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1 Introduction

Nambu, Mandelstam and ’t Hooft 1970’s:

Condensation of monopoles should lead to confinement of quarks

However, the very notion of the magnetic monopoles remains obscure in

QCD

Apply ideas from supersymmetric gauge theories:

Non-Abelian flux tubes (strings) in SUSY

Hanany, Tong 2003

Auzzi, Bolognesi, Evslin, Konishi, Yung 2003

Shifman, Yung 2004

Hanany, Tong 2004

Similar non-Abelian strings were found in large-µ QCD

Nakano, Nitta, Matsuura 2008

Eto, Nitta, Yamamoto 2009

Gorsky, Mikhailov 2007



QCD phase diagram

Quark−gluon plasma

CFL

non−CFLHadrons

µ

T

CFL phase at large µ. Weak coupling

Alford, Rajagopal, Wilczeck 1998

Ginzburg-Landau effective Lagrangian

Iida, Baym 2001; Giannakis, H. c. Ren 2002



2 Ginzburg–Landau effective description

At large µ QCD is in the CFL phase. Diquark condensate

ΦkC ∼ εijk εABC

(

ψiA
α ψjB α + ¯̃ψ

iA α̇ ¯̃ψ
jB

α̇

)

At T → Tc gap fluctuations become important.

Chiral fluctuations (π-mesons) are considered less important

S =
∫

d4x

{

1

4g2

(

F a
µν

)2
+ 3Tr (D0Φ)

† (D0Φ)

+ Tr (DiΦ)
† (DiΦ) + V (Φ)

}

with the potential

V (Φ) = −m2
0 Tr

(

Φ†Φ
)

+ λ
(

[

Tr
(

Φ†Φ
)]2

+ Tr
[

(

Φ†Φ
)2
])



Here

m2
0 =

48π2

7ζ(3)
Tc(Tc − T ), λ =

18π2

7ζ(3)

T 2
c

N(µ)
,

while N(µ) = µ2/(2π2) is the density of states on the Fermi surface.

The critical temperature Tc is much smaller than µ,

Tc ∼
µ

(g(µ))5
exp

(

− 3π2

√
2g(µ)

)

≪ µ

Therefore

m2
0 ∼ Tc(Tc − T ), λ ∼ T 2

c

µ2
≪ 1,

First we assume that quarks are massless: mu = md = ms = 0



Vacuum

Φvac = v diag {1, 1, 1}

where

v2 =
m2

0

8λ
=

4π2

3

Tc − T

Tc
µ2

The symmetry breaking pattern

SU(3)C × SU(3)F × U(1)B → SU(3)C+F

9 symmetries are broken.

8 are eaten by Higgs mechanism.

One Goldstone boson associated with broken U(1)B.



Mass spectrum

Higgsed gluons

mg = gv ∼ gµ

√

Tc − T

Tc

Scalars: ΦkA

8 + 1 + 8 + 1

eaten Goldstone octet singlet

m1 = 2m8 =
√
2m0 ∼

√

Tc(Tc − T )

We have type I superconductor mg ≫ m1 ∼ m8

Weak coupling condition

mg ≫ Λ



3 Non-Abelian strings in the CFL phase

Z3 strings

Φ(r, α) = diag (eiαφ1, φ2, φ2) ,

Ai(r) =
εijx

j

r2
(1− f) diag

(

−2

3
,
1

3
,
1

3

)

,

Boundary conditions

φ1(∞) = v, φ2(∞) = v , f(∞) = 0

φ1(0) = 0, f(0) = 1

The profile functions of the non-Abelian strings satisfy the second order

equations of motion

f ′′ − f ′

r
− g2

3
(1 + 2f)φ2

1 +
g2

3
(1− f)φ2

2 = 0,

φ′′
1 +

φ′
1

r
− 1

9

(1 + 2f)2

r2
φ1 −

1

2

∂V

∂φ1
= 0,

φ′′
2 +

φ′
2

r
− 1

9

(1− f)2

r2
φ2 −

1

4

∂V

∂φ2

= 0,



At r → ∞ (r ≫ 1/m0) the profile functions behave as (Eto, Nitta 2010)

φ1 ∼ φ2 ∼ v

(

1− 1

3m2
1r

2
+ . . .

)

,

(φ1 − φ2) ∼ v e−m0r, f ∼ e−m0r.

String profile functions have a two-scale structure due to smallness of the

ratio of the scalar to gluon mass

At 1/mg ≪ r ≪ 1/m0, the gluons can be considered as heavy, and we

can neglect the gauge kinetic term.

f ≈ φ2
2 − φ2

1

φ2
2 + 2φ2

1

.

φ1 ≈ b v (m0r) + . . . ,

φ2 ≈ v
[

1 +O((m0r)
4)
]

,

f ≈ 1− 3b2 (m0r)
2 + . . . ,

where b is a number, b ∼ 1



Non-Abelian strings are constructed from Z3 much in the same way as in

SUSY theories.

Z3 string solution breaks

SU(3)C+F → SU(2)× U(1) ,

We rotate the given Z3 solution inside the unbroken diagonal SU(3)C+F .

This costs no energy; therefore orientational moduli appear.

Modular space

CP (2) ∼ SU(3)C+F

SU(2)× U(1)

Solution

Φ = eiα/3
1

3
[2φ2 + φ1] + eiα/3(φ1 − φ2)

(

n · n̄− 1

3

)

,

Ai =
(

n · n̄− 1

3

)

εij
xj
r2
f(r) ,

where nA (A = 1, 2, 3) are complex orientational moduli

|nA|2 = 1



4 On the string world sheet

We have the two translational zero modes and four orientational.

We assume that moduli acquire slow dependence on world-sheet

coordinates

SNG = T0

∫

d2x LNG , T0 = 2π v2 ln (Lm0) ,

where L is a typical size of the color-flavor locked medium.

The orientational moduli’s interaction is governed by CP(N − 1) (with

N = 3 in the case at hand). In the gauged formulation the CP(2) model

takes the form

SCP(2) = 2β
∫

dt dx3

{

3
∣

∣

∣D0n
A
∣

∣

∣

2
+
∣

∣

∣D3n
A
∣

∣

∣

2
}

,

where β is the CP(2) coupling constant.

Dαn
A ≡ (∂α − iAα)n

A Aα =
i

2

(

n̄A

↔

∂α n
A
)

Number of degrees of freedom: 2N − 1− 1 = 2(N − 1) = 4



The coupling constant β is determined by substituting the solution for

the non-Abelian string in the kinetic terms of the bulk action. It is

expressed in terms of profile functions of the string. The main

contribution comes from the region of intermediate r, 1/mg ≪ r<∼1/m0 .

β ≈ π
∫ ∞

0
rdr

(φ2
2 − φ2

1)
2

φ2
1 + φ2

2

= c
v2

m2
0

∼ µ2

T 2
c

≫ 1 .

β is large

In quantum theory the coupling constant of the CP(2) model runs. The

CP(N − 1) models are asymptotically free and generate their own scale

ΛCP . The estimate above is classical and refers to the scale which

determines the inverse thickness of the string given by m0.

4πβ(m0) = N ln
m0

ΛCP

, N = 3 ,

Thus

ΛCP = m0 exp

(

−4πc

N

v2

m2
0

)

≪ m0, N = 3



5 Kink-antikink mesons at large N

The CP(N − 1) model at large N was solved by Witten, 1979

The vacuum is unique, but there are N quasivacua Witten 1998

Ek ∼ N Λ2
CP







1 + const

(

2πk

N

)2






, k = 0 . . . , N − 1

Therefore, kinks are confined on the string

density

vac 2vac 1 vac 1

energy

n n

The splitting at large N is

Λ2
CP/N

while the mass of an individual kink is mkink ∼ ΛCP



Thus, the distance between kinks in the meson is

∼ N/ΛCP

Kinks are well separated inside the meson

kinks= nA

Form fundamental of SU(N)C+F ⇒ mesons are singlets or

in the adjoint representation

Adjoints are stable

Zamolodchikovs 1979 Solved exactly CP(1) model.

Lightest state == triplet of SU(2)



6 Confined monopoles in CFL phase

N = 2 supersymmetric U(N) QCD

ZN strings ⇐⇒ N degenerative classical vacua of CP (N − 1) model

A
SU(N)
i =

(

n · n∗ − 1

N

)

εij
xj
r2
fNA(r)

CP (N − 1) classical vacua:

nA = (1, 0, 0) , nA = (0, 1, 0) , nA = (0, 0, 1) ,

N = 2 supersymmetric QCD has adjoint scalars ⇒
it has ’t Hooft-Polyakov monopoles



Higgs phase for quarks =⇒ confinement of monopoles

Elementary monopoles – junctions of two ZN strings

Consider first two strings

Difference of their fluxes =

=monopole flux = 4π × diag 1
2
{1,−1, 0}



In 2D CP (N − 1) model on the string we have

N vacua = N ZN strings

and kinks interpolating between these vacua

Kinks = confined monopoles

string 1 string 2

vacuum 2vacuum 1

4D

2D

kink

monopole



Now add mass madjoint to adjoint scalars and tend it to infinity. Fluxes

are smeared over the whole group space.

Classically monopole disappear

Confined monopoles = kinks

are stabilized by quantum (non-perturbative) effects in CP (N − 1)

model on the string worldsheet

Mmonopole =Mkink ∼ ΛCP

monopole size ∼ Λ−1
CP

ξ 1/2-

Λ -1



Lessons from SUSY for dense QCD:

We might think that there is a certain deformation of the GL model

which includes adjoint scalar fields. If these fields develop VEVs, the

conventional ’t Hooft-Polyakov monopoles are formed.

These confined monopoles in CFL phase are seen as kinks in the

CP(N − 1) model on the string.

Now we give a mass to the adjoint scalars and decouple them.

Still there are confined monopoles = kinks of CP(N − 1) model on the

string

Quantum splitting of the string tensions:

kink anti−kink

T
0 T

0

T 1

monopole anti−monopole

/ /



7 Towards a more realistic setting

7.1 N = 3

N is not large, but even for N = 2

Zamolodchikovs 1979 Solved exactly CP(1) model.

Lightest state == triplet of SU(2)

Question:

Given a state belonging to the adjoint representation of SU(3)C+F , can

we say whether this state is a “perturbative” state, or a kink-antikink

meson?



Analogy with SUSY:

In the quasiclassical regime, outside the so-called curves of the marginal

stability (CMS), perturbative states are present in the spectrum of the

CP((N − 1) model, while inside CMS, in the strong coupling domain,

they just do not exist as stable states. They decay into the kink-antikink

pairs.

In the non-supersymmetric CP(N − 1) models CMS are replaced by the

phase transition lines.

The analogy with SUSY tells us:

There are no “perturbative” stable states ”inside CMS” in the strong

coupling domain.



7.2 Non-zero strange quark mass

mu = md = 0, ms 6= 0

GL potential acquires correction

δV (Φ) = ǫ
{

Φ†
uΦ

u + Φ†
dΦ

d
}

,

where

ǫ =
48π2

7ζ(3)

m2
s

4µ2
T 2
c ln

µ

Tc

Now we have

〈Φ〉 = diag (vu, vu, vs) ,

where

v2u =
m2

0 − 2ǫ

8λ
, v2s =

m2
0 + 2ǫ

8λ



The color-flavor global group is broken

SU(3)C+F → SU(2)C+F × U(1)

We calculate the response on the string world sheet to the leading order

in ms. Use the same solution for the non-Abelian string

Result:

VCP = ω
∫

dt dx3
(

3n2
3 − 1

)

,

where

ω =
2π

3
ǫ
∫ ∞

0
rdr

(

φ2
2 − φ2

1

)

∼ ǫ
v2

m2
0

The (0, 0, 1) string has a significantly larger tension than the (1, 0, 0) and

(0, 1, 0) strings and is, in fact, classically unstable. It is not even a local

minimum of the potential (rather, it corresponds to a maximum).



n

n

z

z
n

n

V

VCP

CP



This effect is much larger then quantum splitting

ǫ≫ ΛCP

Two monopoles (out of three) become unstable (annihilate).

n3 field is heavy and can be integrated out from the CP (2) model. Then

we are left with the CP (1) model with no potential.

Confined non-Abelian monopoles (of the third type) are still present in

dense QCD. They attached to the non-Abelian strings.

These monopoles correspond to junctions of (1, 0, 0) and (0, 1, 0) strings



Compare our results to those obtained by

Eto, Nitta, Yamamoto 2010

A realistic dense matter inside neutron stars was studied. In particular,

the electromagnetic interactions and the presence of electrons were taken

into account. This leads to the complete breaking of the non-Abelian

color-flavor symmetry SU(3)C+F → U(1)3, All three strings are

classically split by the strange quark mass. Two excited strings become

classically unstable, and the monopoles effectively disappear from the

string. They are annihilated by the would-be antimonopoles.

We do not attempt to study realistic neutron stars. Instead, we focus just

on the quark-gluon matter in dense QCD. Then SU(2)C+F is preserved.

After our paper was published another paper by

Eto, Nitta, Yamamoto 2011

appeared reporting results similar to ours. In this paper they considered

massless quarks, while took into account quantum splitting of

non-Abelian strings.



8 Conclusions

• Internal dynamics of non-Abelian strings in CFL phase of dense

QCD is described by two dimensional CP(2) model on the string

world sheet

• Kinks of CP(2) model are interpreted as confined monopoles of the

bulk theory.

This is the first analytic demonstration of the presence of monopoles

in QCD

• Non-Abelian strings in CFL phase of dense QCD are split in

quantum theory. This splitting induces formation of

monopole-antimonopole mesons on the string.

• One out of three types of monopoles survives switching on the

strange quark mass.


