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Quantum spin liquids

• Consider (generalized) S = 1/2 Heisenberg model (this talk: focus 
on two and higher dimensions)

H = J
�

�ij�

Si · Sj + · · ·

• Simplest definition of quantum spin liquid: ground state breaks no 
symmetries

Resonating Valence 
Bond Picture



Why care about spin liquids?

• Search for “exotic” states of matter

States of matter

States described by 
Landau theory of 
broken symmetry

Exotic states



Why care about spin liquids?

• Search for “exotic” states of matter

• Exotic states exist (model systems, fractional quantum Hall effect)

• We understand less about exotic states than about those 
described by Landau theory

• Therefore, we have to study exotic states if we are to improve 
our understanding of states of matter

• Exotic spin liquids are a (relatively) simple setting for building 
understanding, and there are interesting relevant experiments



How can spin liquids be exotic?

Spin gap?
Yes

Topological order
(or, gapless photon-like mode)

No

Critical spin liquids

Gapless excitations 
may interact strongly at 
low energy (interesting 

fixed points)

kx

ky



Experimental candidates: Triangular lattice organic I

κ-BEDT-TTF2Cu2(CN)3

• Layered organic material

• Triangular lattice Hubbard model (half-filling), 
near metal-insulator transition

From Y. Kurosaki et. al. PRL 95, 177001 (2005).

C(T) ~ T

χ(T) ~ constant



Experimental candidates: Triangular lattice organic II

EtMe3Sb[Pd(dmit)2]2

• Similar to BEDT material, with (roughly) similar 
phenomenology

• Difference from BEDT: significant metallic-like low-
temperature thermal conductivity, κ ∝ T



Excitations of exotic spin liquids

• Focus on case with SU(2) spin rotation symmetry

• Spin-carrying excitations: S=1/2 spinons

Break valence bond 
→ S = 1 excitation

Separate into two 
“halves” → S = 1/2 

spinons



Excitations of exotic spin liquids

• Focus on case with SU(2) spin rotation symmetry

• Spin-carrying excitations: S=1/2 spinons

 

•Singlet excitations: gauge-field excitations  (e.g. Z2 vortices)

• May be well-defined quasiparticles, or not
• Also play a role as formal objects, e.g.

Z2 vortex

Statistical interaction
|ψ� → −|ψ�

�Si =
1

2
f†
iα�σαβfiβ



S = 1 Majorana spinons?

• Question: instead of S = 1/2 spinons, can we have S = 1 
Majorana fermion excitations in a spin liquid?

• Happens in exactly solvable models - SU(2) invariant 
generalizations of Kitaev’s honeycomb lattice model (F. Wang;  
H. Yao & D. H. Lee; H.-H. Lai & O. Motrunich)

• More general approach - applicable beyond special models - 
is desirable. (Some work in this direction by Biswas, Fu, Laumann & Sachdev.)

• This talk:  Develop an approach to construct “Majorana spin 
liquids.” Surprisingly, this approach is part of a well-known 
approach using S=1/2 fermionic partons, but was missed in 
prior work (to my knowledge).

S = 1
(boson)

S = 1
(fermion) + S = 1

(fermion)
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Single site

• Represent a single S=1/2 spin using S=1/2 fermions:

�S =
1

2
f†
α�σαβfβ (α,β =↑, ↓)Spin operator:

Constraint: f†
αfα = 1

{|0�, | ↑�, | ↓�, | ↑↓�} → {| ↑�, | ↓�}

Fermion 
Hilbert space

Constrained physical 
Hilbert space



Single site: SU(2) gauge redundancy

• This representation has a local SU(2) redundancy

• This is nicely exposed using a matrix notation:

Baskaran & Anderson; I. Affleck;  Dagotto, Fradkin & Moreo

F =

�
f↑ f†

↓
f↓ −f†

↑

�
�S = −1

4
tr(�σFF †)

�G =
1

4
tr(F�σF †)

Generates left-SU(2) 
rotations of F

invariant under right-SU(2) 
rotations of F, generated by

�S

{| ↑�, | ↓�} → S = 1/2;G = 0

{|0�, | ↑↓�} → S = 0;G = 1/2
Hilbert space

Constraint �G = 0

• On lattice,     generates a local SU(2) symmetry, and we 
have the local constraint

�Gr

�Gr = 0

G3 =
1

2
(1− f†

αfα)

G1 =
1

2
(f↑f↓ + f†

↓f
†
↑)

G2 = − i

2
(f↑f↓ − f†

↓f
†
↑)



Mean-field Hamiltonian

• Most general quadratic Hamiltonian invariant under        
left-SU(2) (i.e. spin) rotations:

• Such Hamiltonians can be obtained as saddle points of an 
appropriate mean-field decoupling, starting from microscopic 
spin model

H0 =
�

(r,r�)

�
iχ

0
rr� tr(FrF

†
r�) + χ

i
rr� tr(Frσ

i
F

†
r�)

�
+

�

r

a
i
0(r)G

i
r



Beyond mean-field I: Projected wavefunction

• Start with mean-field ground state     , apply projection 
operator to enforce constraint and obtain a spin 
wavefunction:

• Note that

•Can also use the same mean-field starting point to construct 
a low-energy effective theory - will discuss shortly

|ψ0�

P =
�

r

Pr Pr =
4

3
�S2
r =

4

3

�
3/4− �G2

r

�

|ψ� = P|ψ0�
[�Sr,P] = [�Gr,P] = 0



Symmetries

• Spin singlet:

• Space group operation 

• Time-reversal

• We say space group and time reversal operations are 
realized projectively, resulting algebraic structure is dubbed 
“projective symmetry group” (PSG) 

�S|ψ� = 0, �S =
�

r

�Sr

S : r → S(r)

USFrU†
S = FS(r)U

S
r

May need this gauge transformation 
in order to satisfy USH0U†

S = H0
US

�SrU†
S = �SS(r) Physical requirement

T : �Sr → −�Sr

T : Fr → (iσ2)FrU
T
r

X.-G. Wen



Projective symmetry group

• Call the group of pure gauge transformations leaving H0 
invariant the invariant gauge group (IGG).

• A symmetry operation can be composed with any element 
of IGG and remain a symmetry. So we write...

• IGG can be Z2, U(1) or SU(2) (or products of these).

• Given a space group and a fixed IGG, gauge-inequivalent 
PSG’s can be classified.

• So, mean-field Hamiltonians (also corresponding 
wavefunctions and/or effective theories) can be classified 
according to PSG.

• Note: PSG classification is not a classification of distinct 
quantum phases. (It’s still useful, though.)

X.-G. Wen

SG = PSG/IGG



Beyond mean-field II: Effective lattice gauge theory

• Prescription: Minimally couple the fermions to an IGG 
lattice gauge field. Resulting theory (generically) has precisely 
the symmetries of microscopic model. In strong coupling limit 
of gauge theory, reduces to Heisenberg spin model.

• I will give an explicit example later!

• Essentially equivalent to studying fluctuations about mean-
field saddle point

• Note: At best rough correspondence between effective 
theory and projected wavefunction. (Work by D. Ivanov & Senthil;                     
A. Paramekanti and coworkers; Y. Ran, MH, P. A. Lee and X.-G. Wen; T. Tay and O. Motrunich) 

Senthil & M. P. A. Fisher; X.-G. Wen
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Can SU(2) spin symmetry be realized projectively?

• Yes!

• We will see there are only two gauge-inequivalent 
possibilities:
1. “Naive” spin symmetry 2. Projective spin symmetry

Fr → UFr Fr → UFrU
†

Generator: �S Generator: �T = �S + �G

�G ≡
�

r

�Gr

• Before showing these are the only possibilities, let’s 
consider the consequences of projective spin symmetry.



Mean-field Hamiltonian

• Most general quadratic Hamiltonian invariant under        
projective spin rotation:

• IGG is Z2 [unless         , in which case it’s SU(2)]

• Projected wavefunction is a spin singlet:

H0 =
�

(r,r�)

�
iχ

1
rr� tr(FrF

†
r�) + iχ

2
rr� tr(σ

i
Frσ

i
F

†
r�)

�

Dot product of spin 
and gauge vectors

χ2 = 0

�T |ψ0� = 0 �SP|ψ0� = (�S + �G)P|ψ0� = �TP|ψ0� = P �T |ψ0� = 0



Majorana fermions

•      fermions have complicated transformations under 
projective spin rotations 

• Projective spin symmetry leads us to define Majorana 
fermions     and     , where

• Clearly    is a singlet while    is a triplet

• In terms of original fermions:

sr tir

Fr =
1

2

�
isr + �tr · �σ

�

sr = −i(fr↑ − f†
r↑)

t1r = fr↓ + f†
r↓

t2r = −i(fr↓ − f†
r↓)

t3r = fr↑ + f†
r↑

(Same mapping used recently by 
Burnell and Nayak to study 
Kitaev’s honeycomb lattice 

model - problem without spin 
rotation symmetry.)

sr tir

frα



Mean-field Hamiltonian

• Re-express in terms of Majorana fermions:

H0 =
�

(r,r�)

�
iχ

s
rr�srsr� + iχ

t
rr�

�tr · �tr�
� χs

rr� =
1

2
(χ1

rr� + 3χ2
rr�)

χt
rr� =

1

2
(χ1

rr� − χ2
rr�)

IGG=SU(2) point for 
χs
rr� = χt

rr�

Constraint

Si
r = −1

4
(isrt

i
r +

i

2
�ijktjrt

k
r )

Gi
r =

1

4
(isrt

i
r −

i

2
�ijktjrt

k
r )

T i
r = − i

4
�ijktjrt

k
r

�Gr = 0 Dr ≡ t1rt
2
rt

3
rsr = 1

Clear from this 
form that [H0,

�T ] = 0

Note: all spin operators of following form 
are the same on physical Hilbert space: Si

r = −1

4

�
(1− x)isrtri + (1 + x)

i

2
�ijktrjtrk

�

x = -1 x = 1Kitaev 
representation

Looks like Shastry-
Sen representation - 
but it is not the same

Si
r = − i

2
srt

i
r �Sr = �Tr



Did we need S=1/2 partons at all?

• Not really - we could have used Majorana partons from the 
beginning - but present approach helps to clarify role of spin 
rotation symmetry

• Moreover, these results complete the S=1/2 fermionic 
parton approach.

 Unless we choose         , we have 
 Can understand in terms of projective spin symmetry

�Sr = �Tr [H0,
�S] �= 0



Effective Z2 gauge theory

• Write down low-energy effective theory (on square lattice with 
nearest-neighbor fermion hopping, for simplicity)

• Ising degree of freedom on links of square lattice, acted on by     and     
Pauli matrices

• Limit h →∞,            and            → back to spin model in this limit.

• Limit of K large describes spin liquid state (deconfined phase of Z2 
gauge theory) 

Constraint: 
�

rr�∈+

σx
rr� = Dr

r

σx
rr� σz

rr�

σx
rr� = 1 Dr = 1

If K = 0, find                                ,                           H = J

�

�rr��

�Sr · �Sr�

(leading order degenerate 
perturbation theory)

H =
�

�rr��

σ
z
rr�

�
iχ

s
srsr� + iχ

t�tr · �tr�
�
− h

�

�rr��

σ
x
rr� −K

�

�

�

rr�∈�
σ
z
rr�

J =
4

h
χt(χt + χs)



Distinct realizations of projective spin symmetry

• Will now argue for earlier claim that there are only two 
ways to realize spin symmetry

• Assume spin rotations are generated by     , where                 
for some quadratic Hamiltonian     .  Noether’s theorem 
implies     is bilinear in fermion operators.

• Further assumptions:

• Most general      satisfying #2:

• #3 implies either           or 

• So, make gauge transformation so that either          or

�T [H0,
�T ] = 0

H0

�T

|ψ�

1. 

2.                     for gauge-invariant       (i.e.                )

3.  

�T =
�

r

T i
r

�T |ψ� = �S|ψ�

[T i, T j ] = i�ijkT k

�Gr|ψ� = 0

T i
r = Si

r +M ij
r Gj

rT i
r

Mr = 0 Mr ∈ SO(3)

M ij
r = δijMr = 0



Distinct realizations of projective spin symmetry

• So far we’ve shown            or                , might be different 
on different lattice sites

• But, suppose we have two sites, one of each type. There is 
no spin-rotation invariant fermion bilinear that can join these 
two sites. But we want to restrict to     that fully connect the 
lattice.

• Therefore we can only have the two possibilities claimed     

�Tr = �Sr
�Tr = �Sr + �Gr

H0
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PSG classification

• General result: Majorana spin liquid Z2 PSGs are in one-to-
one correspondence with SU(2) PSGs

• There are not many SU(2) PSGs (e.g. only four on the 
square lattice).

• Focus on square lattice, a PSG (with projective spin 
symmetry) is specified by:

Tx : sr → πx
r sr+x̂

Ty : sr → πy
r sr+ŷ

Px : sr → πPx
r sr�

Pxy : sr → πPxy
r sr�

T : sr → πT
r sr

Transformations of    
are same as above

tir Px Pxy



“Uniform” state

• When            , H0 describes pure imaginary hopping of f-fermions

• This state is actually unstable to Neel order (based on mean-field 
calculation in presence of on-site fermion interactions)

• Time reversal: 

• In general, H0 must have a bipartite structure to respect time 
reversal symmetry. 

χs = χt

T : sr → (−1)(rx+ry)sr



“π-flux” state

• This state has gapless Dirac fermions (gapless nature is protected 
by lattice symmetries).

• Moreover, this is a stable spin liquid phase. (Quartic interactions 
are RG irrelevant.)

• Natural question: to what extent can we realize similar physics to 
Kitaev’s model by perturbing the π-flux state? In particular, if we 
break symmetries to gap out the nodes, can we realize Z2 vortices 
with non-Abelian statistics?



Dimerized “π-flux” state

• Make some hoppings stronger, in 
pattern shown

• This opens a gap at Dirac points, 
corresponding to an achiral mass

• In particular, resulting band 
structure is topologically trivial



T-breaking “π-flux” state

• Add second-neighbor hopping so 
that translation and rotation 
symmetries are preserved (P and T 
are broken)

• This corresponds to chiral mass for 
fermions

• Topologically nontrivial band structure with gapless 
chiral edge modes - one Majorana edge mode for 
each bulk Majorana fermion.

• Either s and t’s co-propagate, or counter-propagate

• In both cases, Z2 vortices lack non-Abelian statistics



Combine T-breaking and dimerization

• Relative strength of T-breaking and dimerization 
perturbations may be different for s- and t-fermions.

• For example: if t-fermions have dominant 
dimerization, and s-fermion has dominant T-breaking, 
only the s-fermion has a chiral edge mode (or vice-
versa)

• In this way we can get non-Abelian excitations ... but 
we had to break a lot of symmetry to do it



Conclusions / Open questions

• Results of this talk: tied up a loose end in the S=1/2 fermionic parton 
approach to spin liquids, and in the process developed an approach to 
construct/study spin liquids with S=1 Majorana fermion excitations

• Strong restrictions limit the number of states with projective spin 
symmetry

• More detailed connection with exact solutions?

• Doping - holons should be charged S=1/2 bosons

• Are there Z2 spin liquids where S=1 Majorana fermions arise as Z2 vortices 
(or bound states of vortices and electric gauge charges)? If so, is this just 
another way of describing the states discussed here?

• Possible relevance to experiments???


