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Topology
of the planar phase

of superfluid *He

Yuriy Makhlin (Landau Institute)

» topological insulators and their classification
* planar phase and an additional symmetry

» topological types for class DIll and the planar phase
from homotopy theory



Topological insulators

continuous and band insulators

H(k), where k belongs to R or T¢ (Brillouin zone)

* gapped
» topologically non-trivial

» edge states
“index theorem”



Topological classification

Topological classification

Schnyder et al.
classification of robust surface Hamiltonians
Kitaev
K-theory, periodic table
motivation:
. classification from the bulk properties
. in the basic language of homotopy theory
cf. Moore, Balents ‘07
. exhaustive list of explicit invariants
. planar phase with an additional symmetry

. non-stable case



Superfluid SHe
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symmetries: time reversal and particle-hole, class DlIlI

SHe-B - a topologically non-trivial insulator (N=1 in 2)



Superfluid 3He: planar phase NMR Receiver Coil  Glass
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planar phase: A.=[ 0 a0
0 0 0
possible in thin slabs
additional symmetry in planar phase: Bennett et al. ‘10

spin rotation R,(1m) + U(1) particle-hole sign flip



H(—k) = io,HT (k)(—io)

H(—k) = —1oHT (k)72

H(k) = —1o0yH (k)Tz0y




The chiral symmetry limits H(k) to a real combination of 8 matrices
(instead of initial 16)

H = a0, + bO';; T CTxO0y T dT;z: 0x T €Ty + sz + gTyOy + h-T;; Oy

In other words: in the eigenbasis of TXO'y H is off-diagonal



Non-degeneracy of Hamiltonian (gap):

det M =0

Particle-hole symmetry:

M_ =-MT.

Can be retracted to unitary matrices: M = U

M = PU, where U € U(2) and P is positive hermitian

P can be uniformly (linearly) retracted to identity

We have to classify mappings

U:BZ — U(2) with U—y = —U¥



Weak invariants

Continuous systems: k-space Rd

Band insulators: BZ is a torus, Td

Weak invariants: mappings of d faces, H(k)

unstable w.r.t. disorder

Example: 2-band Hamiltonians in 3D Brillouin zone H=h(k)o h#0

T3 o Q2
H(k): T S Moore, Ran, Wen, ‘08

Invariants: (a) mappings of three T2-“faces” to S2: N;, N,,, N, (weak)
(b) “Hopf” invariant for mapping of the 3D interior ZZ*ng(Nl N2 N3)

l@ ! Pontrjagin '41
l G oK) YM, Misirpashaev ‘95

In the stable case, weak invariants are direct summands (K-theory, Kitaev)



We have to classify mappings

U:BZ — U(2) with U_; = —E-‘TE “odd parity”

U(2) = (S x 5%)/Z, U= ¢S, SeSU(2) thatis detS=1

S belongs to SU(2) — 3D sphere S3 mol +i(mypoy +myoy, +m.o.)

Odd parity implies that either

f-’?’k = ¢_ and mg, mg, my(—k) = —mg, —mg, —m (k)and my,(—k) = myu[f.‘”)

or (b) ¢ = d_p + ® and mg, m,, m,(—k) = mg, my, m,(k) and -my(—ff) = —my{_k)



Hence, mapping to ez'¢ Is topologically trivial
Mapping to SU(2) is “odd”:

o )
f

(W
) = SU(2) = S®

Poles (k=0 and ) are mapped to poles !

Z, invariant: to the same poles or not

1D and 2D: no further invariants!

3D: Z-degree of the mapping (its parity is that Z, invariant !)






3D: for Z,-invariant equal to O

S3 L’

AN

S2-equator 0

total degree =n+n =2n

Similarly, for Z,-invariant equal to 1, the total degree is 2n+1



1D: for Z, mvarlant equal to 1

O+ -C

2D: for Z,-invariant equal to 1

g2 S3

QD
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N = # ?4 Tr[SH 'dH NH 'dH N H 'dH |

Fix asymtotics away from Fermi surface: another Z-invariant




Planar phase

Hy — o Hro:
Thus, UT=-U
U=ino — spin rotation by Ttaround any axis n
or U=+#1i
* Classify odd mappings from k-space to S?

Similarly to Dlll, we have:

Z,in 1D

Z in 2D — for the planar phase unlike Z, in Yip "10

In the planar phase  k — (Ak,,—Ak,, &= — —ep) & degree=1

2m
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