Interaction-induced criticality in topological insulators

Pavel Ostrovsky^{1,2} Igor Gornyi^{1,3} Alexander Mirlin^{1,4}

¹Karlsruhe Institute of Technology ²L.D.Landau ITP, Chernogolovka

³A.F.loffe Institute, St.Petersburg ⁴PNPI, St.Petersburg

PRL 105, 036803 (2010).

Symposium on Theoretical and Mathematical Physics, Euler Institute, St. Petersburg, Russia, July 8, 2011

Outline

Introduction

- Definitions
- Quantum spin-Hall effect
- 3D topological insulators

Symplectic symmetry class All: no interaction

- Scaling theory
- Topological protection

Interaction-induced criticality

- Surface of a 3D topological insulator
- Quantum spin-Hall criticality

Definitions Quantum spin-Hall effect BD topological insulators

Outline

Introduction

- Definitions
- Quantum spin-Hall effect
- 3D topological insulators
- 2 Symplectic symmetry class All: no interaction
 - Scaling theory
 - Topological protection
- Interaction-induced criticality
 - Surface of a 3D topological insulator
 - Quantum spin-Hall criticality

Definitions Quantum spin-Hall effect 3D topological insulators

What is a topological insulator?

Topological insulator

 \equiv bulk insulator with (topologically protected) metallic edge/surface

Examples

- Quantum Hall effect at the plateau (QHE insulator with edge states)
- Materials with extreme **spin-orbit** coupling (inverted gap)
 - 2D: Quantum spin-Hall effect (HgTe/CdHgTe quantum wells)
 - 3D: Bi_xSb_{1-x} , Bi_2Te_3 , Bi_2Se_3 , Sb_2Te_3 , $TIBiSe_2$, ...

Symplectic symmetry class AII: no interaction Interaction-induced criticality Definitions Quantum spin-Hall effect 3D topological insulators

Topological invariants

Topological invariants

- QHE: time-reversal symmetry broken by magnetic field Chern number = # of edge states = ... - 2, -1, 0, 1, 2, ... (ℤ) ⇒ ℤ topological insulator
- QSHE: time-reversal symmetry preserved, spin-rotational broken band structure topological invariant (Z₂): n = 0 or n = 1
 ⇔ odd vs. even number of Kramers pairs of edge states (Z₂)
 ⇒ Z₂ topological insulator

Symplectic symmetry class All: no interaction Interaction-induced criticality Definitions Quantum spin-Hall effect 3D topological insulators

Quantum Hall effect: \mathbb{Z} topological insulator

IQH transition

 σ -model with topological term

$$S = \int d^2 r \left\{ -rac{\sigma_{xx}}{8} {
m Tr} (\partial_\mu Q)^2 + rac{\sigma_{xy}}{8} {
m Tr} \epsilon_{\mu
u} Q \partial_\mu Q \partial_
u Q
ight\}$$

QHE insulator: Z - topological insulator

Symplectic symmetry class All: no interaction Interaction-induced criticality Definitions Quantum spin-Hall effect 3D topological insulators

Classification of topological insulators

Periodic table of Topological Insulators								
	Symmetry classes				Topological insulators			
p	H_p	R_p	S_p	$\pi_0(R_p)$	d=1	d=2	d=3	d=4
0	AI	BDI	CII	\mathbb{Z}	0	0	0	\mathbb{Z}
1	BDI	BD	AII	\mathbb{Z}_2	\mathbb{Z}	0	0	0
2	BD	DIII	DIII	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
3	DIII	AII	BD	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0
4	AII	\mathbf{CII}	BDI	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
5	\mathbf{CII}	\mathbf{C}	\mathbf{AI}	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2
6	\mathbf{C}	\mathbf{CI}	\mathbf{CI}	0	0	\mathbb{Z}	0	\mathbb{Z}_2
7	\mathbf{CI}	\mathbf{AI}	\mathbf{C}	0	0	0	\mathbb{Z}	0
$\overline{0'}$	Α	AIII	AIII	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
1'	AIII	\mathbf{A}	\mathbf{A}	0	\mathbb{Z}	0	\mathbb{Z}	0

 H_p – symmetry class of Hamiltonians

 R_p – sym. class of classifying space (of Hamiltonians with eigenvalues $\rightarrow \pm 1$)

 S_p – symmetry class of compact sector of σ -model manifold

Kitaev'09; Schnyder, Ryu, Furusaki, Ludwig '08-09

Definitions Quantum spin-Hall effect 3D topological insulators

Classification of topological insulators

Two ways to detect existence of TIs of class p in d dimensions: (i) by inspecting the topology of classifying spaces R_p :

$$egin{cases} \mathsf{TI} ext{ of type } \mathbb{Z} \ \mathsf{TI} ext{ of type } \mathbb{Z}_2 \end{array} \iff \pi_0(R_{p-d}) = egin{cases} \mathbb{Z} \ \mathbb{Z}_2 \end{cases}$$

(ii) by analyzing homotopy groups of the σ -model manifolds:

 $\begin{cases} \mathsf{TI} \text{ of type } \mathbb{Z} \iff \pi_d(S_p) = \mathbb{Z} & \mathsf{Wess-Zumino \ term} \\ \mathsf{TI} \text{ of type } \mathbb{Z}_2 \iff \pi_{d-1}(S_p) = \mathbb{Z}_2 & \theta = \pi \text{ topological term} \end{cases}$

WZ and $\theta = \pi$ terms make boundary excitations "non-localizable" TI in $d \iff$ topological protection from localization in d - 1Bott periodicity: $\pi_d(R_p) = \pi_0(R_{p+d})$, periodicity 8

Definitions Quantum spin-Hall effect 3D topological insulators

2D topological insulators: Quantum Spin-Hall effect

Kane and Mele '05, Sheng et al. '05, Bernevig and Zhang '06.

- The QSHE state does not break the (symplectic) TR symmetry: $T^2 = -1$.
- **Simplified picture:** two copies of QH states for two spin components, each seeing the opposite magnetic field.

Spin \uparrow QHE : σ_{xy} = n $e^{2/h}$ Spin \downarrow QHE : σ_{xy} = -n $e^{2/h}$ Zero net charge QHE

Spin Hall conductance $\sigma_{xy}(\uparrow) - \sigma_{xy}(\downarrow) = 2 e^{2/h}$

• Generic SO: spins are not conserved, but Kramers degeneracy still holds TR invariance forbids backscattering

→ topologically protected edge states

Definitions Quantum spin-Hall effect 3D topological insulators

Quantum (spin-)Hall effect with disorder

Impurities do not localize the edge states:

Ostrovsky, Gornyi, Mirlin Interaction-induced criticality in topological insulators

Symplectic symmetry class AII: no interaction Interaction-induced criticality Definitions Quantum spin-Hall effect 3D topological insulators

Quantum spin-Hall effect (HgTe/CdTe QW)

Theory: Bernevig, Hughes, Zhang '06; Experiment: Molenkamp group '07

2D Dirac Hamiltonian with tunable mass: $m \ge 0$ when $d \le d_c$

I — d = 5.5nm: normal insulator II, III, IV — d = 7.3nm: inverted band gap — topological insulator

Symplectic symmetry class AII: no interaction Interaction-induced criticality Definitions Quantum spin-Hall effect 3D topological insulators

3D topological insulator: band structure Hasan group '08

A7 rhombohedral crystal structure.

Other realizations: BiTe, BiSe

Ostrovsky, Gornyi, Mirlin

Interaction-induced criticality in topological insulators

Definitions Quantum spin-Hall effect 3D topological insulators

3D topological insulator: spectroscopy Hasan group '08

ARPES measurement on $Bi_{0.9}Sb_{0.1}$

Odd number of surface modes \implies nontrivial nontrivial number of surface modes \implies nontrivial number of surface number o

nontrivial topology

Ostrovsky, Gornyi, Mirlin Interaction-induced criticality in topological insulators

Symplectic symmetry class AII: no interaction Interaction-induced criticality Definitions Quantum spin-Hall effect 3D topological insulators

3D topological insulator: phenomenological description

Edge state Decays into the bulk: $\Psi = e^{-|Mx|} \begin{pmatrix} \psi \\ \chi \end{pmatrix}$ Boundary condition: $\chi = -i\sigma_x \psi \Rightarrow -i\sigma \mathbf{n}\psi$

Surface Hamiltonian $H_{s} = \underbrace{\frac{\nabla \mathbf{n}}{2}}_{\text{curvature}} + \underbrace{\frac{1}{2} \left(\mathbf{n} [\mathbf{p} \times \boldsymbol{\sigma}] + [\mathbf{p} \times \boldsymbol{\sigma}] \mathbf{n} \right)}_{\text{Rashba}} \Rightarrow \mathbf{n} [\mathbf{p} \times \boldsymbol{\sigma}]$

Definitions Quantum spin-Hall effect 3D topological insulators

Surface of 3D topological insulators of symmetry class All

3D Topological Insulators have 2D delocalized modes at the surface

surface of a 3D TI = single-valley graphene

2D disordered Dirac fermions of symmetry class AII: topological protection against localization

Outline

Introduction

- Definitions
- Quantum spin-Hall effect
- 3D topological insulators

Symplectic symmetry class All: no interaction

- Scaling theory
- Topological protection

Interaction-induced criticality

- Surface of a 3D topological insulator
- Quantum spin-Hall criticality

Scaling theory

Scaling theory of localization Abrahams, Anderson, Licciardello, Ramakrishnan '79

Dimensionless conductance [in units e^2/h]

- Metallic sample (Ohm's law): g ~ L^{d-2}
 Insulating sample (tunneling): g ~ e^{-L/ξ}

Universal scaling function

$$rac{d\ln g}{d\ln L} = eta(g) = egin{cases} d-2, & g \gg 1, & (\mathsf{metal}), \ \ln g, & g \ll 1, & (\mathsf{insulator}). \end{cases}$$

Scaling theory Topological protection

Weak localization correction in 2D Gor'kov, Larkin, Khmelnitskii '79; Hikami, Larkin, Nagaoka '80

Scaling of conductivity in 2D (no e-e interaction)

 $\frac{d \ln g}{d \ln L} = \begin{cases} -1/g, & \text{orthogonal (TR preserved)} \\ -1/2g^2, & \text{unitary (TR broken)} \\ +1/2g, & \text{symplectic (TR preserved, spin-orbit) we are here!} \end{cases}$

2D Dirac electrons: Metal or insulator?

MIT in symplectic class at $\sigma_{Sp}^* \approx 1.4e^2/h$

Scaling theory Topological protection

One-dimensional symplectic wire Zirnbauer '92, Mirlin et al '94, Ando & Suzuura '02, Takane '04

Scattering matrix of a symplectic system

$$\begin{pmatrix} \Psi_{\text{out}}^{L} \\ \Psi_{\text{out}}^{R} \end{pmatrix} = \begin{pmatrix} r & t' \\ t & r' \end{pmatrix} \begin{pmatrix} \Psi_{\text{in}}^{L} \\ \Psi_{\text{in}}^{R} \end{pmatrix}$$
 TI symmetry $\implies \begin{array}{c} r = -r^{T} \\ r' = -r'^{T} \\ t = t'^{T} \end{array}$

For N channels: det $r = (-1)^N \det r^T \implies$ no localization if N is odd !!!!

Scaling theory Topological protection

Topological insulator: reduction to 1D

Hollow cylinder threaded with magnetic flux Φ

Surface states:
$$E_n(p) = \pm \sqrt{p^2 + \left(n + \frac{1}{2} - \frac{e\Phi}{hc}\right)^2}$$

Time-inversion symmetry is preserved if $\frac{e\Phi}{hc}$ is integer or half-integer

no 1D localization \implies no 2D localization

Dirac fermions in symplectic class: sigma model

Random potential: symplectic time-reversal symmetry $H = \sigma_y H^T \sigma_y$ Symplectic sigma model: topological θ -term with $\theta = \pi$ $S[Q] = \frac{\sigma_{xx}}{16} \operatorname{Str}(\nabla Q)^2 + i\theta N[Q] \qquad N[Q] = 0, 1$

Similar to Pruisken sigma model for IQHE (instantons suppress localization)
No localization! Criticality?

- Minimal conductivity: $\sigma = 4\sigma_{Sp}^{**} \sim e^2/h$, <u>or</u>
- Absolute antilocalization: $\sigma
 ightarrow \infty$

Scaling theory Topological protection

Scaling of conductance: numerical results

- Absence of localization confirmed
- Supermetallic behaviour for microscopic models considered

Scaling theory Topological protection

Beta functions for symplectic system

$$eta(g) = rac{d\log g}{d\log L}$$

Outline

Introduction

- Definitions
- Quantum spin-Hall effect
- 3D topological insulators
- 2 Symplectic symmetry class All: no interaction
 - Scaling theory
 - Topological protection

Interaction-induced criticality

- Surface of a 3D topological insulator
- Quantum spin-Hall criticality

2D surface states of a 3D TI: Disorder and interaction

Surface of 3D \mathbb{Z}_2 TI: 2D massless Dirac mode \equiv single-valley graphene!

With disorder:

Topological protection from localization, RG flow towards supermetal

What is the effect of **Coulomb interaction**?

assume not too strong interaction $~~r_s=\sqrt{2}\,e^{\,2}/\epsilon\hbar v_F\lesssim 1$

- \implies no instabilities, no symmetry-breaking
- \implies topological protection from localization persists

But interaction may destroy the supermetal phase!

Surface of a 3D topological insulator Quantum spin-Hall criticality

Effect of Coulomb interaction Altshuler, Aronov '79; Finkelstein '83

Any 2D metallic sample $g \gg 1$

Diffusion + Coulomb repulsion \Rightarrow Altshuler-Aronov correction

Include correction into symplectic beta function

$$eta(g) = rac{d\log g}{d\log L} = rac{1}{g}\left[rac{N}{2} - 1 + (N^2 - 1)\mathcal{F}
ight]$$

N = number of independent equivalent species (spin, valleys etc.) Surface of a 3D topological insulator: N = 1

$$eta(g) \Rightarrow -1/2g$$

Coulomb repulsion destroys supermetallic phase!

Interaction-induced quantum critical state

- ${\, \bullet \, }$ Interaction \Longrightarrow tendency to localization at $g \gg 1$
- Topology \implies prevents strong localization ($g \ll 1$ forbidden)

<u>Result</u>: Interaction induces a **novel quantum critical state** with universal conductivity $g \sim 1$ on the surface of a 3D topological insulator.

"Self-organized" criticality: no adjustable parameters

Surface of a 3D topological insulator Quantum spin-Hall criticality

Beta functions for 2D spin-orbit systems

Surface of a 3D topological insulator Quantum spin-Hall criticality

Quantum spin-Hall effect: phase diagram

- In the presence of disorder, normal and topological insulating phases are separated by the supermetal phase
- Transitions between them are conventional symplectic MIT
- No quantum spin-Hall transition

QSHE: Stability w.r.t. Coulomb interaction

\mathbb{Z}_2 edge in the presence of Coulomb interaction

- Edge of 2D TI: single propagating mode in each direction
- Impurity backscattering prohibited (symplectic TR invariance)
- Coulomb interaction \longrightarrow Luttinger liquid, conductance e^2/h

Xu, Moore '06; Wu, Bernevig, Zhang '06: Disorder + interaction: random Umklapp \leftrightarrow 2-particle backscattering

 $\partial D_2 / \partial \ln L = (3 - 8K)D_2$ *K* – Luttinger liquid parameter

2PB processes become relevant for K < 3/8

Surface of a 3D topological insulator Quantum spin-Hall criticality

Random Umklapp for not too strong Coulomb interaction

Coulomb 1/r interaction: $K(q) = \frac{1}{\left[1 + \alpha \ln(q_0/q)\right]^{1/2}} \qquad \alpha = e^2/\pi \epsilon \hbar v_F$

 \mathcal{D}_2 processes negligible up to the scale

$$L_0 \sim q_0^{-1} \exp \frac{160}{9\alpha}$$

What happens with TI beyond this scale is an interesting but purely academic question for not too strong interaction:

 $r_s=5$ \longrightarrow $L_0\sim 10$ m

TI phase persists in the presence of not too strong Coulomb interaction

Surface of a 3D topological insulator Quantum spin-Hall criticality

Quantum spin-Hall effect: Coulomb interaction

- Edge modes are protected w.r.t. not too strong Coulomb interaction
- Distinction between normal and topological insulator is robust
- Coulomb interaction "kills" supermetal phase

Interaction restores direct quantum spin-Hall transition via a novel critical state

Conclusions

We have identified two critical states

- on the surface of 3D topological insulator
- at the quantum spin-Hall transition

Common features:

- symplectic symmetry
- topological protection
- interaction-induced criticality
- conductivity of order e^2/h

Maybe these two critical points are equivalent...