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Motivation and basic concepts of lattice QCD



Something we would like to understand in detail ...
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QCD with the Euclidean path integral

e Fermion and quark action

Sr = NZ Jata () [0, + iAufa) + m] ws(a)

1
Sq = 502 d*z TrE,,(2)F,,(z)
g

e Vacuum expectation values with Feynman’s path integral

/Dwm e~ S0 BA =Sl Oy, T, A

e Lattice QCD gives a mathematically sound definition of the path integral
and Monte Carlo methods can be used to compute it.



Discretizing QCD on a space time lattice

e Replace space-time by a 4-D grid with lattice constant a.

e Quark fields live on the sites of the lattice. Derivatives turn into

00(x) — o | Wlatap) — v(z—ap)]

e For the gluons we use gauge transporters attached to the links
(x,v) of the lattice

U,(x) = P exp (i/xﬂw dSTAT(S)>

e Integral over all field configurations

D[, ,U] Hdw di(x) [ [ dU.(2)



Discretizing QCD on a space time lattice

e Discretized fermion action (1 flavor)

e Partition sum

Z = /D[W,U] e Tt = /D[UJ e~ 5 det DU

e Monte Carlo: Generate gauge configurations with probability
PU] o e~ ®cll det D[U)Ns

and use these to approximate the path integral.



Lattice QCD with chemical potential: complex phase problem

e For non-zero chemical potential ;1 the fermion determinant is complex

det D[U, ] € €

e The Boltzmann factor cannot be used as probability in a MC calculation

e 56U det DU, )N € €

e So far very limited progress with expansions or reweighting techniques.

In this project we explore new strategies in effectice theories of QCD.



An effective theory for QCD



Center symmetry and deconfinement

e Observable for a single static quark: Polyakov loop

P(:f):PeXp(z'/O thot:c> HUO

e Deconfinement transition at finite temperature
=0 for T <T,
_ﬁFq c
(TrP) o< e # 0 for T >T,

e An associated symmetry: center symmetry (only gauge sector)

Uo(t", %) — 2Uo(t",T) 2 € L3 = {l,ei%/?’,e_i%/?’}



Center symmetry and deconfinement

e The gauge action and the path integral measure are invariant.

e The Polyakov loop transforms non-trivially

P — 2P . ¢ Zs

e The deconfinement transition of pure gauge theory is understood as the
spontaneous breaking of center symmetry

T<T,: (TrP) = 0 center symmetry intact

T>T,: (TrP) # 0 center symmetry broken



Svetitsky-Yaffe conjecture

e For pure gauge theory deconfinement can be understood as the sponta-
neous breaking of center symmetry. An influential idea for understanding
this phase transition is the Svetistky-Yaffe conjecture (1981):

e At T, the critical behavior of SU(3) gauge theory in d + 1 dimensions
can be described by a d - dimensional spin system with a Z3 - invariant
effective action for the local Polyakov loop P(z) € SU(3).

e Leading term of the effective action from a strong coupling expansion

SlP) = =7 > | TeP(@) TeP(y)! + TeP(y) TrP(a)' |
{z.y)



Explicit center breaking terms from the fermion determinant

e The fermion determinant breaks the center symmetry explicitly.

e The leading center symmetry breaking can be calculated using hopping
expansion, including the chemical potential L.

sip] = -7y [Trp(x) TrP(y)" + TrP(y) TrP(z)f }

— K Z {e“TrP(x) + e P TrP(z) }

e For non-vanishing chemical potential u the action is complex and the
effective theory inherits the complex phase problem of QCD.



Reduction to the center degrees of freedom

e The distribution of TrP(x) is dominated by the center.
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e Reduction to center elements: TrP(z) — L(x) € Zs = {1,¢e>™/3 ¢=27/3}

= —TZ [ * 4+ L(y)L } - /ﬁlz {e“L + e_“L(x)*}

Contains leading center symmetric and center symmetry breaking terms.



Solving the complex phase problem: Flux representation



Flux representation - I

e |dentity for the nearest neighbor term:

eT[L(x)L(J:Jrl?)*Jrc.c.] — O Z Blbx"| )L(ZE+V) )bx,u

e |dentity for the magnetic term:

6,‘i[e”L( z)+e M L(z Z Mle

Sy=—1
e (', B and M; are real and positive functions of 7, x and u.

e Remaining sums over the center elements at each site:

no . |1 nmod3 =0
Z L" = 3T(n) with T(n) = {0 nmod3 % 0
Le{l,e*i2n/3}



Flux representation - I1

e Representation with dimers b, , € {—1,0, 1} and monomers s, € {—1,0,1}

Z = Ws) [T <Z[bw — by_p.] + s) with  W(b,s) > 0

{b.s} v

R
R
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Update with a Prokof’ev — Svistunov worm algorithm

e The worm starts at a random position on the lattice.

e The worm may decide to change dimers or insert monomers. Each change
is accepted or rejected in a Metropolis step.

e Insertion of a monomer is followed by a random hop and another monomer
insertion.

e The worm closes when it reaches its starting point.
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Numerical analysis

e The worm algorithm is ergodic and efficient also for large x and p.
e As observables we consider the internal energy E, the heat capacity C,
the expectation value of the Polyakov loop (P) and the corresponding

susceptibility xp.

e All our observables can be expressed in terms of the dimer- and monomer
occupation numbers and their fluctuations.

e We work on lattices with sizes 163 to 723 with statistics of 10° to 106
worms.

e Comparison of the results for small 7 with low temperature expansion.



The QCD phase diagram according to the center group

Ydalia Delgado Mercado, Hans Gerd Evertz, Christof Gattringer
Phys. Rev. Lett. 106 (2011) 222001, arXiv:1102.3096

Ydalia Delgado Mercado, Hans Gerd Evertz, Christof Gattringer, work in preparation.



Polyakov loop (= order parameter)




Exploring the phase diagram (maxima of xp)
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Volume scaling

For all values of x we studied no volume scaling of the second derivatives of
the free energy C' and yp was observed = Crossover.
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Strips of crossover behavior
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If QCD is reduced to
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center degrees of freedom =- Crossover transitions.



Developments and perspectives

Christof Gattringer, Nucl. Phys. B 850 (2011) 242, arXiv:1104.2503

Ydalia Delgado Mercado, Hans Gerd Evertz, Christof Gattringer, work in preparation.



More realistic models:

e Effective theory with SU(3)-valued Polykov loops (P(x) € SU(3)):

= —7 Z {TrP )TrP(y)" + TrP(y) TrP(:L“)T}
_’”"Z[ “TrP(z) + e_“TrP(f)T}

e Flux representation:

Z W l, l, S S] HT<Z lx z/) - (lx—ﬁ,y - Zx—z?,v)] + (31‘ - gx))

{1,1,5,5}

WIl, 1, s,3] real and positive ; I, , ls., Sz, 5. € Ny



Examples of admissible flux and monomer vertices

Generalized PS worm algorithms can be applied for a Monte Carlo calculation.



Summary

e We study QCD reduced to the leading center symmetric and center
symmetry breaking terms.

e The complex phase problem is solved by using a flux representation with
dimers and monomers, which is suitable for a PS worm algorithm.

e We map out the phase diagram using F, (P), C' and xp.

e If QCD is reduced to the center degrees of freedom only crossover
transitions remain.

e Work in progress: Generalizations to theories closer to QCD.

e The new models can and should be used for testing various approaches
to finite 11 (expansions, complex Langevin, reweighting ...).



