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Introduction

Introduction. Effective field theories

Non-linear o-model has the Lagrangian of the form:

1 F2
£2 = 5900 (8) 9"’ = —tr (0,00,

where U = exp(iA*¢?) is an element of some group G.

In D > 2 dimensions non-linear o-models are non-renormalizable. However such models
are often used as Effective Field Theories (EFTs) for description of Goldstone particles
integrations, e.g. Chiral Perturbation theory (ChPT), which is the

G = 5UL(3) x SUR(3)/SUy (3) o-model and describes interaction of massless pions.

4

Non-renormalizability of the theory requires introduction higher-order Lagrangians, with new
low-energy constants (LEC)

LPET = Lo + L4 + Lo +...
~~ ~ ~
terms with terms with terms with
2 derivatives 4 derivatives 6 derivatives
in ChPT in ChPT in ChPT TR
1 constants ~ 4 constants ~ 30 constants ‘a&"\
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Introduction

Introduction. Structure of low-energy expansion

Perturbative expansion in D = 4 dimensions has the form (4-point function):

EQ E4 2 EG
A(s,t) = 3z +F( c2ln (%) + c3 ) +F("')+"'
v 1-loop with Lo
tree order 1-loop parameters -+
only Lo only Lo tree order with
parameters parameters

L4 parameters

E? is a generic momentum parameter, s and ¢ are Mandelstam variables.

- E2 " n—1 /1‘2 = E2 " n—2 //‘2
A(s,t) = Z wn (F) In (E) + Z n (F) In (E) +...
n=1 n=2

Leading Next-to-Leading
Logarithms (LLogs) Logarithms (NLLogs)
contains only contains
Lo parameters Lo + L4 parameters
The usual renormalization group is not applicable here. @}‘

3
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LLog from unitarity

Unitarity and LLog coefficients

Let us consider non-linear o-model with the symmetry group G. Expanding the metric above

the origin in normal coordinates
1 1o 1
S2= / 'z - 9an(#)0u¢"ud” = / d'x (5 Jab 09" 04" = o Rac,ba $76°0u0" 00" + ) ,

Jap is the group metric, Ryp cq is the Riemann tensor.
4 ¢
(¢9°|S|¢°¢") = I + 2mi(4m)*6(>_pi) Y P> (21 +1)P (1 + ?> tf (s),
=1 I l

is the projector to representation I, s and ¢ are Mandelstam variables (built from

P[abcd
Clebsch-Gordan coefficients).
-5 g 4 on?
i
7
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The 2-particle cuts result only from LLogs

The coefficient w!; (the "general" LLog coefficient) can be found by summing
discontinuities over left- and right- cuts.

The right-cut discontinuity is given by the unitarity relation
Disc t (s) = [t (s)|? + O (Inelastic part ~ NLLog), s > 0.

The left-cut discontinuity can be found by the analytical continuation of the unitarity
relation (like imaginary part of the Roy equation)

202l +1 -s 2s’ 2 !
Disc t] (s) = E Csli/w/ ds' P, (S t2s ) Py ( 5 +/S ) Disc tlI,/ (s"), s<0,
s 0 —s —s

v

’ . . .
where CII' = inb’CdPIb,d’aC is the crossing matrix between s <+ u channels.

S
ik
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The LLog coefficients are given by the recursive equation |[J.Koschinski,M.Polyakov, AV,
1004.2197]

n—1 n 1 . , I'l wl’ )
1 11’ 5l 11 1+ 't i,/ " n—i,l
W= 30 5(5 S 4 0 QUL+ Cau (1) QY ) T
i=11=0

Qi:l is the crossing matrix in the partial wave space at LLog approximation, and Cj; are
crossing matrices in representation space.
It is universal form of equation on LLog coefficients

1 n—1

One needs to calculate only the crossing matrices and the boundary conditions & .

The boundary conditions are given by the tree order of the amplitude.
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LLog from unitarity

Example calculation: O(N) o-model

The Lagrangian of the Weinberg model:

Did;

Lo = (51]+ F2 _¢2

) D0

There are 3 isospin spaces (I = 0, 1,2) with projectors.

Pabcd _ l(sabécd Pabcd _ l(éac(;bd _ éad(sbc) Pabcd — 1(5ac5bd 4 éadébc) _ i(sab(scd
0 N Pt 2 r2 2 N
Boundary conditions {w{j,w];,w?;} = {N —1, 1, —1}. Then the simple calculation gives
WOy 0 N 1 N? 61N L5 N3 631N? 4 46279N 13309 )
N-1— "2 9 4 144~ 144 8 2700 194400  194400°

9 The results agrees with known 1 and 2 -loop calculations
¢ The large-N approximation and its correction are correct.

o The equation is fast evaluated by computer, e.g. calculation of wigo (N = 3) takes ~ 10
min.

o
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enormalization group

The equation in renomalizable theory

In renormalizable theories the LLog approximation can be obtained by solving the 1-loop RG
equation.

_1 i i A0 9y2
£—5u¢%¢—zﬁ¢)
9 O N+2

A= 2 2 = )= AO
W =PV = TR OO = AGH =2 = e e

The same solution comes from the recursive equations (the S-function is the sum of crossing
matrices, 0, = 1):

Wn =

1 "z‘:l(NH)

N+2)n—1
2n—1) & 4

Wiln —g el Wn = ( 3

The recursive equations are the particular form of renomalization group equations. For the
EFT (i.e. non-renormolizable QFT) it takes the form:

o 0
Wpl = —— Z /Bn Wil Wy —4,17 —— ;L27A(S,t) = dtldtQA(S,tl)A(S,tQ)K(S,t; t17t2)
ou? s

4
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RG equations in EFTs

In EFTs one has infinite number of coupling constants and -functions
[Buchlel Colangelo,0309049]
w? 8u2 g1 =0, the lowest order constant does not run

w? 8u2 g2c = B(1,1,C)g191, the second order constant does run through g1

u? %gnc = E?;ll (3, A;n — i, B/C)giagn—i,B + O(g3), the equation for 1-loop running
of gna-

The f function is the pole-part of diagrams:

-i, B
i A n-i, B i A n-i, B
i, A
+Zzﬁ gnA A(Svtli g)
n=1 A 89”

AT 4
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d 8 oo
2 2 2 Z Z 2
M—As,t,u,g = — + 5914 AS,t,[,L »9
dlu‘2 ( ) ( 8//'2 n=1 A ( " )agnA ( )
A(s,t, ug, 90) = g 90,nAVna(s,t) — boundary condition

n,A

The key point that one has the finite number of S-function at given order. Then the system
can be reformulated in terms of recursive equation:

2

i (m
Aot 1%,9) = 3 wnaVia(s, gl I (—2)
n,A Ho

1 n—1 4 '
Wno = Z Z B(i, A;n — i, B/Cw; Awn—i,B
i=1 AB

[Kivel,Polyakov,AV,0809.3236][Kivel,Polyakov,AV,0904.3008]

Such analysis can be applied only for massless fields.

The presence of mass breaks the hierarchy of equations and the system can not be solved
(the tadpole diagrams generates the infinite number of additional RG-functions, see
[Bijnens,Carloni,1008.3499]). The presence of mass also breaks the unitarity derivation, since
In (m2) are "invisible" in complex s-plane.

Lswa
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Geometrical reformulation

1-loop [-functions for o-model
In D = 2 the running of the o-model is given by Friedan (Ricci-flow) equation:
0
a 5 295 (#) = Rz] + . (D=2)

In higher dimensions the base manifold metric does not run. But the higher order tensors
run:

S= [d'e S0(000,0'0,07 +hij0 61 +111),(0)0,00,670,6"0,6' +

= / d*z g”(¢)am amuZTJLZ (B Viy V1 )* D (35 Y 1y V1 8D+ Tt - -

Their 1-loop running is given by the recursive equation in the form:

Is]
2 (nl
K au2 Tabcd - (wnl)abcd + -
n—1 X . \Ba
(w ) _ 1 Z (Wzl)abag (Wn—z,l) cd
mabed T g(n - 1) | & 20+ 1
! ! ’
+§ 2”: (Wit ) adagp (“’n%,l’)ﬁacb QL'+ (Wit ) geas (ani,ﬂ)ﬁa,,d (-nHralt
i=1 /=0 20 41

V.
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Geometrical reformulation

Boundary conditions:

1

1
(W10) gpea = _E(Racbd + Radbe)y,  (W11)gpea = 5Rabcd~

The n = 2 evolution is well-known (e.g. [Percacci,Zanusso,0910.0851])
20Tgpes 1
op? (4m)?

1 815 818
+E (Radmﬁszc 12— Ravpypa Req ! 2)

1 81 B B2 B
(5 (Raﬂwﬂsz ld 2 + Rapycpo Ry 2d 1)

n = 3 evolution is proportional to R®, etc., for details see [Polyakov,AV,1012.4205].
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Conclusions

(O The method to find the leading infrared logarithm behavior for the Goldstone particle
system is found.

9

9

Easily generalized to higher D (even)

Can be applied for different types of amplitudes, see e.g. form-factors
[Kivel,Polyakov,AV,0904.3008]

The recursive equations can be reformulated in geometrical, "Friedan"-like form.
This methods are useful for calculations of leading behaviour of non-local matrix
elements (e.g. parton distribution in effective field theory approach). The

large-non-locality effectively cancels the powers of energy expansion (the resulting low
energy expansion is similar to usual renormalizable perturbative expansion).

adimirov () Infrared Logs in EFT 11.07.11 14 / 14




	Introduction
	LLog from unitarity
	LLogs from renormalization group
	Geometrical reformulation
	Conclusions

