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1. Gapless & gapped topological media
2. Fermi surface as topological object

3. Fermi points (Weyl, Majorana & Dirac points) & nodal lines 

6. Supplemented material: Fully gapped topological media

* superfluid 3He-A, topological semimetals , cuprate superconductors , graphene     
    vacuum of Standard Model of particle physics in massless phase

* QED, QCD and gravity as emergent phenomena; quantum vacuum as 4D graphene

* exotic fermions: quadratic, cubic & quartic dispersion; dispersionless fermions

*  superfluid 3He-B, topological insulators , chiral superconductors,
     vacuum of Standard Model of particle physics in present massive phase

4. Flat bands  on surface of topological matter

5. 1D flat band  in the vortex core and Fermi-arc on the surface
     of topological matter with Weyl points

* superfluid 3He-A, semimetals , cuprate superconductors , graphene , graphite
* towards room-temperature superconductivity

* edge states & Majorana fermions ( planar phase , topological insulator  & 3He-B )

   a^   a†̂ Aalto University Landau Institute

Heikkilä, Kopnin, GV
arXiv:1012.0905, 1011.4185, 1011.4665, 1103.2033



classes of topological matter as momentum-space objects
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flat band (Khodel state): π-vortex in p-space

Fermi surface: vortex ring in p-space
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flat band
on 3He-A vortex

fully gapped topological matter: 
skyrmion in p-space

3He-B, topological insulators,
3He-A film,

vacuum of Standard Model
Weyl point - hedgehog in p-space

3He-A, vacuum of SM, topological semimetals

Dirac strings in p-space terminating on monopole

Fermi arc on
3He-A surface

H = + c σ .p 

metals,
normal 3He



bulk-surface correspondence:

topological correspondence:
topology in bulk protects gapless fermions on the surface or in vortex core 

bulk-vortex correspondence:

2D Quantum Hall insulator & 3He-A film  chiral edge states 

3D topological insulator  Dirac fermions on surface 

superfluid 3He-B Majorana fermions on surface 

superfluid 3He-A, Weyl point semimetal Fermi arc on surface 

superfluid 3He-A 1D flat band of zero modes in the core 

graphene dispersionless 1D flat band on surface 

semimetal with Fermi lines 2D flat band on the surface 



New topological object in momentum space: flat band with zero energy

Flat band on the surface of topological matter with nodal lines 



 vacuum with Fermi surface:
normal 3He

 vacuum with Fermi point:
3He-A, planar phase

two major universality classes of gapless fermionic vacua

gµν(pµ- eAµ - eτ .Wµ)(pν- eAν - eτ .Wν) = 0
gravity emerges from

Fermi point
analog of

Fermi surface

2. Effective theory of vacuum with Fermi surface

Landau theory of Fermi liquid Standard Model + gravity

Theory of topological matter:
Nielsen, Ishikawa, Haldane, Yakovenko, Horava, Kitaev, Ludwig, Schnyder, Ryu, Furusaki,

S-C Zhang, Kane, Liang Fu, ... 



Topological stability of Fermi surface

Fermi surface:
vortex ring in p-space
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Fermi surface

ε = 0

Energy spectrum of
non-interacting gas of fermionic atoms

ε < 0
occupied 

levels:
Fermi sea

p=p
F

phase of Green's function

Green's function

ε > 0
empty levels

G(ω,p)=|G|e iΦ

G-1= iω − ε(p)

has winding number N = 1

ε(p)                    =         p
2
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2
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no!
it is a vortex ring

is Fermi surface a domain wall

in momentum space?



Migdal jump & p-space topology

Fermi surface:
vortex line in p-space
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G(ω,p)=|G|e iΦ

G(ω,p) =

* Singularity at Fermi surface is robust to perturbations:

 winding number N=1 cannot change continuously,
interaction (perturbative) cannot destroy singularity

* Typical singularity: Migdal jump

* Other types of singularity: Luttinger Fermi liquid,
   marginal Fermi liquid, pseudo-gap  ...

* Zeroes in Green's function instead of poles ( for γ > 1/2) have the same winding number N=1 
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Z(p,ω)



Topology in r-space

quantized vortex in  r-space  ≡ Fermi surface in p-space

winding
number
N1 = 1

classes of mapping  S1 → U(1) classes of mapping  S1 → GL(n,C)

Topology in p-space

vortex ring

scalar order parameter
of superfluid & superconductor

Green's function (propagator)

∆Φ=2π

Ψ(r)=|Ψ| e iΦ G(ω,p)=|G|e iΦ

y
 

x
 

z

Fermi surface

∆Φ=2π

p
xp

F

p
y 

(p
z
)
 

ωhow is it in p-space ?

space of
non-degenerate complex matrices

manifold of
broken symmetry vacuum states

homotopy group π1



non-topological flat bands due to interaction
Khodel-Shaginyan fermion condensate JETP Lett. 51, 553 (1990)

GV, JETP Lett. 53, 222 (1991)
Nozieres, J. Phys. (Fr.) 2, 443 (1992)

p
p2p1

flat  band

solutions:     ε(p) = 0     or      δn(p)=0

δn(p)=0

δn(p)=0

splitting of Fermi surface to flat band

p

ε(p) ε(p)n(p) n(p)

pF

E{n(p)} δE{n(p)} = ∫ε(p)δn(p)ddp = 0

δn(p)=0

δn(p)=0ε(p) = 0 ε(p) = 0



Flat band as momentum-space dark soliton terminated by half-quantum vortices

ε = 0
Khodel-Shaginyan

fermionic condensate
(flat band)
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half-quantum vortices
in 4-momentum space

phase of Green's function changes by π across the "dark soliton"



3. Classes of Fermi points & nodal lines: 
    superfluid 3He-A, Standard Model, semimetals, graphene, cuprate SC, ...
    surface of 3He-B & topological insulators  

magnetic hedgehog  vs  Weyl point

hedgehog in r-space
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σ(r)=r ^ ^  σ(p) = p

H = + c σ .p 

pz

hedgehog in p-space

right-handed Weyl electron  = 
hedgehog in p-space with spines = spins

close to Fermi point

again no difference ?

Landau CP symmetry
is emergent

right-handed and left-handed
massless quarks and leptons

are elementary particles
in Standard Model
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Chiral Weyl fermions in Standard Model

for interacting systems



weak isotopic spin

Topological invariant protected by symmetry

16 massless Weyl particles in one generation are protected
by combined symmetry and topology

24π2
NΚ=    1    e

µνλ
 tr ∫ dV K G ∂µ G-1 G ∂ν G-1G ∂λ G-1

over S3

GΚ  =+/− ΚG 

Κ = exp 2πiτ3 

G is Green's function, Κ is symmetry operator

Standard Model topological invariant

NΚ = 16 ng

for Standard Model vacuum



where are massive Dirac particles?
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Dirac particle - composite object:
mixture of left and right Weyl particles
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E2 = c2p2 + m2

is Dirac vacuum topologically trivial ?

fully gapped vacua
can be also topologically nontrivial
(3He-B, topological insulators, ...)

From massless Weyl particles to massive Dirac particles

N=+1

N=+1−1=0

N=−1

Tew ~ 1 TeV~1016K



N3 =−1 

over 2D surface S
in 3D p-space

8π
N3   =    1   e

ijk
 ∫ dSk  g . (∂pi g × ∂pj g) 

    2   
p

   1   
p

N3 =1 

Gap node - Weyl point
(anti-hedgehog)

Weyl fermions in 3+1 gapless topological cond-mat
topologically protected Weyl points in:

topological semi-metal (Abrikosov-Beneslavskii 1971),
3He-A (1982), triplet Fermi gases
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H =
c(px + ipy) 

c(px – ipy) 
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Gap node - Weyl point
(hedgehog)
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left-handed
particles

right-handed
particles

H = N3 c τ .p 

E = ± cp

close to nodes, i.e. in low-energy corner
relativistic chiral fermions emerge

    2   
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g1(p) −i g2(p) −g3(p) 
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= τ .g(p) 

emergence of relativistic QFT near Fermi (Dirac) point

original non-relativistic Hamiltonian

chirality is emergent ??

what else is emergent ?
relativistic invariance as well 
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top. invariant determines chirality
in low-energy corner

N3 =−1 

N3 =1 



two generic quantum field theories of interacting bosonic & fermionic fields

bosonic collective modes in two generic fermionic vacua

Landau theory of Fermi liquid Standard Model + gravity
 

collective Bose modes:
 

propagating
oscillation of position

of Fermi point
p → p - eA

form effective dynamic
electromagnetic field

propagating
oscillation of slopes 

E2 = c2p2 → gikpi pk
 

form effective dynamic
gravity field

AFermi
point

collective Bose modes
of fermionic vacuum: 

propagating
oscillation of shape

of Fermi surface

Fermi
surface

Landau, ZhETF 32, 59 (1957)



relativistic quantum fields & gravity emerging near Weyl point
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hedgehog in p-space

effective metric:
emergent gravity

emergent relativity

linear expansion near
Fermi surface

linear expansion near
Weyl point

tetrad 
primary object:

effective
SU(2) gauge

field

effective
isotopic spin

gµν(pµ- eAµ - eτ .Wµ)(pν- eAν - eτ .Wν) = 0

all ingredients of Standard Model :
chiral fermions & gauge fields 
emerge  in  low-energy corner

together with spin, Dirac Γ−matrices,  gravity  & physical laws: 
Lorentz & gauge  invariance, equivalence principle, etc

Atiyah-Bott-Shapiro construction:
linear expansion of Hamiltonian near the nodes in terms of Dirac Γ-matrices

H = ea
k Γa .(pk − pk) 0 ea

µ 

metric
secondary object:

gµν = ηab ea
µ eb

ν 

E = vF (p − pF) 

effective
electromagnetic

field

effective
electric charge

e = + 1  or  −1

gravity & gauge fields
are collective modes

of vacua with Weyl point 



emergent Landau
two-fluid hydrodynamics 

 emergent general covariance
& general relativity

EPlanck >> ELorentz EPlanck << ELorentz

ELorentz  <<  EPlanck 

ELorentz  ~ 10−3 EPlanck 

ELorentz  >>  EPlanck 

ELorentz  > 109 EPlanck 

crossover from Landau 2-fluid hydrodynamics to Einstein general relativity
they represent two different limits of hydrodynamic type equations

equations for gµν depend on hierarchy of ultraviolet cut-off's:
Planck energy scale EPlanck vs Lorentz violating scale ELorentz 

Universe3He-A with Fermi point



quantum vacuum as crystal 4D graphene
Michael Creutz JHEP 04 (2008) 017

N3 = +1

N3 = −1

Fermi (Dirac) points with

Fermi (Dirac) points with



topology of graphene nodes

4πi
1  tr [K

 ∫ dl H-1 ∂l H]  N
 
=  

Ν = +1 

Ν = +1 Ν = −1 

Ν = −1 Ν = +1 

Ν = −1 

K - symmetry operator,
commuting or anti-commuting with H

HΝ = +1  = τxpx + τypy 

HΝ = −1  = τxpx − τypy 

K  = τz

o

close to nodes:



exotic fermions:
massless fermions with quardatic dispersion
semi-Dirac fermions
fermions with cubic and quartic dispersion

bilayer graphene
double cuprate layer

surface of top. insulator
neutrino physics
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N=+1 N=0 N=+2 N=+1

massless fermions
with quadratic dispersion

massive fermionsDirac fermions

++ =
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1  tr [
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multiple Fermi point

N =  1 + 1 + 1  =  3

N =  1 + 1 + 1  + ...

 

E=cp

 

E=cp

 

E=cp

N=+1 N=+1 N=+1

N= +3
+ + =

E = p3 

E = pN 

E = − p3 

E = − pN 

T. Heikkilä & GV arXiv:1010.0393

cubic spectrum in trilayer graphene

spectrum in the outer layersmultilayered graphene

route to topological flat band on the surface of 3D material

p
x

what kind of induced gravity
emerges near degenerate Fermi point?



Flat bands in topological matter 

nodal spiral in multilayered graphene
generates flat band with zero energy

in the top and bottom layers 

nodal lines
in cuprate superconductors

generate flat band on side surface
nodes in graphene

generate flat band on zigzag edge

approximate flat band on side surface
of graphite

Hekilla, Kopnin, GV Shinsei Ryu



formation of nodal spiral in bulk (together with flat band on the surface)
by stacking of graphene layers 

4πi
1  tr [

 
K ∫ dl H-1 ∂l H]  N1 

=  o

N1 
= 1

Hi,j = (σxpx + σypy)δi,j + (σ+t+ + σ−t−)δi,j+1 

t+ > t−



Emergence of nodal line from gapped branches by stacking graphene layers



Nodal spiral generates flat band on the surface

projection of spiral on the surface determines boundary of flat band

at each (px,py) except the boundary of circle
one has 1D gapped state (insulator) 

at each (px,py) inside the circle
one has 1D gapless edge state
this is flat band 

trivial 1D insulator

topological 1D insulator

4πi
1  tr [

 
K ∫ dl H-1 ∂l H]  N1 

=  o

N1 
= 1

Noutside 
= 0

Ninside 
= 1

C

C

Coutside Cinside



Nodal spiral generates flat band on the surface

projection of nodal spiral on the surface determines boundary of flat band

energy spectrum in bulk
(projection to px , py plane)

lowest energy states:
surface states form the flat band



Helicity of nodal spiral

t+ > t−
t+ < t−



Modified nodal spiral in rhombohedral graphite: spiral of Fermi surfaces (McClure 1969) 

projections on surfaces
determine
approximate flat band



Nodal lines in graphite tranformed to chain of electron and hole FS

for conventional graphite:
approximate flat band
on the lateral surface



Gapless topological matter with protected flat band on surface or in vortex core

non-topological flat bands due to interaction
Khodel-Shaginyan fermion condensate
JETP Lett. 51, 553 (1990)
GV, JETP Lett. 53, 222 (1991)
Nozieres, J. Phys. (Fr.) 2, 443 (1992)
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p2p1

flat band

splitting of Fermi surface to flat band



flat band in soliton

nodes at pz = 0 and px
2= pF

2 

spectrum in solitonsoliton

4πi
1  tr [

 
K ∫ dl H-1 ∂l H]  N

 
=  o

E( px)
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flat band

H = τ3 (px
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2−pF
2 )/2m  + τ1c(z)pz

z 0 
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N = +1

N = +1

N = +1

flat
band

flat
band

N = −1

Flat band on the graphene edge

4πi
1  tr [
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=  o



Surface superconductivity in topological semimetals:
route to room temperature superconductivity

Extremely high DOS of flat band gives high transition temperature:

Tc  =  TF exp (-1/gν) Tc  ∼  gSFB  

normal superconductors:
exponentially suppressed

transition temperature

flat band superconductivity:
linear dependence

of Tc on coupling g

interactioninteraction DOS
flat band
area

1= g ∫
2h2
d2p

E(p)

1

"Recent studies of the correlations between the internal
microstructure of the samples and the transport properties
suggest that superconductivity might be localized at the
interfaces between crystalline graphite regions
of different orientations, running parallel to the
graphene planes."  PRB. 78, 134516 (2008)



multiple Fermi point

Kathryn Moler:
possible 2D superconductivityof twin boundaries



 top. invariant for fully gapped 2+1 system

 top. invariant for Weyl point in 3+1 system

From Weyl point to quantum Hall topological insulators 

over 2D surface S
in 3D momentum space

over the whole 2D momentum space
or over 2D Brillouin zone

8π
N3   =    1   e

ijk
 ∫ dSk  g . (∂pi g × ∂pj g) 

4π
N3 (pz)  =    1    ∫ dpxdpy  g . (∂px g × ∂py g) 
~

hedgehog
in p-space

skyrmion
in p-space

Weyl
point

2D topological Hall
insulator

2D trivial
insulator

pz

px

py

N3(pz) = 1 
∼

N3(pz) = 0 
∼

N3 = N3(pz <p0) − N3(pz >p0)  
∼ ∼

at each pz one has 2D insulator
or fully gapped 2D superfluid



3D matter with Weyl points:
Topologically protected flat band in vortex core

flat
band

Weyl
point

2D topological
QH insulator

2D trivial
insulator

2D trivial
insulator

Weyl
point

pz

− pF cos λ

 pF cos λ

N3(pz) = 0 
∼

N3(pz) = 1 
∼

N3(pz) = 0 
∼

4π2
N3(pz) =    1   tr ∫ dpx dpydω G ∂ω G-1 G ∂px

 G-1G ∂py
 G-1~

GV & Yakovenko
(1989)

at each pz between two values:
2D topological Hall insulator:
zero energy states E (pz)=0, 

 in the vortex core
(1D flat band 1011.4665)

vortices in r-space

z



Topologically protected flat band in vortex core of superfluids with Weyl points 

flat band
in spectrum of fermions

bound to core of 3He-A vortex
(Kopnin-Salomaa 1991)

E (pz , Q)

E (pz)

pz

pz

continuous spectrum

bound states

flat band Weyl
point

Weyl
point

flat band of bound states
terminates on zeroes

of continuous spectrum
(i.e on Weyl points)



3He-A with Weyl points:
Topologically protected
Dirac valley (Fermi arc) on surface 
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pz

− pF cos λ

 pF cos λ

N3(pz) = 0 
∼

N3(pz) = 1 
∼

N3(pz) = 0 
∼

for each    |pz | < pF cos λ
one has 2D topological Hall insulator with

zero energy edge states E (pz)=0
(Dirac valley PRB 094510 or Fermi arc PRB 205101)

 px

 py

2D trivial
insulator

2D trivial
insulator

2D topological
insulator
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Edge states at interface between effective two 2+1 topological insulators & Fermi arc

0 
py

py

pz
pF−pF

E(py, |pz| < pF)

left moving
edge states

occupied

Fermi arc in 2D:
Fermi surface which terminates

on two points:
projections of Weyl points

empty

gapped stategapped state
  

on the edge of insulator with

one fermion zero mode
 ν  =   1

y 

x 

int
er

fa
ceN3 = N− 

~

N3 = 1
~

E > 0

E = 0

E < 0

N3 = N+ 
~

GV JETP Lett. 55, 368 (1992)

Index theorem:
number of fermion zero modes

at interface:
 

ν =   N+ − N− 



Fermi arc:
Fermi surface separates positive and negative energies, but has boundaries

pz

py E (py = 0, |pz| < pF) = 0

E (py, pz) <  0

E (py, pz) >  0

Fermi surface

Fermi surface of localized states is
terminated by projections of Weyl points 

when localized states merge with
continuous spectrum

 Tsutsumi, et al PRB 094510

ordinary Fermi surface
has no boundaries

Fermi surface of bound states
may leak to higher dimension

L  spectrum of
edge states on 

left wall

R  spectrum of
edge states on 
right wall



Horava anisotropic scaling gravity

Horava anisotropic scaling in bilayered graphene
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E2 = 2c2p2 + 4m2 E2 = (p2/ 2m)2

N=+1 N=0 N=+2 N=+1

massless Dirac fermions
with quadratic dispersion

massive fermions2+1 massless Dirac fermions

++ =

4πi
1  tr [

 
K ∫ dl H-1 ∂l H]  N

 
=  o

Sgrav = ∫ d3
x dt  R

3 

b−6b3b3
anisotropic z=3 scaling:    x = b x' ,  t = b 3t'



relativistic quantum fields and gravity emerging near Weyl point

px

py

pz

hedgehog in p-space

effective metric:
emergent gravity

linear expansion near Weyl point

effective
SU(2) gauge

field

effective tetrad:
emergent gravity

emergent Γ−matrices 

effective
isotopic spin

gµν(pµ- eAµ - eτ .Wµ)(pν- eAν - eτ .Wν) = 0

all ingredients of Standard Model :
chiral fermions & gauge fields 
emerge  in  low-energy corner

together with spin, Dirac Γ−matrices,  gravity  & physical laws: 
Lorentz & gauge  invariance, equivalence principle, etc

Atiyah-Bott-Shapiro construction:
linear expansion of Hamiltonian near the nodes in terms of Dirac Γ-matrices

H = ei
k Γi .(pk − pk) 0

effective
electromagnetic

field

effective
electric charge

e = + 1  or  −1

what gravity & gauge fields
emerge in vacua with quadratic

Dirac point in bilayer graphene ? 



Fermions in 2+1 bylayer graphene

H =
(px + ipy)

2 

(px – ipy)
2 )) [(e1(p) +i e2).(p −A)]2

(e1(p) +i e2).(p −A)

[(e1(p) − i e2).(p −A)]2

(e1(p) − i e2).(p −A)

  = )

H =
px + ipy 

px – ipy 
))   = σx px + σy py =  

single layer
zweibein

zweibein
double layer

anisotropic scaling:    x = b x' ,  t = b2  t'  

)

)(0

0

0

0

0

0

0

0



2+1 anisotropic QED emerging in bylayer graphene

3+1 isotropic QED emerging in Weyl semimetal

anisotropic scaling:    x = b x' ,  t = b2  t'  ,  B = b−2 B' , E = b−3 E' ,   S = S' 

H =
(px + ipy)

2 

(px – ipy)
2 )) [(e1(p) +i e2)(p −A)]2

[(e1(p) − i e2)(p −A)]2
  = ) )

0

0

0

0

SQED = ∫ d2
x dt ( B

2 
− E

4/3 )
b−4 b−4

b2b2

isotropic scaling:    x = b x' ,  t = b t'  ,  B = b−2 B' , E = b−2 E' ,   S = S' 

SQED = ∫ d3
x dt ( B

2 
− E

2 )
b−4 b−4bb3

2+1 isotropic QED emerging in single layer graphene

SQED = ∫ d2
x dt ( B

2 
− E

2 )3/4

b−3bb2



Conclusion

universality classes of quantum vacua  

effective field theories in these quantum vacua 

quantum vacuum of Standard Model, topological superconductors & topological insulators, etc.

topological quantum phase transitions (Lifshitz, plateau, etc.) 

quantization of Hall and spin-Hall conductivity 

topological Chern-Simons & Wess-Zumino terms 

quantum statistics of topological objects 

spectrum of edge states & fermion zero modes on walls & quantum vortices 

chiral anomaly & vortex dynamics, etc.

flat band & room-temperature superconductivity

superfuid phases  3He serve as primer for topological matter:

we need:  low T, high H, miniaturization, atomically smooth surface, nano-detectors, ...
                 and fabrication of samples with room-temperature surface superconductivity

Momentum-space topology determines:



 3+1vacuum with Fermi point

 Fully gapped 2+1 system

4. From Fermi point to intrinsic QHE & topological insulators

over 2D surface S
in 3D momentum space

over the whole 2D momentum space
or over 2D Brillouin zone

8π
N3   =    1   e

ijk
 ∫ dSk  g . (∂pi g × ∂pj g) 

4π
N3   =    1    ∫ dpxdpy  g . (∂px g × ∂py g) 
~

hedgehog
in p-space

dimensional reduction

skyrmion
in p-space



topological insulators & gapped superconductors in 2+1 

How to extract useful information on energy states from this Hamiltonian
without solving equation

generic example:

p-wave 2D superconductor (Sr2RuO4 ?), 3He-A thin film,
CdTe/HgTe/Cd insulator quantum well, planar phase film

H =
c(px + ipy) 

c(px – ipy) 

          p
2

2m

          p
2

2m
)) − µ

+ µ− 
p2 = px

2 +py
2 

Hψ = Eψ

topological gapped superconductor = 
superconductor with gap in bulk
but with topologically protected
gapless states on the boundary

topological insulator =
bulk insulator

with topologically protected
gapless states on the boundary

who protects gapless states?



Skyrmion (coreless vortex) in momentum space at µ > 0 

Topological invariant in momentum space

N3 (µ > 0) = 1
~

4π
N3   =    1     ∫ d2p  g . (∂px g × ∂py g) 
~

g (px,py)

unit vector

sweeps unit sphere

py

px

ĝ

fully gapped 2D state at  µ = 0 

g3(p) g1(p) +i g2(p)

g1(p) −i g2(p) −g3(p) 
 H  = ))H =

c(px + ipy) 

c(px – ipy) 

          p
2

2m

          p
2

2m
)) − µ

+ µ− 
= τ .g(p) 

p2 = px
2 +py

2 

GV,  JETP 67, 1804  (1988)



quantum phase transition:
from topological to non-topologicval insulator/superconductor

Topological invariant in momentum space

intermediate state at µ = 0  must be gapless

4π
N3   =    1     ∫ d2p  g . (∂px g × ∂py g) 
~

H =
c(px + ipy) 

c(px – ipy) 

          p
2

2m

          p
2

2m
)) g3(p) g1(p) +i g2(p)

g1(p) −i g2(p) −g3(p) 
  = ))− µ

+ µ− 
= τ .g(p) 

N3 = 1 
~

N3
~

N3 = 0 
~

µ

quantum phase transition

 µ = 0

∆N3 = 0 is origin of fermion zero modes
at the interface between states with different  N3

∼
∼

topological
insulator

trivial
insulator



p-space invariant in terms of Green's function & topological QPT

film thickness

gapgap

gap

quantum phase transitions
in thin 3He-A film

plateau-plateau QPT
between topological states 

QPT from trivial
to topological state

N3 = 2 
~

N3 = 0 
~

N3 = 4 
~

N3 = 6 
~

a

a1 a2 a3

24π2
N3=    1     e

µνλ
 tr ∫ d2p dω G ∂µ G-1 G ∂ν G-1G ∂λ G-1~

transition between plateaus
must occur via gapless state!

GV & Yakovenko
J. Phys. CM 1, 5263 (1989)



q -  parameter of system
qc 

quantum phase transition at q=qc 

other topological QPT:
Lifshitz transition,

transtion between topological and nontopological superfluids,
plateau transitions,

confinement-deconfinement transition, ...

example: QPT between gapless & gapped matter

topological quantum phase transitions

transitions between  ground  states (vacua)  of  the same  symmetry,

but  different  topology  in  momentum  space

no symmetry change
along the path

broken symmetry

different asymptotes

when T => 0 

T (temperature) 

T n e −∆/T
qc 

T
no change of symmetry

along the path

topological
semi-metal

topological
insulator

QPT interrupted
by thermodynamic transitions

q

q

line of
1-st order transition

2-nd order transitionT

q

line of
1-st order transition

line of
2-nd order transition

T



 Fully gapped 3+1 system

 Majorana fermions on the surface
and in the vortex cores

 Fully gapped 2+1 system

Zero energy states on surface of topological insulators & superfluids

4π
N3   =    1    ∫ dpxdpy  g . (∂px g × ∂py g) 
~

py

px



py - component   

x 

y 

interface between two 2+1 topological insulators or gapped superfluids

H =
c(px + i py tanh x ) 

c(px –  i py tanh x ) 

          p
2

2m

          p
2

2m
)) − µ

+ µ− 

px+ipypx − ipy

x 0 

N3 = +1  N3= −1 
~~

px - component   

gapped state

gapless
interface

gapped state

int
er

fa
ceN3 = N− 

~
N3 = N+ 
~

  

* domain wall in 2D chiral superconductors:



Edge states at interface between two 2+1 topological insulators or gapped superfluids

0 
py

E(py)

left moving
edge states

occupied

empty

Index theorem:
number of fermion zero modes

at interface:
 

ν =   N+ − N− 

gapped stategapped state
  

y 

int
er

fa
ceN3 = N− 

~
N3 = N+ 
~

GV JETP Lett. 55, 368 (1992)



0 
py

E(py)
x 

y y 

cu
rre

nt

cu
rre

nt

N3 = 0 
~ N3 = 0 

~

Edge states and currents

 

2D topological
insulator

2D non-topological
insulator

or vacuum

2D non-topological
insulator

or vacuum

current   Jy  =  Jleft +Jright  = 0

left moving
edge states

occupied

empty
empty

occupied

0 
py

E(py)

right moving
edge states

N3 = 1 
~



0 
py

E(py)−V/2 E(py)+V/2

Edge states & intrinsic QHE: topological invariant determines Hall quantization

2D topological
insulator 2D non-topological

insulator
or vacuum

2D non-topological
insulator

or vacuum

current  Jy  = Jleft +Jright  = σxyEy

left moving
edge states

extra number
of left moving states

deficit
of right moving states

0 
py

V/2

V/2

−V/2

−V/2

right moving
edge states

apply voltage V

4π
σ

xy
 =   e

2
  N

~

x 

y y 

cu
rre

nt

cu
rre

nt
N = 0 
~

N = 0 
~

N = 1 
~



N

a

2

4

6

8

film of topological quantum liquid

Intrinsic quantum Hall effect  & momentum-space invariant

4π
σ

xy
 =   e

2
  N

film thickness

quantized intrinsic Hall conductivity
(without external magnetic field)

p-space invariant r-space invariant 

4π
      =     e

2
  N3 

Ey electric current   J
x
   = δS

CS 
/ δA

x

ẑ

x , J ^

y , E^

A
µ
- electromagnetic field

16π
S

CS
 =          N

 
eµνλ ∫ d2x dt A

µ
 F

νλ

e2

~

~

~

~

GV & Yakovenko
J. Phys. CM 1, 5263 (1989)

3

3

3



general Chern-Simons terms & momentum-space invariant
(interplay of r-space and p-space topologies)

16π
S

CS
 =   1    N

3IJ 
eµνλ ∫ d2x dt A

µ
I F

νλ
J

 Κ
I 

 - charge interacting with gauge field A
µ

I

 Κ=e     for electromagnetic field A
µ

 r-space invariant
p-space invariant protected by symmetry

24π2
      1  e

µνλ
tr [

 ∫d
2p dω Κ

I 
Κ

J 
G ∂µ G-1 G ∂ν G-1G ∂λ G-1]N

3IJ 
=  

gauge fields can be
real, artificial or auxiliary

 Κ=σz     for effective spin-rotation field A
µ

z    ( A
0
z= γH z) ^

 id/dt −γσ.H =  id/dt − σ.A
0
    

applied Pauli magnetic field plays the role of components of effective SU(2) gauge field A
µ

i  

^ ^

~

~



Intrinsic spin-current quantum Hall effect  & momentum-space invariant

4π
     =     1    (γN

ss 
dHz/dy + N

se 
Ey) spin current   J

x
z   

spin-spin QHE spin-charge QHE

2D singlet superconductor:

film of planar phase of superfluid 3He

s-wave:       Nss = 0
px + ipy:       Nss = 2
dxx-yy + idxy : Nss = 44π

σ
xy

          =   Nss    
spin/spin

4π
σ

xy
          =   Nse    

spin/charge GV & Yakovenko
J. Phys. CM 1, 5263 (1989)



planar phase film of 3He   &   2D topological insulator

spin quantum Hall effect

4π
     =     1   N

se 
Ey spin current   J

x
z  

spin-charge QHE

4π
σ

xy
          =   Nse    

spin/charge GV & Yakovenko
J. Phys. CM 1, 5263 (1989)

H =
c(px + i py σz ) 

c(px –  i py σz) 

          p
2

2m

          p
2

2m
)) − µ

+ µ− 

N3 = −1
~ −

N3 = +1
~ +

N3 =  
~ −

N3 = 
~

N3  +           0
~ +

N3 =  
~ −

Nse = 
~

N3  −           2
~+

N
se

 = 2 

24π2
      1  e

µνλ
tr [

 ∫d
2p dω σz G ∂µ G-1 G ∂ν G-1G ∂λ G-1]N

se 
=  

~

24π2
      1  e

µνλ
tr [

 ∫d
2p dω G ∂µ G-1 G ∂ν G-1G ∂λ G-1] = 0 N

3 
=  

~



Intrinsic spin-current quantum Hall effect  & edge state

4π
     =     1    (γN

ss 
dHz/dy + N

se 
Ey) spin current   J

x
z

spin-charge QHE

4π
σ

xy
          =   Nse    

spin/charge

electric current is zero
spin current is nonzero

V/2−V/2 x 

y y 

N
se

= 2 
N

se
= 0N

se
= 0

sp
in 

cu
rre

nt

sp
in 

cu
rre

nt

py

E(py)−V/2 E(py)+V/2

left moving
spin up

right moving
spin down

py

V/2

−V/2

right moving
spin up

left moving
spin down



3D topological superfluids / insulators / semiconductors / vacua

  

gapless topologically
nontrivial vacua

3He-A, 
Standard Model

above electroweak transition,
semimetals,
4D graphene

(cryocrystalline vacuum)

fully gapped topologically
nontrivial vacua

3He-B, 
Standard Model

below electroweak transition,
topological insulators,

triplet & singlet
chiral superconductor, ...

Bi2Te3



E (p)

p

conduction electron band, q=-1 

3 conduction  bands
of d-quarks

electric charge q=-1/3 

3 conduction bands
of  u-quarks, q=+2/3 

3 valence u-quark bands
q=+2/3 

3 valence d-quark bands
 q=-1/3 

valence electron band, q=-1 

Quantum vacuum: 
Dirac sea

       electric charge of quantum vacuum
   Q= Σ qa = N [-1 + 3×(-1/3) + 3×(+2/3) ] = 0

a

Present vacuum as semiconductor or insulator

neutrino band, q=0 

neutrino band, q=0 

dielectric and magnetic
properties of vacuum
(running coupling constants)



* Standard Model vacuum as topological insulator

superfluid 3He-B, topological insulator Bi2Te3 ,  present vacuum of Standard Model

Standard Model vacuum:

Topological invariant protected by symmetry

8 massive Dirac particles in one generation

24π2
NΚ=    1    e

µνλ
 tr ∫ dV Κ G ∂µ G-1 G ∂ν G-1G ∂λ G-1

over 3D momentum space

GΚ  =+/− ΚG 

Κ=γ5 Gγ5  =− γ5G 

G is Green's function at ω=0, Κ is symmetry operator

fully gapped 3+1 topological matter

 NΚ = 8ng



topological  superfluid  3He-B

topological 3He-B

topological superfluid

non-topological superfluid

non-topological superfluid

µ

Dirac Dirac

NΚ = +2 NΚ = 0 

NΚ = 0 NΚ = −2 

1/m*

0NΚ = −1 NΚ = +1 

         p
2

2m*
– µ

         p
2

2m*
+ µ–

cBσ.p

cBσ.p( (Η =

– Μ

+ Μ

cBσ.p

cBσ.p( (Η =

1/m* = 0

GV JETP Lett.  90, 587 (2009)

K = τ2

Dirac vacuum

         p
2

2m*
– µ( )=                     τ3 +cBσ.p τ1 

Hτ2  =− τ2H 



Boundary of 3D gapped topological superfluid

vacuum

z

z

NΚ = 0 

x,y

0

NΚ = 0 

NΚ = +2 

         p
2

2m*
– µ+U(z)

         p
2

2m*
+ µ–U(z)–

cBσ.p

cBσ.p( (Η =

0 

µ–U(z)

Majorana
fermions
on wall

3He-B

NΚ = +2 

helical fermions

spectrum of Majorana zero modes

Majorana particle = Majorana anti-particle

1/2 of fermion:  b  = b+

Hzm = cB z . σ x p = cB (σxpy−σypx)^

 



fermion zero modes on Dirac wall

– Μ(z)

+ Μ(z)

cσ.p

cσ.p( (Η =

NΚ = −1 

NΚ = +1 

z 
0 

Μ

Volkov-Pankratov,
2D massless fermions
in inverted contacts
JETP Lett. 42, 178 (1985)

chiral
fermions

Dirac point
at the wall

z

NΚ = +1 

Dirac vacuum

0

Dirac vacuum

Dirac wall

NΚ = −1 

Μ > 0Μ < 0

 

Bi2Te3in Bi2Te3 Dirac point is below FS:
nodal line on surface of topological insulator

nodal line

Dirac point



Majorana fermions: edge states
on the boundary of 3D gapped topological matter

3He-Bvacuum

z

NΚ = +2 NΚ = 0 

x,y

0
NΚ = 0 

NΚ = +2 

         p
2

2m*
– µ+U(z)

         p
2

2m*
+ µ–U(z)–

cσ.p

cσ.p( (Η =

– Μ(z)

+ Μ(z)

cσ.p

cσ.p( (Η =

0 

µ–U(z)

NΚ = −1 

NΚ = +1 

z 
0 

Μ

* boundary of topological superfluid 3He-B

* Dirac domain wall

helical fermions

Volkov-Pankratov,
2D massless fermions
in inverted contacts
JETP Lett. 42, 178 (1985)

Majorana
fermions
on wall

chiral
fermion

spectrum of fermion zero modes

Hzm = c (σxpy−σypx)



Majorana fermions

NΚ = − 2 

NΚ = +2 

         p
2

2m*
– µ

         p
2

2m*
+ µ–

σxcxpx+σycypy+σzczpz

σxcxpx+σycypy+σzczpz
( (Η =

z 
0 

on interface in topological superfluid 3He-B

one of 3 "speeds of light" changes sign across wall 

spectrum of fermion zero modes
Majorana
fermions

domain wall
phase diagram

Hzm = c (σxpy−σypx)

cx

cz

NΚ = − 2 NΚ = +2 

cy

NΚ = +2 

NΚ = −2 

NΚ = −2 

NΚ = +2 

 

0



 vortices in fully gapped 3+1 system

 fermion zero modes in vortex core

Zero energy states in the core of vortices in topological superfluids



E (pz , Q)

pz

Q=2

Q=1

Q=0

Q=-2

Q=-1

E (pz , Q)

 quantum numbers: Q - angular momentum  & pz - linear momentum

pz

E(pz) = - cpz for d quarks

Spectrum of  quarks  in core of electroweak cosmic string

asymmetric branches cross zero energy

 Bound states of fermions on cosmic strings and vortices

E(pz) =  cpz  for u quark

Number of asymmetric branches = N
N is vortex winding number

Index theorem: Jackiw & Rossi 
Nucl. Phys. B190, 681 (1981)



E (pz , Q)

pz

Q=-3/2
Q=-5/2

Q=-1/2

Q=-7/2

E (Q, pz = 0 )

3/21/2 5/2 7/2
Q

E(Q,pz)  =  − Q ω0 (pz)

Number of asymmetric Q-branches = 2N
N is vortex winding number

is the existence of fermion zero modes
related to topology in bulk?

Index theorem for approximate fermion zero modes: Index theorem for true fermion zero modes?

no true fermion zero modes: 
no asymmetric branch as function of pz

asymmetric
branch

as function of Q

 Bound states of fermions on vortex in s-wave superconductor

Angular momentum Q is half-odd integer
in s-wave superconductor

ω0 = ∆2/ EF << ∆

Caroli, de Gennes & J. Matricon, Phys. Lett. 9 (1964) 307

GV JETP Lett. 57, 244 (1993)

NΚ = 0 



E (Q, pz = 0 ) E (pz , Q)

pz

Q=2
Q=3

Q=1

Q=0

Q=4

Q=-3
Q=-2

Q=-4

Q=-1

topological 3He-B at µ > 0 :   NΚ = 2 

Q1 2 3 4

E (pz , Q)

pz

Q=2
Q=3

Q=1

Q=0

Q=4

Q=-3
Q=-2

Q=-4

Q=-1

EQ=-Qω0  
�

ω0=∆2/EF << ∆�

Q  is integer 
for p-wave superfluid 3He-B

 gapless fermions on Q=0 branch form

1D Fermi-liquid

 fermions zero modes on symmetric vortex in 3He-B 

helicity + helicity −

Misirpashaev & GV 
Fermion zero  modes in symmetric  vortices in superfluid 3He,

Physica B 210, 338 (1995)



E (Q, pz = 0 ) E (pz , Q)

pz

Q=2
Q=3

Q=1

Q=0

Q=4

Q=-3
Q=-2

Q=-4

Q=-1

Q1 2 3 4

EQ=-Qω0  

ω0=∆2/EF << ∆

Q  is integer 
for p-wave superfluid 3He-B

 gapless fermions on Q=0 branch form

1D Fermi-liquid

Misirpashaev & GV 
Fermion zero  modes in symmetric  vortices in superfluid 3He,

Physica B 210, 338 (1995)

topological 3He-B at µ > 0 :   NΚ = 2 

 fermions zero modes on symmetric vortex in 3He-B 



pz

Q=2
Q=3

Q=1

Q=0

Q=4

Q=-3
Q=-2

Q=-4

Q=-1

E (pz , Q)
pz

 topological quantum phase transition in bulk & in vortex core 

vs

NΚ = 2

vs

NΚ = 0

µ > 0µ < 0

topological superfluid 3He-Bnon-topological superfluid

µ

NΚ = +2 NΚ = 0 

1/m*



         p
2

2m
– µ

         p
2

2m
+ µ–

cBσ.p

cBσ.p( (Η =

γ5∆

γ5∆ − cα.p − βM + µR

cα.p+ βM − µR( (Η =

superfluid 3He-B as non-relativistic limit of relativistic triplet superconductor

superfluid 3He-B

relativistic triplet superconductor

cB = c ∆ /M

cp  << M
µ  << M

(µ + M)
2 = µR + ∆2

m = M / c2 

2



         p
2

2m
– µ

         p
2

2m
+ µ–

cBσ.p

cBσ.p( (Η =

γ5∆

γ5∆ − cα.p − βM + µR

cα.p+ βM − µR( (Η =

phase diagram of topological states of relativistic triplet superconductor

3He-B



γ5∆

γ5∆ − cα.p − βM + µR

cα.p+ βM − µR ((Η =

energy spectrum in relativistic triplet superconductor

gapless spectrum
at topological
quantum phase
transition

soft quantum phase
transition:
Higgs transition
in p-space

R
     |µ

R
|<µ*µ

R
2 2 2=M −∆  

R
*      |µ

R
|>µ

 



spectrum of non-relativistic 3He-B

µ

Dirac Dirac

NΚ = +2 NΚ = 0 

NΚ = 0 NΚ = −2 

1/m*

0NΚ = −1 NΚ = +1 

         p
2

2m*
– µ

         p
2

2m*
+ µ–

cBσ.p

cBσ.p( (Η =

µ<∆2/M  µ<0 µ=0 µ>∆2/M 
 

gapless spectrum
at topological

quantum phase
transition

soft quantum phase
transition:

Higgs transition
in p-space



γ5∆

γ5∆ − cα.p − βM + µR

cα.p+ βM − µR ((Η =

fermion zero modes in relativistic triplet superconductor

vortices in
topological superconductors
have fermion zero modes

pzpz

generalized index theorem ?



possible index theorem for fermion zero modes on vortices
(interplay of r-space and p-space topologies)

for vortices in Dirac vacuum

winding number

4π3i
      1  tr [

 ∫d
3p dω dφ 

 
G ∂ω G-1 G ∂φ G

-1G ∂px G
-1G ∂py G

-1G ∂pz G
-1]N

5 
=  

N
5 

= N

E (pz)

pz


