature phase γ = β2 < 1 consists of two pieces:

The "body" of the distribution has a pronounced maximum at

Z ∼ Ze = M1+β2

Γ(1−β2) ¿ M2, and the powerlaw decay at Ze ¿ Z ¿ M2:

P(Z) = 1
β2

1
Z

(
Ze
Z

) 1
β2 e−(Ze

Z )
1

β2

, Z ¿ M2

Limit β → 0 can be used to reproduce the Gumbel distribution of "roughness" by Antal et al. ’01
At Z À M2 the above expression is replaced by a lognormal tail. Now we define z = Z/Ze and
consider the generating function

gβ(x) =
〈
exp(−eβxz)

〉
MÀ1

, β = 1/T



High-temperature "duality" and freezing scenario:

In the high-temperature phase the generating function gβ(x) can be found explicitly and turned
out to satisfy a remarkable duality relation:

gβ(x) =

∫ ∞

0

dt exp

{
−t− e

βx
t
−β2

}
= g1

β
(x) , β < βc = 1

This however does not allow to continue to β > βc regime. Instead, the phase transition at
β = βc is conjectured to be described by the following freezing scenario: gβ(x) freezes to
the temperature independent profile gβ=βc(x) in the "glassy" phase T ≤ Tc. The scenario is
supported by
(i) a (one-loop) renormalization group arguments for the logarithmic models (Carpentier, Le
Doussal ’01) revealing an analogy to the travelling wave analysis of polymers on disordered
trees (Derrida, Spohn 1989). In particular, the latter model shares with our model the REM-like
mean free energy which in the limit M À 1 behaves in the high-temperature phase β < 1

as 〈f(β)〉 ≈ −
(

β + 1
β

)
log M and “freezes" to the critical value 〈f(βc)〉 ≈ −2 log M ≡

Vmin for all temperatures below the transition.
(ii) compatibility with duality which implies ∂βgβ(x)|

β=β−c
= 0, for all x, so that the

"temperature flow" of this function vanishes at the critical point β = βc = 1.
(iii) our numerics, also confirming the relation between the freezing and the one-step replica
symmetry breaking mechanism operative in the "glassy" phase.



Assuming the freezing scenario, the absolute minimum of the random sequence is simply
given by Vmin = − limT→0 f = −2 log M + c log log M + x, with unknown c (conjectured
to be c = 3/2) and the probability density of x related to the frozen profile gβc(x) by

p(x) = −g
′
βc

(x) = − d

dx

[
2e

x/2
K1(2e

x/2
)
]

, (1)

different from the Gumbel law pGum(x) = − d
dx exp (−ex). Note the tail: p|x→−∞ ≈ −xex.
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Multifractal structure of low/high values of the ideal 1/f noises:

Remembering that asymptotically Vmin = −2 log M , let us call the value Vi “x−low" if Vi <

2x log M , for some x ∈ (−1, 0). Our next goal is to count the total numberNM(x) of x−low
points in the 1/f sequence. A direct calculation for periodic case shows that the number of
x−low points is multifractal:

NMÀ1(x) ∼ Ne = M1−x2

2|x|√π log M
1

Γ(1−x2)
, 0 < |x| < 1.

The ratio n =
NM (x)

Ne
is randomly fluctuating from one realization of the process to the other

according to the probability density ( YF, Le Doussal, & Rosso, in progress):

P(n) ≈ 1
x2 n

− 1
x2−1

exp

(
−n

− 1
x2

)
, n ¿ nmax = M

Ne
∼ Mx2

, 0 < |x| < 1

and vanishing very fast when n ∼ nmax.

N
¯
ote: M À 1 limit of the discrete regularization of the aperiodic version of the 1/f noise can

be considered by similar techniques, see Y F, Le Doussal, Rosso, 2009.

Qualitatively, the two cases share all the major features of the extreme and high value statistics
(e.g. multifractality and the same power-law tail for the distribution of the number of points
above given high level). Details of the distributions are however different. In particular, the
high-temperature duality becomes rather nontrivial to verify and was found to follow from the
properties of one of the double Barnes functions featuring in the talk by L.D. Faddeev.



Part II: From1/f noises to Random Matrices and Riemann zeta-function:

let UN be a N ×N unitary matrix, chosen at random from the unitary group U(N).
Introduce its characteristic polynomial pN(θ) = det

(
1− UN e−iθ

)
and define the

following objects which are formal analogues of the partition function

ZN(β; L) = N
2π

∫ 2π

0
|pN(θ)|2βdθ ≡ N

2π

∫ 2π

0
e−βVN(θ) dθ, β > 0

where VN(θ) = −2 log |pN(θ)|. We observe that it is possible to evaluate the N À 1
limit of the positive integer moments

E {Zn
N(β; L)} = Nn

∫ 2π

0
. . .

∫ 2π

0
E

{|pN(θ1)|2β . . . |pN(θn)|2β
}∏n

j=1
dθj

2π ,

where the expectation E{. . .} stand for the U(N) group average. Indeed, the
expectation value in the integrand is a Toeplitz determinant whose asymptotic
N À 1 behaviour is known due to Fisher-Hartwig and Widom:

E
{|pN(θ1)|2β . . . |pN(θn)|2β

} ∼
[
Nβ2 G2(1+β)

G(1+2β)

]n ∏n
r<s |eiθr − eiθs|−2β2

We then see that the θ−integral is again of the same Dyson-Morris-Selberg type
that we have studied before.
Conclusion: Log-Mod of the characteristic polynomial of CUE matrices is just
a different regularization of the same periodic 1/f noise!



In the last decade, following Keating & Snaith 2001, it became a well-accepted paradigm that
many properties of the Riemann zeta-function ζ(s) along the critical line s = 1

2 + it, t ∈ R
can be successfully understood by comparing them to analogous properties of characteristic
polynomials of random matrices of large size N ∼ log t. The idea is inspired by random-
matrix properties of zeta-function zeroes (Montgomery (1973); Odlyzko, ... ). To this end,
define for a fixed real t the function

V
(ζ)

t (x) = log |ζ (
1
2 + i(t + x)

) | = Re log ζ
(

1
2 + i(t + x)

)

For large t → ∞ the function V
(ζ)

t (x) actually mimics a Gaussian random function of
variable x of mean zero and variance 1

2 log log t (Selberg, see also Hughes, Keating, O’Connel).
Moreover, a simple consideration which uses the Euler product formula for Riemann zeta and
the probabilistic properties of primes given by the Prime Number Theorem allows one to show
that the small-x behaviour of the covariance high up the critical line:

〈
V

(ζ)
t (x1)V

(ζ)
t (x2)

〉
≈

{
−1

2 log |x1 − x2|, for 1
log t ¿ |x1 − x2| ¿ 1

1
2 log log t, for |x1 − x2| ¿ 1

log t

with the averaging going over an interval [t− h/2, t + h/2] such that 1
log t ¿ h ¿ t.

Message: locally the log-mod of the Riemann zeta-function resembles an aperiodic 1/f noise.
One can exploit this fact to cast new light on statistics of moments and high values of the
Riemann zeta along the critical line using the idea of freezing (Y F & J P Keating, in progress.)



Part III: Decaying Burgers Turbulence:

• The problem of analysis of solutions of the (unforced) Burgers equation

∂tv + (v∇)v = ν∇2v, v(x, t = 0) = −∇Ψ0(x), ν > 0

with random initial condition, usually assumed to be Gaussian and specified in terms
of the two-point correlation function v(x, 0)v(x′, 0), or alternatively Ψ0(x)Ψ0(x′).
General reference: Bec & Khanin Physics Reports 447 (2007), 1

• The problem appears as an important reference model not only in fluid dynamics,
but also in such diverse physical contexts as statistical mechanics of systems
with quenched disorder (Balents, Bouchaud, Mezard ’95; Le Doussal ’08), and
formation of large scale structures in cosmology (Gurbatov, Saichev, Shandarin
’89; Vergassola, Dubrulle, Frish, Noullez ’94) . In particular, the cosmological
applications stimulated interest in dBT for vanishing viscosity ν → 0 and scale-
free power-law random initial conditions:

v(x, 0)v(x′, 0) ∼ |x− x′|−n−1 at large distances



Cole-Hopf solution, mapping to Statistical Mechanics:

Solution to decaying Burgers turbulence for a given initial potential Ψ0(x) can be
written explicitly as

v(x, t) = −2ν∇x ln Z, Z(x, t) =
∫

e−
1
2νHx(y) dy

(4πνt)d/2

in terms of the "effective potential"

Hx(y) = Ψ0(y) + 1
2t(x− y)2

Such Z(x, t) can be interpreted as the partition function of a particle equilibrated
in the energy potential Hx(y) at an effective temperature T = 2ν, so that inviscid
limit = zero temperature).

Observation: for n = 1 the initial velocity decays as v(x, 0)v(x′, 0) ∼ |x − x′|−2 which
implies the potential Ψ0(x) is a version of 1/f noise:

Ψ0(x)Ψ0(x′) = −2 ln
[|x− x′|/L

]
, ε < |x− x′| < L

where L À 1 and ε ¿ 1 are the infrared and ultraviolet cutoff scales. We therefore may
anticipate a kind of freezing transition inducing changes in the shape of the p.d.f. for velocity
v(x, t) = −2ν∂x ln Z(x, t) at finite critical viscosity νc(≡ Tc/2) > 0.
Note: it is commonly accepted in the literature that that the velocity v(x, t) remains always
Gaussian-distributed in the inviscid limit ν = 0.



Statistical mechanics in random potential and Burgers velocity:

In the language of statistical mechanics with T = 2ν the velocity is given by

v = −1
t ≺ y ÂT where ≺ O ÂT= 1

Z(x,t)

∫
dy√
2πTt

O(y)e−H0(y)/T

where H0(y) = Ψ0(y) + y2

2t is the random energy function.
To understand better thermodynamics of our system and the nature of the
anticipated freezing transition it turns out to be instructive to consider also a
different object:

PY (Y ) = ≺ δ(Y − y) ÂT =
1
Z

e−H0(Y )/T

interpreted as the averaged Boltzmann-Gibbs probability measure of the coordinate
of a particle equilibrated at a given temperature T in the random energy landscape
H0(Y ). At T → 0 the thermal average is obviously dominated by the deepest
minimum of the landscape whose position Ymin fluctuates from one realization of
disorder to the other. This mechanism immediately implies for velocity p.d.f. in zero
viscosity (= T → 0) limit the relation

P(v)|T=0 = tPY (vt)|T=0



Statistical mechanics in random potential and λ- Hermite ensemble:

The disorder averaging procedure for PY (Y ) can be performed via the standard
replica trick after representing Z−1 = Zn−1|n→0 and using the Gaussian nature of
the random potential Ψ0(y) by employing Ψ0(y)Ψ0(y′) = −2 ln [|y − y′|/L]. One
finds

PY (Y ) = lim
n→0

〈
1
n

n∑

j=1

δ
(
Y − zj

√
Tt

)〉

n,−γ

where γ = 1/T 2 > 0 and we have defined for 1 ≤ n < 1/γ

〈. . .〉n,λ =
1

Sn(λ)

∫ ∞

−∞
(. . .)

n∏

i<j

|zi − zj|2λ
n∏

j=1

dzj√
2π

e−
z2
j
2 ,

with Sn(λ) =
∏j=n

j=1 [Γ(1 + jλ)/Γ(1 + λ)] being the famous Selberg integral. For
finite integer n ≥ 1 and λ > 0 the above expression is nothing else but the mean
density of the so-called λ-Hermite ensemble of n × n random matrices introduced
by Dumitriu & Edelman ’02 .
Note that the corresponding random matrix-like integrals are still convergent for
λ = −γ as long as 0 < γ < 1. The replica limit implies n → 0.



Statistical mechanics in random potential and λ- Hermite ensemble:

Although a closed-form expression for the eigenvalue density for λ-Hermite
ensemble does not seem to be available, one can use the Jack polynomials
expansion developed by Dumitriu & Edelman ’02,’06 and find a few lower
moments of that density explicitly. Performing the analytical continuation n → 0
and λ → −γ we obtained the lower nonvanishing moments M2q =

∫ PY (Y )Y 2qdY
up to 2q = 16. We present below the corresponding cumulants C2q:

C2 = t
(
T + T−1

)
, C4 = −t2, C6 = 2t3

(
T + T−1

)

C8 = −t4
[
26 + 6

(
T 2 + T−2

)]
, C10 = t5

[
300

(
T + T−1

)
+ 24

(
T 3 + T−3

)]

and similar but longer expressions for C2q, q = 6, 7, 8.

The main feature apparent from the above (and proved in full generality) is that all
the cumulants (and hence the whole function PY (Y )) are invariant with respect
to the duality transformation T → 1/T . Employing the freezing conjecture we
thus predict that the whole Gibbs-Boltzmann probability density PY (Y ) freezes
at the critical point T = Tc = 1 providing a vivid picture of what freezing entails.



Freezing scenario vs. numerics for zero viscosity velocity moments:

If this scenario were correct, the values of the above cumulants evaluated at
T = 1 should immediately provide, in view of the discussed zero-temperature
correspondence, the cumulants of the velocity p.d.f. in zero viscosity limit:

v2|ν=0 = 2
t , v4

c
=

[
v4 − 3v2

2
]
|ν=0 = − 1

t2
, etc.
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Figure 1: Numerical evaluation of v2 and v4
c

in the inviscid limit ν = 0 for discretized Burgers
equation (number of points M = 210, 214, 218) with periodic version of the logarithmically
correlated potential (averaged over 106 samples) against the theoretical prediction at t = 1.

In fact, we can show that the velocity is non-Gaussian everywhere in the low-
viscosity phase ν < νc = 1/2. Above the critical viscosity Gaussianity is restored.



Summary:

I. Using the methods of statistical mechanics of disordered systems we studied the statistics
of minima/maxima of the Gaussian 1/f noise, both periodic and aperiodic. The distributions are
manifestly non-Gumbel and show universal backward tail p|x→−∞ ≈ −xex. This is heavily
based on the conjectured freezing scenario, supported by numerics, high-temperature duality,
REM-like replica-symmetry breaking, and renormalization-group arguments, but still lacking
rigorous justification. We have also predicted a strongly-fluctuating multifractal pattern in the
powerlaw-distributed number of high/low points in the 1/f signals.

II. We reveal strong links between the 1/f noise and Log-mod of characteristic polynomials of
random matrices, and of the Riemann zeta-function along the critical line. This allows to put
forward new conjectures about the statistics of high and extreme values of the latter objects.

III. Combining the methods of statistical mechanics with insights from the random matrix
theory we reveal a phase transition with decreasing viscosity ν at finite ν = νc > 0 in one-
dimensional decaying Burgers turbulence with a power-law correlated random profile of initial
velocities v(x, 0)v(x′, 0) ∼ |x− x′|−2. The low-viscosity phase exhibits non-Gaussian one-
point probability density of velocities, reflecting a spontaneous one step replica symmetry
breaking (RSB) in the associated statistical mechanics problem. We obtain the low orders
cumulants analytically which favourably agree with numerical simulations.


