

Localization in disordered systems with chiral symmetry

Pavel Ostrovsky (KIT, Landau ITP)

in collaboration with

S. Bera, I. V. Gornyi, E. König, A. D. Mirlin, I. Protopopov, M. Titov

PRL 105, 266803 (2010); 106, 166806 (2011); in preparation

St. Petersburg, 9 July 2011

Outline

Introduction

From ballistics to diffusion

From diffusion to localization

From ballistics to diffusion

From diffusion to localization

Outline

Introduction

- 2 From ballistics to diffusion
- 3 From diffusion to localization

Introduction

From ballistics to diffusion

From diffusion to localization

Scaling theory of localization

Abrahams, Anderson, Licciardello, Ramakrishnan '79

Dimensionless conductance [in units e^2/h]:

- Metallic sample (Ohm's law): g ~ L^{d-2}
 Insulating sample (tunneling): g ~ e^{-L/ξ}

Universal scaling function:

 $\frac{d \ln g}{d \ln L} = \beta(g) = \begin{cases} d - 2, & g \gg 1, & \text{(metal)}, \\ \ln g, & g \ll 1, & \text{(insulator)}. \end{cases}$

Introduction

Quantum interference corrections

Quantum corrections are sensitive to time-reversal symmetry

TR symmetry preserved

spin decoupled \Rightarrow negative correction strong spin-orbit \Rightarrow positive correction

TR symmetry broken

two-loop interference

very weak negative correction

From diffusion to localization

Summary

Introduction

From ballistics to diffusion

Pavel Ostrovsky - Localization in disordered systems with chiral symmetry

Weak localization correction in 2D

Gor'kov, Larkin, Khmelnitskii '79; Hikami, Larkin, Nagaoka '80

Symmetry Classification

Wigner '51, Dyson '62, Altland and Zirnbauer '97, Schnyder et al '08

• Time-reversal symmetry (T): $H = UH^T U^{-1}, \quad T^2 = UU^* = \pm 1$

- Chiral symmetry (C): $H = -UHU^{-1}$
- Particle-hole symmetry (CT): $H = -UH^T U^{-1}, \quad CT^2 = UU^* = \pm 1$

Introduction

From ballistics to diffusion

From diffusion to localization

Symmetry Classification

Wigner '51, Dyson '62, Altland and Zirnbauer '97, Schnyder et al '08

	T ²	С	CT ²	NLσM	π_1	π_2	π_3	WL
Α	0	0	0	$U(2N)/U(N) \times U(N)$	0	Z	0	0
AI	1	0	0	Sp(4N)/Sp(2N) imes Sp(2N)	0	0	0	-
All	-1	0	0	O(2N)/O(N) imes O(N)	\mathbb{Z}_2	\mathbb{Z}_2	0	+
AIII	0	1	0	U(N)	Z	0	\mathbb{Z}	≡0
BDI	1	1	1	U(2N)/Sp(2N)	\mathbb{Z}	0	0	≡0
CII	-1	1	-1	U(N)/O(N)	Z	\mathbb{Z}_2	\mathbb{Z}_2	≡0
D	0	0	1	O(2N)/U(N)	0	\mathbb{Z}	0	+
C	0	0	-1	Sp(2N)/U(N)	0	\mathbb{Z}	\mathbb{Z}_2	-
DIII	-1	1	1	<i>O</i> (<i>N</i>)	\mathbb{Z}_2	0	\mathbb{Z}	+
CI	1	1	-1	Sp(2N)	0	0	Z	-

Introduction

From ballistics to diffusion

From diffusion to localization

Graphene

- Chiral structure: two sublattices: A, B
- Two valleys of the spectrum: K, K'
- linear dispersion: $\epsilon = v_0 |\mathbf{p}|$
- Massless Dirac Hamiltonian in each valley: $H = v_0 \sigma \mathbf{p}, \sigma = \{\sigma_x, \sigma_y\}$
- Vacancies preserve chiral symmetry (class BDI)

Introduction

From ballistics to diffusion

From diffusion to localization

Graphene

- Chiral structure: two sublattices: A, B
- Two valleys of the spectrum: K, K'
- linear dispersion: $\epsilon = v_0 |\mathbf{p}|$
- Massless Dirac Hamiltonian in each valley: $H = v_0 \sigma \mathbf{p}, \sigma = \{\sigma_x, \sigma_y\}$
- Vacancies preserve chiral symmetry (class BDI)

Introduction

From ballistics to diffusion

From diffusion to localization

Outline

2 From ballistics to diffusion

Introduction

From ballistics to diffusion

From diffusion to localization

Generating function

Matrix Green function [Nazarov '94]

$$\check{G} = \begin{pmatrix} \epsilon + i0 - H & -\delta(x)v_x \sin \frac{\phi}{2} \\ -\delta(x - L)v_x \sin \frac{\phi}{2} & \epsilon - i0 - H \end{pmatrix}^{-1}$$

• Generating function (free energy): $\mathcal{F}(\phi) = \operatorname{Tr} \log \check{G}^{-1}(\phi)$

$$\Rightarrow \quad \text{Conductance: } G = -\frac{2e^2}{h} \left. \frac{\partial^2 \mathcal{F}}{\partial \phi^2} \right|_{\phi=0}$$

$$\Rightarrow \quad \text{Fano factor: } F = \frac{1}{3} - \frac{2}{3} \left. \frac{\partial^4 \mathcal{F} / \partial \phi^4}{\partial^2 \mathcal{F} / \partial \phi^2} \right|_{\phi = 0}$$

Clean graphene

$$\mathcal{F}_0(\phi)=-rac{W\phi^2}{\pi L}, \qquad G=rac{4e^2}{\pi h}rac{W}{L}, \qquad F=rac{1}{3}$$

Introduction

From ballistics to diffusion

From diffusion to localization

Summary

Pavel Ostrovsky - Localization in disordered systems with chiral symmetry

1

On-site potential

• From lattice to Dirac: $\Psi_i = \langle u_i | \Phi(\mathbf{r}) \rangle$ $|\Phi(\mathbf{r}) \rangle$ – smooth envelope function (Dirac Hamiltonian) Bloch function $\langle u_i | = \begin{cases} (e^{i\theta_+/2}, 0, 0, e^{-i\theta_+/2}), & \mathbf{r}_i \in \mathbf{A}, \\ (0, ie^{i\theta_-/2}, ie^{-i\theta_-/2}, 0), & \mathbf{r}_i \in \mathbf{B}. \end{cases}$

• On-site potential in the Dirac language: $|u_i\rangle V_i\langle u_i|$

Phases θ_{\pm} depend on sublattice and "color" of the site:

 $heta_{\pm} = \pm lpha + 2\mathbf{K} \cdot \mathbf{r}_i = \pm lpha + 2\pi i c/3$ Color index: $c = 0, \pm 1$

Introduction

From ballistics to diffusion

From diffusion to localization

Unfolded representation

Generating function

 $\mathcal{F}(\phi) = \mathcal{F}_0 + \operatorname{Tr} \log(1 - \check{G}_0 V)$ with $V = \sum_m |u_m\rangle V(\mathbf{r}_m) \langle u_m|$

- Unfolding: $\mathcal{F}(\phi) = \mathcal{F}_0 + \log \det \left[\delta_{nm} V_n \langle u_n | \check{G}_0(\mathbf{r_n}, \mathbf{r_m}) | u_m \rangle \right]$
- Vacancies $V_n \to \infty$: $\mathcal{F}(\phi) = \mathcal{F}_0 + \log \det \langle u_n | \check{G}_0(\mathbf{r_n}, \mathbf{r_m}) | u_m \rangle$
- Conductance

$$G = \frac{4e^2}{\pi h} \left\{ \frac{W}{L} + \pi \operatorname{Tr}[K, Y](K + K^T)^{-1}[K^T, Y](K + K^T)^{-1} \right\}$$
$$K_{mn} = \frac{e^{\frac{i}{2}(\theta_m - \theta_n)}}{\sin \frac{\pi}{2L}[\zeta_m x_m + \zeta_n x_n + i(y_m - y_n)]}, \quad Y = L^{-1} \operatorname{diag}\{y_n\}$$

 $\zeta_i = \pm 1$ and θ_i are sublattice and color of *i*th vacancy

Inversion of an $N \times N$ matrix \implies extremely efficient numerics!

Í	n	ŧ٣	0	A	 0	ñ	~	\mathbf{r}
			U					1.

From ballistics to diffusion

From diffusion to localization

Summary

Vacancies: numerics

- Single color, armchair boundary ($\alpha = 0$)
- Sublattice imbalance $\delta = (n_A n_B)/n$
- Unstable fixed point for $\delta = 0$ (conductivity saturates at $\sigma \approx 2e^2/h$)
- Stable fixed point for $n_B \neq n_A$ with $\sigma \approx \frac{4e^2}{\pi h}$

Introduction

From ballistics to diffusion

Vacancies: scaling

- Crossover curves collapse in units of L/ξ
- Power law scaling $n\xi^2 \sim \delta^{0.72}$

Novel strong-coupling criticality in class BDI beyond sigma model

Introduction	From ballistics to diffusion	From diffusion to localization	Summary
Pavel Ostrovsky - Loc	alization in disordered systems with chiral symmetry	9 July 2011	15/28

Outline

From diffusion to localization

Introduction

From ballistics to diffusion

From diffusion to localization

Gradually remove sites from graphene Metal-insulator transition expected!

Introduction

From ballistics to diffusion

From diffusion to localization

Summary

Pavel Ostrovsky - Localization in disordered systems with chiral symmetry

9 July 2011

Gradually remove sites from graphene Metal-insulator transition expected!

Introduction

From ballistics to diffusion

From diffusion to localization

Summary

Pavel Ostrovsky - Localization in disordered systems with chiral symmetry

9 July 2011

Gradually remove sites from graphene Metal-insulator transition expected!

Introduction

From ballistics to diffusion

From diffusion to localization

Summary

Pavel Ostrovsky - Localization in disordered systems with chiral symmetry

9 July 2011

Gradually remove sites from graphene Metal-insulator transition expected!

Introduction

From ballistics to diffusion

From diffusion to localization

Summary

Pavel Ostrovsky - Localization in disordered systems with chiral symmetry

9 July 2011

Numerics: Chiral Network Models

Bocquet and Chalker '03

- Chiral unitary (AIII) network model
- Both critical (Gade) and localized phase observed
- Similar results for dimerized lattice model [Motrunich et al '02]

Introduction	From ballistics to diffusion	From diffusion to localization	Summary
Pavel Ostrovsky - Locali	zation in disordered systems with chiral symmetry	9 July 2011	18/28

Localization from metallic perspective

Gade and Wegner '91, Gade '93

2D nonlinear sigma model for a chiral system

$$S[Q] = \int d^2 x \left\{ \frac{\sigma}{8\pi} \operatorname{tr} \left[\nabla Q^{-1} \nabla Q \right] - \frac{c}{8\pi} \left[\operatorname{tr} Q^{-1} \nabla Q \right]^2 \right\}$$

Matrix field

 $Q \in egin{cases} U(N), & ext{unitary (AIII),} \ U(N)/Sp(N), & ext{orthogonal (BDI),} \ U(N)/O(N), & ext{symplectic (CII).} \end{cases}$

- Replica limit $N \rightarrow 0$ is assumed
- σ conductivity per square

From diffusion to localization

Localization from metallic perspective

Gade and Wegner '91, Gade '93

• Rewrite
$$Q = e^{i\phi}U$$
 (det $U = 1$)

$$S[U,\phi] = \int d^2x \; \left\{ rac{\sigma}{8\pi} \operatorname{tr} \left[
abla U^{-1}
abla U
ight] + \left(rac{\sigma + Nc}{8\pi}
ight) \left(
abla \phi
ight)^2
ight\}$$

• Decoupled Gaussian theory in ϕ :

 $\frac{d}{d \ln L} \left(\sigma + N c \right) = 0$

Replica limit

$$\frac{d\sigma}{d \ln L} = -N \; \frac{dc}{d \ln L} \stackrel{N \to 0}{\to} 0$$

Absence of localization to all orders in perturbation theory!

 Introduction
 From ballistics to diffusion
 From diffusion to localization
 Summary

 Pavel Ostrovsky – Localization in disordered systems with chiral symmetry
 9 July 2011
 19/28

Status quo

Apparent controversy

- Strong disorder induces localization in a chiral system (intuition + numerics)
- No traces of localization in the perturbation theory in the metallic limit (Gade and Wegner)

How to resolve?

Take into account non-perturbative effects

Introduction

From ballistics to diffusion

From diffusion to localization

Bypass Gade and Wegner argument

 Loophole to escape Gade and Wegner argument: det Q = e^{iφ} ∈ U(1) ≃ S¹

 \Rightarrow vortex excitations allowed!

Recalls Berezinskii-Kosterlitz-Thouless transition!

 Introduction
 From ballistics to diffusion
 From diffusion to localization
 Summary

 Pavel Ostrovsky – Localization in disordered systems with chiral symmetry
 9 July 2011
 21/28

Berezinskii '70, Kosterlitz and Thouless '73

Continuum limit of xy-model:

$$S\left[\phi
ight] = \int d^2 x \; rac{J}{2} \left(
abla \phi
ight)^2$$

• Vortex excitation (γ – inverse core size, n – vorticity)

 $\partial_{\mu}\phi = n \operatorname{rot}_{\mu} \ln \gamma \|\mathbf{x} - \mathbf{x}_0\|$

• Within the core, gradient expansion breaks down: regularize by S_{core} \Rightarrow statistical weight $y_0 = e^{-S_{\text{core}}}$

2D Coulomb gas of vortices

$$\mathcal{S}_{ ext{Vortices}} = -2\pi J \sum_{i < j} \textit{n}_i \textit{n}_j \ln \gamma \| \mathbf{x}_i - \mathbf{x}_j \|$$

Introduction

From ballistics to diffusion

From diffusion to localization

Berezinskii '70, Kosterlitz and Thouless '73

The gradient field $\nabla \phi$ of a vortex-antivortex dipole

 Introduction
 From ballistics to diffusion
 From diffusion to localization
 Summary

 Pavel Ostrovsky – Localization in disordered systems with chiral symmetry
 9 July 2011
 22/28

Berezinskii '70, Kosterlitz and Thouless '73

 Large J (low temperature): vortices strongly bound in tiny dipoles ordered phase (quasi long-range order)

- Small J (high temperature): vortex plasma, disordered phase
- Real space RG (integrate out small dipoles and rescale)

$$\frac{dJ}{d\ln L} = -y^2 J^2$$
$$\frac{dy}{d\ln L} = (2 - \pi J) y$$

Introduction

From ballistics to diffusion

From diffusion to localization

RG-flow in the vicinity of the critical "end" point.

Introduction

From ballistics to diffusion

From diffusion to localization

RG: background field formalism

Polyakov '75, Pruisken '87

Bare action

$$S_0[Q] = \int d^2x \left\{ \frac{\sigma_0}{8\pi} \operatorname{tr} \left[\nabla Q^{-1} \nabla Q \right] - \frac{c_0}{8\pi} \left[\operatorname{tr} Q^{-1} \nabla Q \right]^2 \right\}$$

• Separate fast and slow variables
$$Q = U^{-1} \tilde{Q} V$$

 \tilde{Q} – fast; U , V – slow

- Integrate out fast variables
- Sigma-model action for slow $Q' = U^{-1}V$ with corrected constants

Perturbative RG

Expand the fast field \tilde{Q} near 1

One-loop perturbative RG (chiral unitary system):

 $\frac{d\sigma}{d\ln l} = -N + N^2 O(1/\sigma), \qquad \frac{dc}{d\ln l} = 1 + N O(1/\sigma)$

Replica limit $N \rightarrow 0$:

$$\frac{d\sigma}{d\ln L} = 0, \qquad \frac{dc}{d\ln L} = 1$$

Only one loop survives in replica limit [Guruswamy et al '00]

Vortex contribution

Include single vortex-antivortex dipole d into fast field:

 $ilde{Q}_{
u} = 1 + |p
angle (e^{i\phi} - 1)\langle p|$

 $|p\rangle$ is a unit vector in replica space

- Dipole action $S[\tilde{Q}_v] = 2S_{core} + rac{\sigma_0 + c_0}{2} \ln \gamma \|\mathbf{d}\|$
- Average (integrate over positions of vortices and $|p\rangle$)
- RG equations in replica limit (lowest order in $y = L^2 e^{-S_{\text{core}}}$)

$$\frac{d\sigma}{d\ln L} = -\sigma^2 y^2,$$

$$\frac{dc}{d\ln L} = 1 - (\sigma^2 + 2\sigma c)y^2,$$

$$\frac{dy}{d\ln L} = \left(2 - \frac{\sigma + c}{4}\right)y$$

Introduction

From ballistics to diffusion

From diffusion to localization

Flow diagram

Pavel Ostrovsky - Localization in disordered systems with chiral symmetry

9 July 2011

Vortices vs. topology

• Chiral symplectic class CII admits $\mathbb{Z}_2 \theta$ -term

- \Rightarrow Vortices attract instantons
 - \Rightarrow Vortex-instanton fusion changes $S_{\text{core}} \mapsto -S_{\text{core}}$
 - \Rightarrow Internal \mathbb{Z}_2 degree of freedom in each vortex

Chiral unitary class AIII admits Wess-Zumino term

- \Rightarrow Vortices break gauge symmetry
 - \Rightarrow Internal U(1) degree of freedom in each vortex
 - \Rightarrow Random Im S_{core}

Presence of a topological terms in sigma-model action prevents the theory from vortices!

Introduction	From ballistics to diffusion	From diffusion to localization	Summary
Pavel Ostrovsky – Loca	lization in disordered systems with chiral symmetry	9 July 2011	27/28

Summary

Ballistics \Leftrightarrow Diffusion

- Efficient approach to studying transport in strongly disordered systems is developed
- 2 The theory is applied to graphene with vacancies
- Various novel strong-coupling critical regimes are identified

Diffusion \Leftrightarrow Localization

- Renormalization of sigma model due to vortices
- 2 Non-perturbative weak localization correction in chiral systems
- Flow diagram near metal-insulator transition

105, 266803 (2010); 106, 166806 (2011); in preparation

Introduction

From ballistics to diffusion

From diffusion to localization

Summary