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A. D. Alexandrov and the Birth of the Theory of Tight Surfaces

Thomas Banchoff
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e-mail: Thomas Banchoff@Brown.edu

Alexander Danilovich Alexandrov was born in 1912, and just over 25 years later in 1938 (the year of
my birth), he proved a rigidity theorem for real analytic surfaces of type T with minimal total absolute
curvature. He showed in particular that that two real analytic tori of Type T in three-space that are iso-
metric must be congruent. In 1963, twenty-five years after that original paper, Louis Nirenberg wrote the
first generalization of that result, for five times differentiable surfaces satisfying some technical hypothe-
ses necessary for applying techniques of ordinary and partial differential equations. Prof. Shiing-Shen
Chern, my thesis advisor at the University of California, Berkeley, gave me this paper to present to his
graduate seminar and challenged me to find a proof without these technical hypotheses. I read Konvexe
Polyeder by A. D. Alexandrov and the works of Pogoreloff on rigidity for convex surfaces using polyhedral
methods and I decided to try to find a rigidity theorem for Type T surfaces using similar techniques. I
found a condition equivalent to minimal total absolute curvature for smooth surfaces, that also applied
to polyhedral surfaces, namely the Two-Piece Property or TPP. An object in three- space has the TPP if
every plane separates the object into at most two connected pieces. I conjectured a rigidity result similar
to those of Alexandroff and Nirenberg, namely that two polyhedral surfaces in three-space with the TPP
that are isometric would have to be congruent. I worked hard on this conjecture for six months and
then was disappointed to find a counterexample to my own conjecture. I exhibited two non-congruent
polyhedral tori with the same internal metric, made from the same pieces of cardboard!

My first project had failed, and I tried for the next six months to prove a generalization of a theorem
of Robert Osserman about minimal surfaces in n-space, which turns out to have been proven by Osserman
himself, my second failure in a thesis project.

At this point, Prof. Chern said he wanted to introduce me to a visitor to Berkeley, Nicolaas Kuiper,
because You two think alike. It was true. When I showed him my cardboard model, Kuiper told me
about his recent theorem on 2-dimensional surfaces with minimal total absolute curvature in n-space,
namely that such a surface would have to lie in a 5-dimensional affine subspace. He suggested I should
try to prove the analogue of this theorem for polyhedral surfaces. After working for two weeks on this
conjecture, while folding laundry in a local Laundromat, I found a counterexample! The next day I
brought in a paper model of a polyhedral surface that could be folded into 6-dimensional space, not lying
in any 5-dimensional affine subspace but satisfying the Two-Piece Property. Kuiper was astounded. He
said, You have a gold mine here, an example that shows that the polyhedral version of this theory is
totally different from the smooth theory. Ill give you six months. If you havent figured out your thesis
by that time, Ill give the project to one of my students. Its too important not to be done by someone.

It didnt take me six months to prove my main result, a construction of a set of examples of a polyhedral
surface in any dimension n not lying in an affine hyperplane and satisfying the TPP. Prof. Chern said
that this, together with my earlier counterexample to the polyhedral analogue of the rigidity theorem of
Alexandrov, would be my doctoral thesis. He said I should define a descriptive term for such surfaces,
and because they satisfied the conditions for Alexandrovs T-surfaces, the term should begin with T. I
suggested tight, taut, and turgid and he rejected the third as being too biological and the second because
taut was already in use. So my thesis had the title Tightly Embedded Two-Dimensional Polyhedral
Surfaces, the first published use of that term. It has become a subcategory in the Mathematical Reviews,
with hundreds of papers and articles on tight immersions and embeddings of smooth and polyhedral
submanifolds.

I first met A. D. Alexandrov at the ICM in Kyoto in 1990. I saw a group of mathematicians huddled
around someone they considered a celebrity, and I was very surprised to learn who it was. I made it a
point to go up and introduce myself as a mathematician who had begun his research in response to his
1938 article. I said that I had chosen the term tight embedding to go along with T-surface. To my greater
surprise, he indicated that he was not aware of any follow-up to that article. I was fortunate enough
to meet him and his wife in Zurich at the next ICM in 1994, and I bought lunch for them as we had a
good conversation. I learned about his activity as a champion alpinist in addition to the large number
of academic distinctions listed on his professional card. I was very pleased to be able to meet one of my
mathematical heroes.
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Within in a year or so will be the fiftieth anniversary of my Ph.D. and my seventy-fifth year. I am
happy to honor the memory of one of the most distinguished and influential geometers of the twentieth
century on the occasion of the hundredth anniversary of his birth.

References

[1] A. D. Alexandrov, “On a Class of Closed Surfaces”, Math Sbornik, 4, 69–77 (1938).

[2] L. Nirenberg, “Rigidity of a Class of Closed Surfaces”, Non-Linear Problems, University of Wisconsin
Press, Madison WI, 177–193, (1963).

[3] T. Banchoff, “Tightly Embedded Two-Dimensional Polyhedral Manifolds”, Amer. J. Math., 87, 462–
472, (1965).

[4] T. Banchoff, “Non-Rigidity Theorems for Tight Polyhedra”, Arch. Math. (Basel), 21, 416–423, (1970).

[5] T. Cecil and S.-S. Chern, Eds. “Tight and Taut Submanifolds”, Cambridge University Press (1997).

6



On geometry of Carnot–Carathéodory spaces C1-smooth with vector fields
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Let M be a smooth N -dimensional manifold. The manifold M is called the Carnot-Crathéodory space
if the tangent bundle TM has a filtration

HM = H1M ( · · · ( HiM ( · · · ( HMM = TM

by subbundles such that every point g ∈ M has a neighborhood U ⊂ M equipped with a collection of
C1-smooth vector fields X1, . . . , XN , constituting a basis of TvM at every point v ∈ U and meeting the
following two properties. For every v ∈ U ,

(1) HiM(v) = Hi(v) = span{X1(v), . . . , XdimHi
(v)} is a subspace of TvM of a constant dimension

dimHi, i = 1, . . . ,M ;
(2) [Hi, Hj ] ⊂ Hi+j , i, j = 1, . . . ,M − 1.
Becides of this, if the next condition holds then the Carnot-Carathéodory space is called the Carnot

manifold:
(2) Hj+1 = span{Hj , [H1, Hj ], [H2, Hj−1], . . . , [Hk, Hj+1−k]} where k = b j+1

2 c, j = 1, . . . ,M − 1.
The subbundle HM is called horizontal. The number M is called the depth of the manifold M. The

degree degXk is defined as min{m | Xk ∈ Hm}.
A sub-Riemannian structure on M is a pair (HM, 〈·, ·〉) where HM = {HgM}g∈M and 〈·, ·〉 =

{〈·, ·〉g}g∈M is a C1-smooth in g family of Euclidean inner products (X,Y ) 7→ 〈X,Y 〉g, X,Y ∈ HgM,
defined on HgM.

An absolutely continuous curve γ : [0, T ]→M is said to be horizontal if γ̇(t) ∈ Hγ(t)M for almost all
t ∈ [0, T ]. The length of the horizontal curve equals

∫ T
0
|γ̇(t)| dt.

In spite of minimal smoothness of vector fields we are able to prove some new results and derive
from them counterparts of the following statements known on Carnot-Carathéodory spaces with smooth
enough vector fields:

1) Gromov nilpotentization theorem on convergence of rescaled vector fields;
2) Gromov approximation theorem;
3) Gromov-Mitchell Theorem on the structure of tangent cone;
On Carnot manifold we prove
4) Rashevsky–Chow theorem on existence of horizontal curve with the given endpoints.
5) Ball–Box-theorem; this is a counterpart of the well-known Mitchell-Gershkovich-Nagel-Stein-Wainger

theorem.
In addition we show some applications of the above-mentioned results to related domains.
This research was partially supported by the Russian Foundation for Basic Research (projects No 10-01-00662 and

11-01-00819)
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Hyperpolar actions on noncompact symmetric spaces
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An isometric action of a connected Lie group H on a Riemannian manifold M is called hyperpolar
if there exists a connected closed submanifold Σ of M such that Σ meets each orbit of the action and
intersects it orthogonally. An elementary example of a hyperpolar action comes from the standard rep-
resentation of SOn on Rn. Further examples of hyperpolar actions can be constructed from Riemannian
symmetric spaces. Let M = G/K be a Riemannian symmetric space and denote by o a fixed point of the
K-action on M . Then the isotropy representation π : K → O(ToM) of K on the tangent space ToM of
M at o induces a hyperpolar action. Dadok established in 1985 a remarkable, and mysterious, relation
between hyperpolar actions on Euclidean spaces and Riemannian symmetric spaces. He proved that for
every hyperpolar action on Rn there exists a Riemannian symmetric space M = G/K with dimM = n
such that the orbits of the action on Rn and the orbits of the K-action on ToM are the same via a suitable
isomorphism Rn → ToM . For symmetric spaces of compact type the hyperpolar actions are reasonably
well understood. In the talk I want to focus on symmetric spaces of noncompact type where the situation
is much more involved because of the noncompactness of the isometry groups. With my collaborators
Dı́az-Ramos and Tamaru I developed an approach based on Langlands and Chevalley decompositions of
parabolic subalgebras of noncompact semisimple Lie algebras. Geometrically this involves horospherical
decompositions of symmetric spaces and boundary components of their maximal Satake compactifica-
tions. This approach leads to many new examples, partial classifications, and interesting open problems.
I plan to give an overview of these results based on these two papers:
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On Discretization in Riemannian Geometry
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Traditionally, discretization in Riemannian geometry was associated with polyhedral approximations.
It seems now clear, due to works of Cheeger, Petrunin, Panov and many others that in dimensions beyond
two or maybe three polyhedral structures are too rigid and cannot serve as discrete models of Riemannian
spaces. Of course, there are various finite element methods, they do help to solve PDEs but they seem
to be just numerical methods not helping us to understand geometry and make models.

In this talk, we will discuss approximating Riemannian manifolds by graphs, of course with additional
structures attached to them and with various boundedness conditions. We will discuss both metric and
PDE aspects, specifically a comparison of spectral characteristics of the graph and smooth Laplacians.
The latter part is a joint work with S. Kurylev.
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Reversed Alexandrov-Fenchel inequalities

Francois Fillastre
University of Cergy-Pontoise, UMR CNRS 8088, departement of mathematics, F-95000

Cergy-Pontoise, France
e-mail: francois.fillastre@u-cergy.fr

We consider the Minkowski addition and the volume of closed convex sets, invariant under the action
of a given cocompact lattice of SO(d, 1). Their support functions are defined on compact hyperbolic
manifolds rather than on the sphere. In the regular and the polyhedral cases, Alexandrov–Fenchel
inequalities are derived. Here the inequalities are reversed and the proofs, although very similar to the
original ones by A.D. Alexandrov, are simpler than for the classical case of convex bodies.
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Sabitov Polynomials for Volumes of Four-dimensional Polyhedra
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In the end of the 19th century R. Bricard constructed his famous flexible octahedra. These are (non-
embedded) octahedra in R3 that can be deformed continuously so that the edge lengths are constant,
but the polyhedron does not remain congruent to itself in the process of deformation. An example of
an embedded flexible polyhedron in R3 was constructed by R. Connelly only in 1977. Surprisingly, it
appeared that, for all known examples, the volume of the flexible polyhedron remains constant. This was
posed as a conjecture, called Bellows Conjecture, that this phenomenon actually holds for every flexible
polyhedron in R3. Bellows Conjecture was proved in 1996 by I. Kh. Sabitov [3], [4], see also [1]. His
approach was to show that the volume of the polyhedron of given combinatorial type with given edge
lengths can take only finitely many values. More precisely, his result was as follows.
Sabitov Theorem. The volume of an arbitrary (not necessarily convex) simplicial polyhedron in a
3-dimensional Euclidean space is a root of a monic polynomial whose coefficients depends on thecombi-
natorial type and the edge lengths of the polyhedron only:

V N + a1(`)V N−1 + . . . + aN (`) = 0,

where by ` we denote the set of lengths of edges of the polyhedron. Besides, the coefficients aj(`) are
polynomials in the squares of lengths of edges of the polyhedron.

Since then it has been unknown whether the same holds in arbitrary dimension n ≥ 3. We prove
the direct analog of Sabitov Theorem for polyhedra in the 4-dimensional Euclidean space. The main
corollary is that the volume of any flexible polyhedron in the 4-dimensional space is constant.

Our proof contains two principally new features with respect to the 3-dimensional case. The first one
is the extension of the notion of a polyhedron based on the concept of a simplicial cycle. The second
one has algebraic geometrical nature. We use certain new lemma concerning the properties of the variety
consisting of possible sets of edge lengths for the polyhedra of the given combinatorial type.

These results are contained in [2].
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Ricci curvature and angles

Shouhei Honda
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We give the definition of angles on a Gromov-Hausdorff limit space of a sequence of complete n-
dimensional Riemannian manifolds with a lower Ricci curvature bound. We apply this to prove there is a
weakly second differentiable structure on these spaces and prove there is a unique Levi-Civita connection
allowing us to define the Hessian of a second differentiable function.
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Infinitesimal rigidity of convex surfaces: variational methods and duality

I. Izmestiev
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Berlin, Germany
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Both in the discrete and in the smooth context, we investigate two kinds of rigidity for surfaces in R3:
the one with respect to the induced metric and the one with respect to the Gauss curvature parametrized
by the Gauss map.

We discuss two different duality relations between the both and connect variations of the volume
to variations of the Hilbert-Einstein functional. This allows us to interpret Blaschke’s proof of the
infinitesimal rigidity of smooth convex surfaces in the spirit of Minkowski’s proof of the infinitesimal
rigidity in his theorem.

The talk is based on the preprints arXiv:1105.5066 and arXiv:1105.5067.
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Soap Bubbles and Polynomials

R. Kusner
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Soap bubbles and fluid droplets are modeled by complete embedded constant mean curvatures (CMC)
surfaces in R3. Besides the round sphere and cylinder, these CMC surfaces are highly transcendental
objects, whose moduli spaces are generally understood in only a few special cases, thanks to work begin-
ning with A. D. Alexandrov over half a century ago. In this talk, we will reveal a surprising connection
with CP 1-structures and holomorphic solutions of Hill’s equation Uzz + q(z)U = 0, where q(z) is the
Schwarzian of the developing map for the CP 1-structure. In the special case where q(z) is a (normal-
ized, monic) polynomial of degree k − 2, the corresponding CMC surface must have genus 0 and k ends,
as well as a plane of reflection symmetry which cuts the surface into a pair of graphical pieces. This
correspondence allows us to explicitly work out the moduli space of all these coplanar CMC surfaces.
The special cases of the sphere and the cylinder (indeed, all Delaunay unduloids) correspond to q(z) = 0
and 1, respectively; all triunduloids (k = 3) correspond to q(z) = z. If time and taste permit, we’ll also
discuss some related potential applications, including an explicit description of minimal surfaces in S3.
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The infimum of the volumes of convex polyhedra of any given facet areas is 0
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In [2] the following theorem was proved.
Theorem A ([2]). Let m ≥ 3, and sm ≥ sm−1 ≥ · · · ≥ s1 > 0, and sm < sm−1 + ... + s1. Then the

infimum of the areas of convex m-gons in R2, having side lengths these si, is the minimal area of those
triangles, whose sides have lengths

∑
i∈I1

si,
∑

i∈I2

si,
∑

i∈I3

si (supposing these lengths satisfy the non-strict

triangle inequality), where {I1, I2, I3} is an arbitrary partition of {1, . . . ,m} into non-empty parts. If the
cyclic order of the sides is fixed, then an analogous statement holds, where the sides with indices in Ij
(for each j ∈ {1, 2, 3}) form an arc of the polygonal curve.

An analogue of Theorem A was given in [5] and [2].
Theorem B ([5, 2]). Let m ≥ 3, and sm ≥ sm−1 ≥ · · · ≥ s1 > 0, and sm < sm−1 + ...+ s1. Then the

infimum of the areas of simple m-gons in R2, having side lengths these si, is the minimal area of those
triangles, whose sides have lengths

∑
i∈I1

εisi,
∑

i∈I2

εisi,
∑

i∈I3

εisi (supposing these lengths are non-negative,

and satisfy the non-strict triangle inequality), where the εi’s are arbitrary signs, and {I1, I2, I3} is an
arbitrary partition of {1, . . . ,m} into non-empty parts. (Moreover, if this minimum is not 0, we may
additionally suppose that, for each j ∈ {1, 2, 3}, the sum

∑
i∈Ij

εisi cannot be written as
∑

i∈I′
j

εisi +
∑

i∈I′′
j

εisi,

where {I ′j , I ′′j } is a partition of Ij, and where both these partial summands are positive.)
We remark that the proofs in the two papers were different. Also, in [5] the result is formulated in a

special case only, but all the ingredients of the proof of the general case are present in this paper as well.
We write S2, or H2, for the unit sphere of R3, or the hyperbolic plane, respectively. [2] extended

Theorems A and B to S2 and H2 as follows:
Theorem C ([2]). Let m ≥ 3, and sm ≥ sm−1 ≥ · · · ≥ s1 > 0, and sm < sm−1 + ...+s1. We consider

S2 and H2, but, in case of S2, we additionally suppose
m∑

i=1

si ≤ π. Then, for both cases, the word-for-word

analogues of Theorems 1 and 2 hold in S2 and H2.
Thus, in each of these three theorems, the question of finding the infimum is reduced to finding the

minimum of a set of non-negative numbers, the cardinality of this set being bounded by a function of m.
(For Theorem A, or B, this bound is at most 3m, or 6m, respectively. For Theorem A, for given cyclic
order of the sides, this bound is

(
m
3

)
.)

[2] posed the question, if it is possible to extend these theorems to Rn, for n ≥ 3 [2]. Their conjecture
was that, analogously to the two-dimensional case, the solutions would be given as the volumes of some
simplices. Unfortunately, they were unaware of the fact, that the case of simplices already had long ago
been solved.
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In fact, A. Narasinga Rao posed the following problem ([6]):
“The areas of the four facets of a tetrahedron are α, β, γ, δ. Is the volume determinate? If not, between

what limits does it lie?”
This problem was solved independently in the papers [7, 3, 1, 4]. In fact, under the above condition,

the volume is not determinate (if such tetrahedra exist, which we suppose). Moreover, there is, up
to congruence, exactly one tetrahedron of maximal volume with the given facet areas, and there is a
tetrahedron with volume as small as we want. A generalization of these results for multi-dimensional
Euclidean spaces was obtained in the papers [7, 3, 4].

Theorem D ([7, 3, 1, 4]). Consider real numbers Sn+1 ≥ Sn ≥ · · · ≥ S1 > 0, where n ≥ 3. Then
there is a simplex Σ in Rn, the n-dimensional Euclidean space, with these areas of the facets, if and only
if

Sn+1 < S1 + S2 + . . .+ Sn.

Supposing that this inequality holds, let Σ(S1, S2, . . . , Sn+1) be the set of all such simplices in Rn. Then,
up to congruence, there is exactly one simplex Σ ∈ Σ(S1, S2, . . . , Sn+1) of maximal volume, and for any
ε > 0, there is a simplex Σ ∈ Σ(S1, S2, . . . , Sn+1), with volume Vol (Σ) < ε.

1 Main result

Theorem 1. For any ε > 0, and for every numbers Sm ≥ Sm−1 ≥ · · · ≥ S1 > 0, such that Sm <
S1 + S2 + · · · + Sm−1 (where m > n ≥ 3), there is a polytope P ⊂ Rn with m facets, with facet areas
S1, S2, . . . , Sm, and with volume Vol (P ) < ε. Even, there is a convex polytope with this property.

For this theorem, we have three different proofs. (1): an existence proof, by obtaining a contradiction;
(2): by reduction to the case of the simplices; (3): a geometric proof, showing that our examples with
small volumes are like “needles”.

Thus, there is a very interesting dichotomy. In Theorems A and B, for R2, we have some definite
functions of the side lengths, as infima. In Theorem 1, for Rn, with n ≥ 3, the infimum does not depend
at all on the facet areas.
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On SO(3,3) fractional linear action on SO(3)
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We introduce the fractional linear action of SO(3,3) on SO(3) and we prove that this action is correctly
(and globally) defined on SO(3). Same holds for the SO(n,n) fractional linear action on SO(n). For n=3,
we introduce a commutative diagram which intertwines the SL(4) standard linear action in R4 with the
above mentioned SO(3,3)-action on SO(3): here we have in mind SU(2) identification with the space of
rays emanating from the origin in R4, as well as the 2-cover of SO(3,3) by SL(4) and the 2-cover of SO(3)
by SU(2). We then prove that fractional linear action of SO(3,3) on SO(3) is projective. The equivalence
of the above two actions is demonstrated explicitly.
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We study polyhedra (more precisely, boundary-free polyhedral surfaces) the spatial shape of which
can be changed continuously in such a way that all dihedral angles remain constant.

These polyhedra may be considered as a natural “dual object” for the flexible polyhedra. The latter
are defined as polyhedra whose spatial shape can be changed continuously due to changes of their dihedral
angles only, i. e., in such a way that every face remains congruent to itself during the flex. Since 1897, it
was shown that flexible polyhedra do exist and have numerous nontrivial properties. Among the authors
contributed to the theory of flexible polyhedra, we should mention R. Bricard, R. Connelly, I.Kh. Sabitov,
and A.A. Gaifullin. For more details, the reader is referred to the survey article [3].

In 1986, M.Eh. Kapovich brought our attention to the fact that polyhedra, admitting nontrivial
deformations that keep all dihedral angles fixed, may be of some interest for the theory of hyperbolic
manifolds, where Andreev’s theorem [1] plays an important role. The latter reads that a compact convex
hyperbolic polyhedron with nonobtuse dihedral angles is uniquely determined by its dihedral angles.

The case of the Euclidean 3-space is somewhat special [2] and we restrict our study by the Lobachevskij
and spherical 3-spaces only.

Of course, in the both spaces we can immediately propose the following example. Consider the
boundary P of the union of a convex polytope Q and a small tetrahedron T (the both are treated as
solid bodies for a moment) located such that (i) a face τ of T lies inside a face of Q and (ii) T and
Q lie on the different sides of the plane containing τ . Obviously, the nonconvex compact polyhedron P
has no self-intersections and admits nontrivial (i.e., not generated by a rigid motion of the whole space)
continuous deformations preserving all dihedral angles. In order to construct such a deformation we can
keep Q fixed and continuously move (e.g., rotate) T in such a way that the condition (i) is satisfied. In
this example, many quantities associated with P remain constant. To name a few, we can mention (1)
the volume; (2) the surface area; (3) the Gauss curvature of every vertex (i.e., the difference between 2π
and the sum of all plane angles of P incident to this vertex); (4) the total mean curvature of P (i.e., the
sum 1

2

∑
`(π − α(`))|`| calculated over all edges ` of P , where α(`) is the dihedral angle of P at ` and |`|

is the length of `); (5) every separate summand (π−α(`))|`| in the formula for the total mean curvature.
We study whether the above example provides us with the only possibility to construct nonconvex

compact polyhedra that admit nontrivial continuous deformations preserving all dihedral angles? We
prove that the answer is negative.

We study also what quantities associated with nonconvex compact polyhedra necessarily remain
constant during continuous deformations leaving the dihedral angles fixed. For exmaple, we prove that
the volume is necessarily constant while the Gauss curvature of a vertex and the expression (π−α(`))|`|
may be nonconstant.
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The talk is related to a project of constructing many compact C-surfaces uniformizable by a holo-
morphic 2-ball. Similarly to the Poincaré disc, the holomorphic ball B is equipped with a natural metric
such that the group PU(2, 1) of holomorphic automorphisms of B is an index 2 subgroup in the group of
isometries, and the corresponding geometry is called complex hyperbolic. The compact complex hyper-
bolic surfaces are known to be rigid and difficult to construct. They can be characterized by the relation
c2
1 = 3c2 for their Chern numbers. The most famous examples are the (nonarithmetic) Mostow examples

and the (arithmetic) fake projective planes.
The idea of the mentioned project is to construct polyhedra that will a posteriori become Dirichlet

polyhedra. It turns out that the combinatorics of such polyhedra determines them almost uniquely and,
moreover, if there exists a polyhedron with a given combinatorics, then it automatically satisfies the
conditions of the 4-dimensional Poincaré’s polyhedron theorem discussed in the talk of Carlos H. Grossi.
Consequently, we need to study the loci equidistant from finitely many points because the faces of the
polyhedra in question lie on such loci.

G. Giraud’s theorem (1916+ε) claims that there are at most 3 bisectors (a bisector is the locus
equidistant from 2 points) that contain a nonempty locus equidistant from generic 3 points. This fact
imposes a strong restriction on the combinatorics of a Dirichlet polyhedron. In order to collect all the
information concerning the combinatorics of Dirichlet polyhedra, we studied in detail equidistant loci
from finitely many points. For example, it was established the following analog of Giraud’s rigidity for 4
points:

Theorem. The nonempty locus equidistant from 4 generic points is a real rational curve C. The
bisectors containing an infinite subset of C form a real elliptic curve.
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We will discuss how the Andreevs hyperbolic polyhedron theorem is related to global geometry and
topology of a non-trivial compact 4-dimensional cobordism M whose interior has a complete hyperbolic
structure, as well as to properties of the variety of discrete representations of the fundamental group
of its 3-dimensional boundary ∂M . We construct such hyperbolic 4-cobordisms M whose boundary
components are covered by the discontinuity set Ω(G) ⊂ S3 with two connected components Ω1 and Ω2,
where the action Γ of the fundamental group π1(∂M) is symmetric and has contractible fundamental
polyhedra of the same combinatorial (3-hyperbolic) type. Nevertheless we show that such great geometric
symmetry of boundary components of our hyperbolic 4-cobordism M(G) is not enough to ensure that
the group G = π1(M) is quasi-Fuchsian, and in fact our 4-cobordism M is non-trivial. This is related to
non-connectedness of the variety of discrete representation of the uniform hyperbolic lattice Γ and the
property of kernels of the constructed homomorphisms Γ→ G to be k-generated free groups Fk.
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A Riemannian manifold (M, g) is called Einstein if the Ricci tensor satisfies Ric(g) = λg for some
λ ∈ R. A generalized flag manifold is a compact homogeneous space M = G/K = G/C(S), where G is a
compact semisimple Lie group and C(S) is the centralizer of a torus in G. Equivalently, it is the orbit of
the adjoint representation of G. At first, I will review certain aspects about G-invariant Einstein metrics
on generalized flag manifolds, stressing the fact that when the number of the irreducible summands of the
isotropy representation of M = G/K increases, then finding explicitely the Ricci tensor (and moreover
solving the Einstein equation) becomes a difficult task. Based on collaboration with Ioannis Chrysikos
and Yusuke Sakane I will discuss the aspect of the classification of flag manifolds by using the painted
Dynking diagrams, and I will present a new method for the construction of the Einstein equation, by
using Riemannian submersions. In this way it is possible to obtain invariant Einstein metrics on flag
manifolds with five or six isotropy summands.
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Complete Riemannian metrics with holonomy group G2 on deformations of cones over1
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One of the interesting problems of differential geometry is to construct complete Riemannian metrics
with holonomy group G2. The main idea is to consider standard conical metric on a Riemannian manifold
with a special geometry [1, 2, 3]. Then the deformation of this metric depends on a number of functional
parameters, which allow to define the G2 structure explicitly. Let us consider M = S3 × S3 as a base of
the cone [4], then the cone metric can be written as

ds̄2 = dt2 +
3∑

i=1

Ai(t)2 (ηi + η̃i)
2 +

3∑
i=1

Bi(t)2 (ηi − η̃i)
2
,

where ηi, η̃i are 1-forms and the functions Ai(t), Bi(t) define the deformation of the conical singularity.
In [4] was obtained the system of differential equations, which guarantees that the metric ds̄2 has the
holonomy group contained in G2. In [4] was also found a particular solution of this system, corresponding
to the metric with holonomy G2 on S3 × R4.

We continue to study this class of metrics, putting A2 = A3, B2 = B3. Note that in this case the
system can be written as:

dA1
dt = 1

2

(
A2

1
A2

2
− A2

1
B2

2

)
dA2
dt = 1

2

(
B2

2−A2
2+B2

1
B1B2

− A1
A2

)
dB1
dt = A2

2+B2
2−B2

1
A2B2

dB2
dt = 1

2

(
A2

2−B2
2+B2

1
A2B1

+ A1
B2

)
We consider different from [4] boundary condition, which leads to metrics with other topological

structure. Namely, we require that only one function B1 vanishes at the vertex of the cone. This leads
to the fact that the Riemannian metric ds̄2 is defined on H4 × S3, where H is the space of the canonical
complex line bundle over S2, and H4 - it‘s fourth tensor power. The main result can be formulated as

Theorem. There is a one-parameter family of pairwise non-homothetic complete Riemannian metrics
of the form ds̄2 with holonomy G2 on H4 × S3, and the metric can be parametrized by a set of initial
data (A1(0), A2(0), B1(0), B2(0)) = (µ, λ, 0, λ), where λ, µ > 0 and µ2 + λ2 = 1.

For t→∞ metrics of this family are arbitrarily close approximated by the direct product S1×C(S2×
S3), where C(S2 × S3) is a cone over a product of spheres. Here, sphere S2 arises as a factorization of
the diagonal embedded in S3 × S3 three-dimensional sphere by the action of the circle corresponding to
the vector field ξ1 + ξ̃1
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We are interested in hypersurfaces in Rn+1, characterized as radial graphs over a given domain Ω of
Sn, having boundary contained in Sn and whose mean curvature is a prescribed function H : Rn+1 → R.
We assume that there exist r1, r2 > 0 with r1 ≤ 1 ≤ r2, such that H is of class C1 in the region
A = {ρq | ρ ∈ [r1, r2], q ∈ Ω} and satisfies:

• a barrier condition: H(r1q) ≥ r−1
1 and H(r2q) ≤ r−1

2 for every q ∈ Ω,
• a monotonicity condition in the radial direction: ∂

∂ρρH(ρq) ≤ 0 for every q ∈ Ω and ρ ∈ (r1, r2).

Under this condition we prove existence and uniqueness in A of a radial graph Σ over Ω such that
∂Σ = ∂Ω and whose mean curvature is H.

Our result is related to some papers by I. Bakelman and B. Kantor [1] and by A. Treibergs and W. Wei
[4], concerning the problem of hyperspheres with prescribed mean curvature. Moreover our result is in
some sense complementary to a seminal result by J. Serrin [3] who first studied the problem of radial
graphs over a given domain in Sn.

This work is presented in a joint article with Giovanni Gullino [2].
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The talk is based on joint work with Stefan Nemirovski Globally hyperbolic spacetimes form probably
the most important class of spacetime. It is observed that on many 4-manifolds there is a unique smooth
structure underlying a globally hyperbolic Lorentz metric. For instance, every contractible smooth 4-
manifold admitting a globally hyperbolic Lorentz metric is diffeomorphic to the standard R4. Similarly, a
smooth 4-manifold homeomorphic to the product of a closed oriented 3-manifold N and R and admitting
a globally hyperbolic Lorentz metric is in fact diffeomorphic to N×R. Thus one may speak of a censorship
imposed by the global hyperbolicty assumption on the possible smooth structures on (3 + 1)-dimensional
spacetimes.

We also show that for a large class of globally hyperbolic spacetimes causal relation between two
events can be interpreted as the statement that the spheres of light rays through the two events are
linked in the manifold of all light rays. In particular this solves the Low conjecture and the Legendrian
Low conjecture formulated by Natario and Tod.
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Let G is 6-dimensional Lie group. Any leftinvariant almost complex structure on Lie group is identified
with Lie algebra g endomorphism I, such that I2 = −1. Fix leftinvariant metric on the Lie group, then
one can define set of all leftinvariant almost complex structures, which keep the metric. We will call such
almost complex structures as orthogonal. The space of all orthogonal almost complex structures, with
additional property to keep orientation is homogeneous space Z = SO(6)/U(3) and it is isomorphic to
CP 3.

In different problems with Hermitian structures on manifolds, and particulary on Lie groups, some-
times we need in explicit formulas for almost complex structures, instead implicit condition I2 = −1.
There exists only one orthogonal leftinvariant almost complex structure on 2-dimensional Lie group. In
dimension 4 these structures form 2-parametric family equal to S2. In 6-dimensional case, we have no
explicit formulas of this sort of structures.

The space Z is researched. Using the visualization of this space as 6-dimensional tetrahedron CP 3,
with ”edges” CP 1 and ”faces” CP 2 [1] we can get explicit description for arbitrary point in CP 3. As
result any almost complex structure from Z is represented explicitly as composition of rotations.

For further details see [2].
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We investigate foliations with transverse linear connection. Works of Molino, Kamber and Tondeur,
Bel’ko and others are devoted to different aspects of this class of foliations.

Let Fol be the category whose objects are foliations and morphisms are smooth maps between foliated
manifolds transforming leaves to leaves. The class of smoothness is C∞.

The goal of our work is an introduction of the structure of a smooth infinite-dimensional manifold on
the full automorphism group D(M,F ) of a foliation with transverse linear connection in the category of
foliations Fol.

In order to introduce the structure of a smooth infinite-dimensional manifolds modeled on LF -spaces
(i.e. inductive limites of Frechet spaces) in the group of diffeomorphisms of a smooth manifold Michor
used the construction of a local addition [1]. Macias-Virgos and Sanmartin applied this method to
foliations by introducing the concept of an adapted local addition for a foliation [2].

Applying the results of Willmore and Walker we have proved the existence of special connection for
foliated manifold M such that the foliation (M, F ) with transverse linear connection becomes totally
geodesic.

Thank to this our proof of the existence of an adapted local addition for (M,F ) is simpler than the
proof of the analogous statement of Virgos and Sanmartin for Riemannian foliations.

The following Theorem is the main result of this work. Emphasize that compactness of foliated
manifolds are not assumed.

Main Theorem. Let (M, F ) and (M, F ′) be foliations with transverse linear connection. Then the
set of morphisms Mor(F, F ′) between these foliations in the category Fol admits the structure of an
infinite-dimensional manifild modeled on LF -spaces.

Corrollary. Let (M, F ) be a foliation with transverse linear connection of an arbitrary codimension
on an n-dimensional manifold M . Then the automorphism group D(M,F ) of this foliation in the category
Fol admits the structure of an infinite-dimensional Lie group modeled on LF -spaces.

The main Theorem extends the corresponding result of Macias-Virgos and Sanmartin-Carbon for Rie-
mannian foliations [2]. In particular, our result is valid for Lorentzian and pseudo-Riemannian foliations.

The investigations was supported by the Russian Foundation for Basic Research, grant N 10-01-00457
and the Russian Federation Ministry of Education and Science, Project N 1.1907.2011.
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The space of quasifuchsian groups can be interpreted as is the space of hyperbolic 3-manifolds home-
omorphic to a product of a closed surface with a real line. Provide every such manifold with a minimal
section. We show that the resulting space is isomorphic to the space of solution of sine-Gordon equation
on Riemann surface and show some properties of this space, in particular the existence of a canonical
hyperkaehler structure on it.
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Let M be an oriented 4-dimensional Riemannian manifold. The Weyl tensor W is decomposed under
the Hodge star operator ∗ as W = W+ ⊕W−. Riemannian manifold M is called half conformally flat if
either W+ = 0 or W− = 0. A classification of conformally flat manifolds (W = 0) is given in [1]. The
4-dimensional half conformally flat Lie groups with left-invariant Riemannian metrics are investigated in
this paper.

Theorem. Let G be a real 4-dimensional Lie group with left-invariant Riemannian metric. Then
1) W+ = 0 if and only if W = 0.
2) W− = 0 if and only if either W = 0 or Lie algebra of Lie group G contains in the following list:

Aβ4,9 (−1 < β ≤ 1) with structure constants c11,4 = 2A, c12,3 = c22,4 = c33,4 = A > 0, β = 1;
Aβ4,9 (−1 < β ≤ 1) with structure constants c11,4 = c12,3 = 2A, c22,4 = c33,4 = A > 0, β = 1;
Aα4,11 (α > 0) with structure constants c11,4 = 2Aα, c12,3 = c22,4 = c33,4 = Aα, c32,4 = −c23,4 = −A,

A > 0;
Aα4,11 (α > 0) with structure constants c11,4 = c12,3 = 2Aα, c22,4 = c33,4 = Aα, c32,4 = −c23,4 = −A,

A > 0.
The research was supported by the State Maintenance Program for Young Russian Scientists and the

Leading Scientific Schools of the Russian Federation (Grant NSh-921.2012.1) and FCP “Scientific and
pedagogical persons of innovative Russia” 2009-2013(No 02.740.11.0457).
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We study Sobolev type classes of differential forms Ωk
q,p(M) on an n-dimensional Riemannian manifold

M, g . Any q-integrable k-forms ω belongs to the class Ωk
q,p(M) if its weak exterior differential dω is

p-integrable. The Lq,p-cohomology (Hk
q,p(M) and its reduced version H

k

q,p(M)) are cohomology and
reduced cohomology of the Banach complex

{
Ωk

q,p(M), d
}

. The Banach complex Ωk
q,p(M) is an invariant

of Lipschitz structure. Under some reasonable resrtrictions the Lq,p-cohomology are quasi-isometric
invariants. For q = n

k , p = n
k+1 the cohomology are quasiconformal invariant.

In the paper [1] we introduced a version of Sobolev-Poincaré inequality for differential forms. Vanishing
of Hk

q,p(M) is equivalent to existence of a corresponding Sobolev-Poincaré inequality for classes Ωk
q,p(M).

The classical Sobolev-Poincaré inequality corresponds to k = 1. We show some applications to quasi-
linear equations.

For p > 1, q > 1 the Lq,p-cohomology of compact manifolds coincide with the de Rham cohomology
if and only if 1

p − frac1q ≤ 1/n. Under the same restrictions on p, q any Lq,p-cohomology class has a
smooth representative for any (noncompact) manifold.

The Lq,p-cohomology were applied to Lipschitz classification of simply connected compact manifolds
with nonnegative pinched curvature. A typical result is the following:

Theorem Let (M, g) be an n-dimensional complete simply-connected Riemannian manifold with
sectional curvature K ≤ −1 and Ricci curvature Ric ≥ −(1 + ε)2(n− 1).
(A) Assume that

1 + ε

p
<

k

n− 1
and

k − 1
n− 1

+ ε <
1 + ε

q
,

then Hk
q,p(M) 6= 0.

(B) If furthermore

1 + ε

p
<

k

n− 1
and

k − 1
n− 1

+ ε < min
{

1 + ε

q
,

1 + ε

p

}
,

then H
k

q,p(M) 6= 0.

For p = q the result (B) was known by M.Gromov.
We also discuss a concept of Hölder-Poincaré duality for Lq,p-cohomology and its applications to

vanishing of the reduced Lq,p-cohomology. A weak form of the dualitt (that we call ”‘an almost duality”’)
has applications to vanishing of Lq,p-cohomology and to existence of the Sobolev-Poincaré inequality for
differential forms.

joint with M.Troyanov
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I. Questions of existence of periodic trajectories in phase portraits of dynamical systems appear in
various domains of pure and applied mathematics: in Geometry (existence of closed geodesics on a
Riemannian manifold, and estimates of their quantities), in Celestial Mechanics (3 bodies problem), in
Ergodic Theory, in modeling of biochemical processes etc.

We study similar problems for nonlinear dissipative dynamical systems of chemical kinetics considered
as models of gene networks functioning, see [4]. One simple class of these models is described as follows:

dX
dt

= F(X)−X, or, in coordinates,
dxi

dt
= fi(xi−1)− xi; i = 1, . . . n. (1)

All values of functions and variables are non-negative: X ∈ Rn
+, and xi−1 = xn for i = 1. The function fi

shows the rate of synthesis of the i-th substance (protein, RNA etc.) in gene network, the variable xi

is concentration of the i-th substance. Negative term in each equation describes natural degradation of
corresponding substance. The system (1) is dissipative, div(F(X)−X) ≡ −n, so volume of each bounded
domain in Rn

+ decreases exponentially in time under action of the flow of this system. In contrast with
Hamiltonian systems, we do not have here any conservation law, invariant tori etc.

II. Consider the case of negative feedback regulation in gene networks. Here all the functions fi are
monotonically decreasing, fi(xi−1) → 0 for xi−1 → ∞. Let Pn = [0, f1(0)] × . . . × [0, fn(0)] ⊂ Rn

+.
All trajectories of the system (1) eventually enter Pn, so this is an invariant domain of this system.
Usually in applications, the functions fi have the form fi(w) =

ai

bi + wmi
, so-called Hill functions, see

[4,5]. All parameters ai, bi, and mi here are positive. However, we use these representations in numerical
experiments only.

Now let n = 2k + 1. Odd-dimensional system (1) has a unique stationary point X∗ = F(X∗). We
call this point hyperbolic, if linearization matrix M of the system (1) at this point has eigenvalues with
positive real parts, with negative real parts, and does not have purely imaginary eigenvalues. (All these
eigenvalues can be expressed explicitly.) Under these assumptions, we construct a non-convex polyhedral
invariant domain Q ⊂ P2k+1 of the system (1). This polyhedron Q is composed of (4k + 2) triangle
prisms, and the stationary point X∗ is its “central vertex”. For the cases k = 1, 2, detailed descriptions
of these polyhedra are given in [2,3], respectively. We show that all trajectories of the system (1) which
are contained in Q pass through each of these prisms periodically and do not approach the stationary
point. Hence, we obtain:

Theorem 1. If n = 2k + 1, and the stationary point X∗ is hyperbolic, then the invariant domain Q
contains at least one cycle of the system (1).

Some sufficient conditions for existence of stable cycles in such invariant domains Q were obtained as
well, see [3].

III. We also study questions of non-uniqueness of these periodic trajectories. Consider the case of
symmetric system (1), i.e., let all the functions fi coincide: fi ≡ fj for all i and j. If dimension of this
system is not a prime number, 2k + 1 = p · q, where p 6= 1 6= q 6= p, then its phase portrait contains
p-dimensional and q-dimensional invariant linear subspaces Lp, Lq of the system (1), and Theorem 1 can
be applied to each of these subspaces. The subspace Lp is determined by linear equations xi − xj = 0
for i ≡ j (mod p), the subspace Lq is determined similarly, see [1]. For example, this theorem implies
the following

Proposition 1. If 2k + 1 = 15, and X∗ is hyperbolic for restrictions of symmetric 15-dimensional
system (1) to each of its invariant subspaces L3, L5, then this system has at least 3 different cycles. Two
of them, C3 and C5 are contained in L3 and in L5, respectively, and do not intersect the polyhedron Q,
see [1]; the third cycle C15 is contained in Q, see Theorem 1.

If conditions of stability of that third cycle are satisfied, then the cycles C3, C5 are stable within the
subspaces L3, L5, respectively. Numerical experiments show that in contrast with C15, these two cycles
are not stable in the ambient phase portrait of the 15-dimensional system (1).

1The work was partially supported by RFBR, grant 12-01-00074.
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More rich collections of cycles appear in symmetric systems (1) for 2k + 1 = 81, 105, etc., if the
conditions of Theorem 1 are satisfied. So, Proposition 1 extends to higher-dimensional cases in an
obvious way.

On the other hand, even in the case of asymmetric dynamical systems (1), it follows from the Grobman-
Hartman theorem that if X∗ is hyperbolic, then each pair of “positive” complex conjugate eigenvalues
λj , λ̄j of the matrix M with Reλj > 0 corresponds to a 2-dimensional unstable invariant manifold Sj of
the system (1). Trajectories of this system which are contained in Sj are repelled from the stationary
point X∗ but they still remain in the bounded domain P2k+1.

Actually, the existence of all these invariant manifolds Sj is proved just for some small neighborhood
W of X∗, as in the theory of Andronov–Hopf bifurcations. Numerical experiments show that even in the
cases of prime dimensions 2k + 1 = 11, and 13, for different pairs of these “positive” eigenvalues λj , λ̄j ,
these manifolds Sj can be extended “rather far” from W , and different manifolds Sj contain different
cycles in phase portraits of corresponding dynamical systems (1). For high dimensions 2k+1 these cycles
are located near the boundaries of the parallelepipeds P2k+1. At present time, mathematical proofs of
these statements is one of our main tasks.

IV. Much more complicated phase portraits appear for even-dimensional dynamical systems of the
type (1) and in the cases when some of the functions fi describe other types of regulatory mechanisms. For
example, if functioning of some part of a gene network is regulated by simple combinations of positive and
negative feedbacks, then corresponding functions fi(w) are unimodal, each of them grows monotonically
(positive feedback) below some threshold value w0

i , and for w > w0
i it decreases monotonically as above

(negative feedback).
Usually in applications, see [4,5], such unimodal functions have the form fi(w) =

ai · w
bi + wmi

(so-called

Glass–Mackey functions), Ricker functions f(w) = ai · w · exp(−bi · w), logistic function, etc. In most of
these cases phase portraits of dynamical systems contain several stationary points, and in some cases it
is possible to construct polyhedral invariant domains, analogous to Q, near the stationary points with
appropriate topological indices of the velocity vector field F(X)−X. Now, Theorem 1 can be applied to
each of these domains, as it was done in [2] for 3-dimensional dynamical systems of the type (1), where
some of the functions fi are unimodal and the others decrease monotonically, as in II. Corresponding
conditions of existence of stable cycles can be derived here as well. On the other hand, for some values
of parameters ai, bi, etc. behavior of trajectories in higher-dimensional phase portraits of these systems
becomes chaotic, see [4]. Prediction of this phenomena is also one of our tasks.
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Poincaré’s polyhedron theorem (PPT) is a common tool for constructing manifolds carrying a pre-
scribed geometry. It has a long history and plenty of versions (see, for instance, [5]). While elaborating a
version of PPT for the construction of fibre bundles over surfaces (see [2] and [3]), we realized that, the
more local in nature, the more verifiable in practice are the conditions providing tessellation.

Carrying on this idea, we prove the following theorems.

Theorem. LetM be an oriented 3-dimensional complete Riemannian manifold with simply-connected
components and let P ⊂ M be a compact piecewise smooth polyhedron equipped with face-pairing
isometries that send the polyhedron interior into its exterior. Suppose that the sum of angles at a single
point along an arbitrary (geometric) cycle of edges equals 2π and that the polyhedron is locally connected
after removing its vertices. Then P is a fundamental polyhedron, the cycle relations are defining relations,
and M is therefore tessellated by the copies of P .

Theorem. LetM be an oriented 4-dimensional complete Riemannian manifold with simply-connected
components and let P ⊂M be a compact piecewise smooth polyhedron equipped with face-pairing isome-
tries that send the polyhedron interior into its exterior. Suppose that the sum of angles at a single point
along an arbitrary (geometric) cycle of codimension 2 faces equals 2π and that the polyhedron is locally
connected after removing its codimension 3 faces. Suppose also that the stabilizer of every codimension 3
face in the group generated by the face-pairing isometries induces a finite group of isometries of the
face. Then P is a fundamental polyhedron, the cycle relations are defining relations, and M is therefore
tessellated by the copies of P .

The theorems are surprisingly ‘plane-like’ (i.e., there are no solid angle conditions at points in faces of
codimension ≥ 3) and impose conditions of the alleged local nature. When it comes to applications, these
conditions are actually necessary for tessellation. Curiously, the proof of the theorems requires studying
discrete groupoids in detail.

It turns out that we are not the first to revolve around these ideas. Studying the tiling of a space
by polyhedra in [1], A. D. Alexandrov does not work in terms of groups of isometries. It seems he
was understanding that the appropriate symmetries in this case do not constitute a group. (Back in
1954, it was natural for A. D. Alexandrov to deal only with the constant curvature case.) Much later,
W. P. Thurston [6, p. 127, 11th line from the bottom] also pointed out that, in the 3-dimensional constant
curvature case, no solid angle condition at vertices is necessary.

The above theorems have a wide range of applications and can be generalized to the case of higher
dimension and other geometric structures. Our particular interest lies in dimension 4: the theorem is
planned for constructing compact C-surfaces satisfying c21 = 3c2.

This is a joint work [4] with Sasha Anan′in and Júlio C. C. da Silva.
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A.D. Alexandrov considered as one of important scientific tasks finding of the Time machine con-
struction. Below we offer such construction.

The Time Machine Construction is 4-dimensional wormhole which connects two events (at present
and at past) after the transformation of space-time M4 into a resilient (or dense) leaf in 5-dimensional
Hyperspace M5.

Let < M4, gαβ > be a leaf of an orientable foliation F of codimension 1 in the 5-dimensional Lorentz
manifold < M5, g

(5)
AB >, g = g(5) |M4 , A,B = 0, 1, 2, 3, 5. Foliation F is defined by the differential 1-form

γ = γAdx
A. If the Godbillon-Vey class GV (F) 6= 0 then the foliation F has a resilient leaves.

We suppose that real global space-time M4 is a resilient one, i.e. is a resilient leaf of some foliation F .
Hence there exists an arbitrarily small neighborhood Ua ⊂ M5 of the event a ∈ M4 such that Ua ∩M4

consists of at least two connected components U1
a and U2

a .
Remove the 4-dimensional balls Ba ⊂ U1

a , Bb ⊂ U2
a , where an event b ∈ U2

a , and join the boundaries
of formed two holes by means of 4-dimensional cylinder. As result we have a 4-wormhole C, which is a
Time machine if b belongs to the past of event a. The past of a is lying arbitrarily nearly. The distant
Past is more accessible than the near Past. A movement along 5-th coordinate (in the direction γA) gives
the infinite piercing of space-time M4 at the points of Past and Future. It is the property of a resilient
leaf.

If σ is the characteristic 2-dimensional section of the 3-dimensional domain D0 that one contains the
4-wormhole than we have for the mean value of energy density jump which one is required for creation
of 4-wormhole the following formula:

< δε >∼ c4

4πG
1
σ
,

where c is the light velocity, G is the gravitational constant.
If foliation F has no a resilient leaf we transform F into foliation F ′ with resilient leaves with the

help of non-integrable deformation Ft, t ∈ [0, 1], F0 = F , F1 = F ′.
The value of energy density jump that one need for this deformation F → F ′ (with g

(5)
AB → (g′)(5)AB)

is equal to

δ[ε] ∼ πc4

G

[
l(ξ′)

vol′(M5)
[−2β′

1(M5) + β′
2(M5)]− l(ξ)

vol(M5)
[−2β1(M5) + β2(M5)]

]
,

where βi(M5) are the Betti’s numbers, l(ξ) is the trajectory length of some vector field ξ on M5.
We can declare that our local power actions in space-time are capable to reconstruct its placement in

Hyperspace.
In a dense leaf there is a possibility to make transition in the past, having left in Hyperspace and

having passed rather small distance. It is a question: in what moment and from what point of dense leaf
such trip is possible? But possibility of such travel exists. If all leaves of the foliation are dense, i.e. the
foliation is minimal one, than the travel to the past is possible from of any leaf.

We see that construction of the Time Machine requires the solutions a number of geometrical problems
of the foliation theory.
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Let X and Y be metric spaces. A mapping f : X → Y is called an isometry if f satisfies

dY
(
f(x), f(y)

)
= dX(x, y)

for all x, y ∈ X, where dX(·, ·) and dY (·, ·) denote the metrics in the spaces X and Y , respectively. For
some fixed number r > 0, suppose that f preserves distance r; i.e., for all x, y in X with dX(x, y) = r,
we have dY

(
f(x), f(y)

)
= r. Then r is called a conservative (or preserved) distance for the mapping f .

Aleksandrov [1] posed the following problem:
Aleksandrov problem: Examine whether the existence of a single conservative distance for some

mapping T implies that T is an isometry.
We prove the Hyers-Ulam stability of additive N -isometries on linear N -normed Banach spaces.
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Ollivier defined a coarse Ricci curvature on a metric space with a random walk.

Definition ([3]). Let (X, d, {mx}x∈X) be a metric space with a random walk. We define the coarse
Ricci curvature κ(x, y) along xy by

κ(x, y) := 1− W1(mx,my)
d(x, y)

.

He proved an asymptotic estimate for coarse Ricci curvatures of a Riemannian manifold with respect
to r-step random walks as r → 0, where r-step random walk mx is the volume measure normalized and
restricted on the ball centered at x of radius r. In this talk, we show an estimate for a coarse Ricci
curvature with respect to an r-step random walk for the space satisfying the Bishop-Gromov inequality
[BGK,N ].

Definition. For two real numbers K and N > 1, we define a function sK,N : [0,∞)→ R by

sK,N (t) :=


√

(N − 1)/K sin(t
√
K/(N − 1)) if K > 0,

t if K = 0,√
(N − 1)/−K sinh(t

√
−K/(N − 1)) if K < 0.

A metric measure space (X, d, ν) satisfies the Bishop-Gromov inequality [BGK,N ] if

ν (BR(x))
ν (Br(x))

≤
∫ R
0
sK,N (t)N−1 dt∫ r

0
sK,N (t)N−1 dt

holds for any x ∈ X and for any 0 < r < R ≤ π
√

(N − 1)/max {K, 0} with the convention 1/0 =∞.

Theorem A ([1]). Let (X, d, ν) be a geodesic metric space with a Borel measure. Suppose X satis-
fies the Bishop-Gromov inequality [BGK,N ]. Then

inf
x,y∈X

κ(x, y) ≥ 1− 2r
sK,N (r)N−1∫ r

0
sK,N (t)N−1 dt

holds for r-step random walk.

As a corollary, we obtain that the space satisfying the curvature-dimension condition has a lower
bound of coarse Ricci curvature (see [1]).

We also investigate the L1-Wasserstein space over a space which has a lower bound of a coarse Ricci
curvature.

Theorem B ([2]). Let (X, d, {mx}x∈X) be a metric space with a random walk. Assume the coarse Ricci
curvature on (X, d, {mx}x∈X) is bounded below by κ0. Then there exists a random walk {m̃µ}µ∈P1(X) on
P1(X) such that the coarse Ricci curvature on (P1(X),W1, {m̃µ}µ∈P1(X)) is bounded below by κ0.
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We consider a singularly perturbed system of ordinary differential equations

εż = Z(z, t, ε), (1)

where z ∈ Rm+n, t ∈ R, 0 < ε� 1, and the vector-function Z is sufficiently smooth in all variables [1].
Basing on the method of integral manifolds [2], we carried out qualitative analysis of a system of

the kind (1) with finding the number and the form of the leaves of the integral manifolds, the number
of the stationary states of slow subsystems on the stable leaves of the integral submanifolds and their
classification, the conditions of multiplicity and oscillations of various types, in particular canard solutions.

The construction of slow integral manifolds is a difficult problem. One of the ways to construct the
leaves of the slow surface is the choice of a convinient parametrization.

Recall the notions of a curve and its parametrizations following [3]. Given a metric space M with
metric ρ, by a parameterized curve or a path in M we mean a continuous mapping x : [a, b]→M. A curve
in a metric space is defined as an equivalence class of parameterized curves or paths in this space. First,
we introduce a parametrization of a simple arc K as a continuous one-to-one mapping of an interval [a, b],
where a < b, onto K. Then the notion of a simple arc is extended to normal paths. The set of all normal
parameterized curves in the space splits into classes of equivalent paths. Each class is called a curve in
M . If K is a curve in M, i. e., a class of equivalent normal parameterized curves in M , then the elements
of this class are called the parametrizations of K. We give the example of the curve parametrization.

We consider the system of differential equations corresponding to the catalytic reaction

ẋ1 = 2b1x2
7 − b2x6x1 − b8x1x2,

ẋ2 = b4x7 − b5x2 − b8x1x2 − b9x2x3 − b12x2x4,
ẋ3 = b2x6x1 − 2b3x2

3 − b6x3 + b7x5 − b9x2x3 + 2b10x4x5 + b12x2x4,
ẋ4 = 2b3x2

3 − b10x4x5 − b12x2x4,
ẋ5 = b6x3 − b7x5 − b10x4x5 − b11x5,

(2)

where x6 = 1− x3 − x4 − x5, x7 = 1− x1 − x2 − x3 − x4 − x5, 0 ≤ xi ≤ 1,∑5
j=1 xj ≤ 1, i = 1, . . . , 5.
We use the following hierarchy of parameters in the model under study

b10 > b8 � b7 > b1, b2, b3, b4, b6, b11, b12 � b5, b9.

The change of variables

s = x4 − x5, u = x1 − x2, v = x3 + x4 + x5

leads (2) to the singularly perturbed system of equations of the form

ẋ = f(x, y, t, ε), εẏ = g(x, y, t, ε), (3)

where x = (s, u, v) are the slow variables and y = (x2, x5) are the fast, ε = 1/b10 is a small positive
parameter, f = (f1, f2, f3), g = (κf4/b8, f5/b10), κ = b8/b10, fi, i = 1, 2, . . . , 5, are the right-hand sides
of equations (2).

The slow surface is defined by g(x, y, t, 0) = 0.
Using the hierarchy of parameters and applying twice the method of integral manifolds to (3) obtained

from the five-dimensial system (2), we reduce the analysis of the system to the consideration of the slow
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susbsystem, consisting in this case of a single equation, on the one-dimensional integral manifold. The
use of the method is possible because the system has small parameters.

We have the system with the small parameter, v is a slow variable, u and s are fast variables;
v̇ = f2(u, v, s) is the slow subsystem on the slow curve described by the system of two equations

ka(1 + u− v)2 − (1 + u− v)− bus = 0,
a(v − s)2 − (v − s) + bus = 0, (4)

where a = 2b3
b6
, b = b12

b6
, k = b1

b3
.

The slow surface is a one-dimensional closed curve. For its calculation, it is convinient to use the
following parametrisation, introducing the parameter θ = us. Then, putting

α =
√

1− 4abθ, β =
√

1 + 4abkθ

and solving the equations (4) with respect to (1 + u− v) and (v − s), obtain

2ka(1 + u− v) = 1± β,
2a(v − s) = 1± α.

On the leaf S2(u ≤ 0, s ≥ 0), the quantity θ satisfies the inequality −1/4abk ≤ θ ≤ 0.
We described the construction of this curve in [4]. Note that the curve may be disconnected set.

There is a possibility of the existence of canard solutions in (2).
The work was supported by the Russian Foundation for Basic Research (project no. 12-01-00074)

and the Siberian Division of the Russian Academy od Sciences (Interdisciplinary Project no. 80).
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In this talk, we will describe some results on the spectral theory of the Laplace-Beltrami operator on
a compact Riemannian orbifold and its connections with dynamics of the geodesic flow.

Let (X, gX) be a compact Riemannian orbifold, dimX = n, and let ∆X be the associated Laplace-
Beltrami operator on X. The spectrum of ∆X is discrete, and there is an orthonormal basis of eigen-
functions {ψj} with corresponding eigenvalues {λ2

j}: ∆Xψj = λ2
jψj , 0 ≤ λ1 ≤ λ2 ≤ . . .. Let ft be the

geodesic flow of the metric gX on the cosphere bundle S∗X = {(x, ξ) ∈ T ∗X : |ξ| = 1}. For any zero
order pseudodifferential operator A ∈ Ψ0(X), we denote by σA ∈ C∞(T ∗X \ 0) its principal symbol.
Define a functional ω on Ψ0(X) by

ω(A) =
1

vol(S∗X)

∫
S∗X

σA dµ, A ∈ Ψ0(X),

where dµ is the Liouville measure on S∗X. In [2], we extend to orbifolds the classical result on quantum
ergodicity due to Shnirelman, Colin de Verdière and Zelditch.

Theorem 1 If the flow ft is ergodic on (S∗X, dµ) then there is a subsequence {ψjk} of density one such
that for any A ∈ Ψ0(X)

lim
k→∞

〈Aψjk , ψjk〉 = ω(A).

For the proof of this theorem, we need two results, which maybe of independent interest.
The first result is the local Weyl law for elliptic operators on orbifolds [2]. Let us introduce the

generalized eigenvalue distribution function of ∆X , setting for any A ∈ Ψ0(X)

NA(λ) =
∑

{j:λj≤λ}

〈Aψj , ψj〉, λ ∈ R.

Theorem 2 For any A ∈ Ψ0(X), we have as λ→ +∞

NA(λ) =
1

(2π)n

(∫
S∗X

σA dµ

)
λn +O(λn−1).

As a consequence of Theorem 2, we obtain the Weyl law for the eigenvalue distribution function
N(λ) = #{j : λj ≤ λ} of ∆X , first proved by Farsi, 2001: as λ→ +∞, we have

N(λ) =
1

(2π)n
vol(S∗X)λn +O(λn−1).

The second result is the Egorov theorem for orbifolds [1], which relates the evolution of pseudodiffer-
ential operators on a compact Riemannian orbifold (quantum observables) determined by the first order
elliptic operator P =

√
∆X with the corresponding evolution of classical observables given by the action

of the geodesic flow ft on the space of symbols.

Theorem 3 For any pseudodifferential operator A of order 0 on X with the principal symbol σA ∈
C∞(T ∗X \ 0), the operator A(t) = eit

√
∆XAe−it

√
∆X , t ∈ R, is a pseudodifferential operator of order 0 on

X. Moreover, its principal symbol σA(t) ∈ C∞(T ∗X \ 0) is given by

σA(t)(x, ξ) = σA(ft(x, ξ)), (x, ξ) ∈ T ∗X \ 0.

To provide examples of ergodic geodesic flows, we prove in [2] the orbifold version of a classical result
by Anosov.

Theorem 4 The geodesic flow on a compact Riemannian orbifold of negative sectional curvature is
ergodic.

As an example of a compact Riemannian orbifold of negative sectional curvature, one can consider the
hyperbolic orbifold Hn/Γ, which is the quotient of the n-dimensional hyperbolic space Hn by a cocompact
discrete group Γ of orientation-preserving isometries of Hn.

Finally, we will discuss noncommutative geometry of orbifolds and noncommutative versions of the
results mentioned above [1].
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Invariant Decomposable Almost Complex Structures on Homogeneous Spaces

Eugene Kornev
Kemerovo State University, Krasnaya Street 6, Kemerovo, 650043, Russia

e-mail: q148@mail.ru

This work is supported by RFBR, the grant # 12-01-00873-

Let M be a Riemannian homogeneous space of dimension 2n. G is a connected Lie group that
transitive acts on M , H is a isotropy subgroup for element o ∈ M , and g is AdH -invariant Riemannian
metric on G. Then Lie algebra g of Lie group G is a direct sum of isotropy subalgebra h and subspace p
that is orthogonal complementary of h with respect to metric g. The metric g produces the G-invariant
metric on M , and is identified with it. It is known that p can be decomposed into orthogonal sum of
minimal irreducible AdH -invariant subspaces. Subspace p is isomorphic to the tangent space ToM , and
any left-invariant smooth endomorphisms field J on G so that J2 = − id |p determines the G-invariant
almost complex structure on M . This almost complex structure is called an Invariant Almost Complex
Structure on Homogeneous Space M .

Definition 1. An almost complex structure J is called an decomposable if exists an continuous
distribution of proper tangent subspaces invariant under the action of J , and for any such distribution
exists continuous complementary distribution that also is invariant under the action of J .

It is clearly that on homogeneous space M an decomposable almost complex structure provides de-
composition p into direct sum of minimal subspaces irreducible with respect to action of this decomposible
structure. The number of these minimal subspaces is called an Decomposable Almost Complex Structure
Index. Denote by iJ an Decomposable Almost Complex Structure Index. Then 2 ≤ iJ ≤ n, where
2n = dimM .

For an decomposable almost complex structure having index 2 or more may be proved next useful
result:

Theorem 1. Let M ∼= G/H be a homogeneous space, and J be an invariant decomposable almost
complex structure on M . Let group G has nontrivial center, A and B are subspaces in p invariant under
the action of J so that p = A⊕B. Let A belongs to center of Lie algebra g, and Nijenhuis tensor is equal
to zero on B. Then almost complex structure J is integrable on M .

Remark. If homogeneous space M is decomposed into direct product of two-dimensional subspaces,
then M always admits an integrable decomposable almost structure having maximal index n.

The next theorem describes intersection of classes of orthogonal and decomposable almost complex
structures.

Theorem 2. An orthogonal invariant almost complex structure can be decomposable if and only if
orthogonal complementary of isotropy subalgebra comtains proper subspace invariant under the action of
this orthogonal structure.

To describe relationship between AdH -invariant subspaces in p and subspaces invariant under the
action of decomposable almost complex structure, it is needed to determine two special classes of homo-
geneous spaces.

Definition 2. An Riemannian homogeneous space M ∼= G/H is called an Regular-reducible if for
any AdH-invariant subspace in p = h⊥ exists AdH-invariant orthogonal complementary having the same
dimension. And it is called an Irregular-reducible if p contains even one AdH-invariant subspace whose
orthogonal complementary has not the same dimension. An irregular-reducible homogeneous space is
called an Strictly Irregular-reducible if all AdH-invariant subspace in p have different dimension.

An invariant decomposable almost complex structure is said to be Isotropic Invariant if any subspace
invariant under the action of this structure is AdH -invariant. Now we can state the next result:

Theorem 3. Let M ∼= G/H be an irregular-reducible homogeneous space equipped with G-invariant
Riemannian metric. Let also any AdH-invariant subspace in orthogonal complementary p of isotropy
subalgebra h has even dimension. Then any left-invariant almost complex structure on group G, mapping
p to itself and keeping decomposition of p into orthogonal sum of AdH-irreducible terms, determines an
G-invariant decomposable almost complex structure on M . Along with it, the AdH-irreducible subspaces
are invariant under the action of this almost complex structure. If additionally, M is an strictly irregular-
reducible homogeneous space, and almost complex structure is an isotropic invariant, then invariant under
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the action of almost complex structure irreducible subspaces coincide with AdH-irreducible subspaces, and
a decomposable almost complex structure index is equal to the number of AdH-irreducible subspaces in p.

Let Ω be an invariant symplectic form on homogeneous space M . We can choose basic invariant
1-form θ1, . . . , θ2n on M so that

Ω = θ1 ∧ θ2 + . . .+ θ2n−1 ∧2n .

Choosing the dual basis of invariant vector fields e1, . . . , e2n we can give the set of two-dimensional
subspaces

{e1, e2}, . . . , {e2n−1, e2n}.

It is possible to show that any invariant maximal index n decomposable almost complex structure, having
these subspace as minimal invariant subspaces, has the next view with respect to above basis: A1 0 . . . 0

... . . . . . .
...

0 . . . 0 An

 ,

where

Ak =

(
ak bk

− a2
k+1
bk

−ak

)
, bk < 0.

Denote this decomposable almost complex structure by Jz : z = (a1 + ib1, . . . , an + ibn)|bk<0, k =
1, 2, . . . , n, i =

√
−1.

The invariant decomposable almost complex structure Jz holds on symplectic form Ω while all available
values of z, i.e. Ω ◦ Jz = Ω. It makes possible to give the n-parameter family of almost Kähler metrics

gz : gz(X,Y ) = Ω(X, JzY ), ∀ X,Y ∈ p.

Let ∇ be the Levi-Civita connection for metric gz. Since in invariant case ∇Jz is a tensor of type
(2, 1), we can determine ‖∇Jz‖ as the Euclidian norm of tensor ∇Jz. Denote by Σ the surface in Cn

that vanishes the function ‖∇Jz‖. It is known that condition ∇Jz = 0 implies the integrability of
almost complex structure Jz. We obtain that surface Σ parameterizes the Kähler metrics associated with
symplectic form Ω. By this way, each invariant symplectic form on real homogeneous space determines
the remarkable surface in Cn which can be viewed as surface of Kähler metrics in the associated metrics
space.
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We construct a class of centrally symmetric polytopes – perfect prismatoids and prove some its prop-
erties related to the famous conjecture concerning with face numbers of centrally symmetric polytopes.
Also it is proved that any Hanner polytope is a perfect prismatoid and any perfect prismatoid is affinely
equivalent to some 0/1-polytope.

A polytope P ⊂ Rd is centrally symmetric (or cs, for short) if P = −P . We say that faces F and F ′

of a cs polytope P are antipodal if F = −F ′. Let fi be a number of i-faces of a cs polytope P . Define
f(P ) by the total number of non-empty faces of P .

In 1989 Kalai stated the conjecture known as the 3d-conjecture that every cs d-polytope has at least
3d non-empty faces. In dimension d = 3 the conjecture follows from Euler’s relation. In d = 4 the
conjecture was proved by Ziegler, Werner, Sanyal in 2007. For simplicial and simple d-polytopes the
conjecture follows from Stanley’s results obtained in 1987.

An important class that attains the bound is the class of Hanner polytopes. It is unknown whether
there exist other polytopes with exactly 3d non-empty faces. To define Hanner polytopes we introduce
the concept of a cross.

Let Rd1 and Rd2 be subspaces of Rd1+d2 and Rd1∩Rd2 = {O}. Let a d1-dimensional polytope P1 ⊂ Rd1

and a d2-dimensional polytope P2 ⊂ Rd2 be centrally symmetric polytopes with the common centre of
symmetry O. Then P = conv{P1, P2}. is called a cross of P1 and P2. The cross of P1 and P2 is denoted
by P1 � P2.

Hanner polytopes are defined recursively: every centrally symmetric 1-polytope is a Hanner polytope.
For dimensions d > 2, a d-polytope is a Hanner polytope if it is the direct product or the cross of two
lower dimensional Hanner polytopes.

A centrally symmetric polytope P is called prismatoid with bases F and F ′ if P = conv(F ∪ F ′)
where F and F ′ are antipodal facets of F . A centrally symmetric convex polytope P is called a perfect
prismatoid if P = conv(F ∪F ′) for any pair of its antipodal facets F and F ′. This definition is equivalent
to the following one: every pair of antipodal facets contains all vertices of P .

In case d = 3 the class of perfect prismatoids and the class of Hanner polytopes coincides. (They
contain only the cube and octahedron). We prove that in d > 4 the class of perfect prismatoids contains
the class of Hanner polytopes but does not coincide with it.

The dual P ∗ of a perfect prismatoid P , the direct product P1 × P2 and cross P1 � P2 of two perfect
prismatoids P1 and P2 are perfect prismatoids. So every Hanner polytope is a perfect prismatoid. For
d 6 4 any perfect prismatoid is a Hanner polytope. But there exist perfect d-prismatoids that are not
Hanner polytopes in d > 5.
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I will talk about the positivity of non-linear spectral gap for energy functional over L2-maps into
complete separable CAT(0)-space (more generally, complete separable 2-uniformly convex space satisfying
some geometric conditions) in terms of symmetric Markov chains, equivalently global Poincaré inequality
for L2-maps into such spaces, provided its Ollivire’s coarse Ricci curvature is bounded below by a positive
constant. I will also provide a generalization of inequalities for spectral gaps between linear and non-linear
one in terms of Izeki-Nayatani invariant δ(Y ) for CAT(0)-space Y extending the result by Izeki-Kondo-
Nayatani for finite graphs. This is a joint work with E. Kokubo, who was my student in master course
last year.
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Modern stochastic geometry appeared in 1960s as a branch of integral geometry. However, stochastic
questions in geometry are known to appear much earlier. For example, the first famous problem connect-
ing geometry and probability is a needle problem due to Buffon (1777). Other examples are geometrical
expression of χ2 statistical criterion by Student (1907) and results of Blaschke’s integral geometry school
(1930s).

The aim of stochastic geometry is constructing and studying various models of spatial structures.
Among them there are discrete random point sets (so called point processes), boolean random sets,
hyperplane processes and so on. Different topics of modern stochastic geometry are described in [1].

Considering random polytopes inscribed into a sphere Sd can be motivated in two ways. On the one
hand, the combinatorics of these polytopes is exactly the combinatorics of a random Delaunay tessellation
of Sd. Indeed, let A ⊂ Sd be a generic finite point set, then the spherical Delaunay tessellation D(A)
is combinatorially isomorphic to the polytope convA. Properties of random Delaunay tessellations have
been extensively studied throughout recent decades. The first result of this kind is obtained in [2] and
refers to the Delaunay-Poisson tessellation of E3.

On the other hand, a lot of research has been done on the topics concerning convex hulls of random
point sets. The most usual models are distributions of points in a convex set (see [4], for example).
However, there are numerous results for convex hulls of finite point sets chosen randomly on some surface,
for instance, [5] and [6]. It will be demonstrated that there are methods applicable in both cases.

Convex hulls of finite subsets of the Clifford Torus have been studied by N. Dolbilin and M. Tanemura
[3].

In the 4-dimensional Euclidean space E4 consider the two-dimensional Clifford torus

T 2 = {(cosϕ, sinϕ, cosψ, sinψ) : −π < ϕ, ψ ≤ π}.

Clearly, T 2 is a submanifold of the three-dimensional sphere

S3√
2
= {(ξ1, ξ2, ξ3, ξ4) : ξ21 + ξ22 + ξ23 + ξ24 = 2}.

The paper [3] defines the notion of a regular finite set A ⊂ T 2 and completely describes the hyperfaces
of convA. Besides this, a computer simulation of a Poisson process Pλ(ω) ⊂ T 2 has been performed. As
a result, certain conjectures about the combinatorics of a random polytope P (λ) = convPλ(ω) have been
proposed. In particular, it was suggested that the mean valence of a vertex of P (λ) has expectation of
magnitude O∗(lnλ).

The following results hold for P (λ).

Theorem 1. For i = 1, 2, 3 one has E fi(P (λ)) = O∗(λ lnλ) as λ→ ∞.

Theorem 2. The expectation of the mean valence of a vertex of P (λ) has asymptotics E v̄(P (λ)) =
O∗(lnλ) as λ→ ∞.

Remark. The statement of theorem 2 is exactly the conjecture posed by Dolbilin and Tanemura.

All the proofs are conducted in essentially the same way using the notion of a cap, which is an
intersection C = T 2 ∩ H, where H is a closed half-space. First one obtains an integral expression for
E fi(P (λ)) or E v̄(P (λ)). After that the integral can be estimated either by reparametrisation of caps
(which is simply a variable substitution under the integral), or using the cap covering technique similar
to one described in [4].

The cap covering technique allows to estimate the variance of f3(P (λ)).

Theorem 3. Var f3(P (λ)) ≪ λ ln2 λ.

Theorem 3 immediately implies the law of large numbers for f3(P (λ)).

Theorem 4.

P

(∣∣∣∣f3(P (λ))− E f3(P (λ))

E f3(P (λ))

∣∣∣∣ > ε

)
≪ 1

λε2
.
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On pyramids in a three-dimensional normed space
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Is it true that vertex set of every Euclidean tetrahedra can be isometrically embedded in a arbitrary
three-dimensional normed space?

We prove this for tetrahedra of two special types: for every regular triangular pyramid and tetrahedra
with ratio of lengthes of it’s edges not less (

√
8/3 + 1)/3 < 0.878.
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Mapping class groups (MCG’s) of compact (oriented connected, possibly with punctures) surfaces of
nonexceptional type are very mysterious. In some aspects, they behave like higher rank lattices, but
in other aspects they also do like rank one lattices. The following result, well-known as the “Farb–
Kaimanovich–Masur superrigidity” [3], [2], states a typical rank one phenomenon of MCG’s:

Every group homomorphism from higher rank lattices (such as SL(3, Z) and cocompact lattices in
SL(3, R)) into MCG’s has finite image.

In this talk, we show a generalization of the superrigidity above, to the case where higher rank
lattices are replaced with some (non-arithmetic) matrix groups over general rings. Our main examples
of such groups are called the “universal lattice” and “symplectic universal lattice”, that are, the
special linear group and the symplectic group over commutative finitely generated polynomial rings over
integers, (such as SL(3, Z[x]) and Sp(4, Z[x, y])). This result may be regarded as a generalization of the
FKM superrigidity of higher rank lattices of the form of SL(n,O) and Sp(2n′,O), where n at least 3, n′

at least 2, and O is the ring of integers (or S-integers) of a number field.
Furthermore, we generalize the FKM superrigidity of cocompact lattices in SLn≥3 and Sp2n≥4. All

these results are taken from our preprint [4].
These generalizations are proved with the aid of study of quasi-(1-)cocycles into nontrivial unitary

representations (it is inspired by an alternative proof of the FKM theorem by Bestvina and Fujiwara [1]
via study of quasi-homomorphisms). This study relates “property (TT)/T”, which we introduce in [4] as
a weakening of Monod’s property (TT) (and a strengthening of Kazhdan’s property (T)).
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Let M be the group of all Mobius (linear fractional) transformations of the extended complex plane
C = C∪{∞}. An element f ∈M−{Id} is called loxodromic if f is conjugate to z → λz, |λ| > 1; elliptic
if f is conjugate to z → λz, |λ| = 1; parabolic if f is conjugate to z → z + 1. It is well known that
M ∼= SL(2,C)/{±Id}. A group G < M is said to be discrete if the identity is isolated in G.

Let Isom+(H3) be the group of all orientation-preserving isometries of hyperbolic 3-space; then
M ∼= Isom+(H3). A group G < M is called elementary if there exists a finite G-orbit in H3 ∪ C.
Otherwise, it is nonelementary. All elementary discrete groups are described. Jorgensen showed [2] that
a nonelementary group G < M is discrete if and only if every its two-generated subgroup is discrete. Thus,
the problem of discreteness for subgroups of M is reduced to the problem of discreteness for two-generated
subgroups of M.

Gehring, Maclachlan, Martin [1] and Rasskazov [3] found the sufficient conditions that a subgroup of
M with two elliptic generators is nonelementary and discrete. We obtain the sufficient conditions that a
subgroup of M with two nonelliptic generators is nonelementary and discrete (theorems 1–5).

Let f ∈ M − {Id} be nonparabolic. The hyperbolic line joining two fixed points of f in C is called
the axis of f and is denoted by `f . If f is elliptic then f is a rotation about `f . If f is loxodromic then
f is the composition of the translation along `f by an amount τ(f) > 0 and a rotation about `f . Let us

denote α(f) = arcsin
(

1
cosh(τ(f)/2)

)
.

Let f, g ∈ M − {Id} be nonparabolic, δ(f, g) be the hyperbolic distance between `f and `g,
and θ(f, g) be the dihedral angle between the hyperbolic planes containing each axes and the com-
mon perpendicular respectively.
Theorem 1. Let f, g ∈M be loxodromic; if

either α(f) + α(g) ≤ θ(f, g)

or α(f) + α(g) > θ(f, g) and cosh δ(f, g) ≥
cosh

τ(f)
2

cosh
τ(g)

2
cos θ(f, g) + 1

sinh
τ(f)

2
sinh

τ(g)
2

,

then the group 〈f, g〉 is discrete, nonelementary and 〈f, g〉 = 〈f〉 ∗ 〈g〉.
Theorem 2. Let f ∈M be loxodromic, g ∈M be elliptic of order n ≥ 2, and

sinh δ(f, g) ≥
cosh

τ(f)
2

cos
π

n
sin θ(f, g) + 1

sinh
τ(f)

2
sin

π

n

;

then the group 〈f, g〉 is discrete, nonelementary and 〈f, g〉 = 〈f〉 ∗ 〈g〉.
Let f ∈M be parabolic, and g ∈M−{Id} be nonparabolic. After a preliminary conjugation we may

assume that f has the form f(z) = z+σeiψ, where σ = σ(f, g) > 0 and ψ = ψ(f, g) ∈ (−π2 ; π2 ], and that
the fixed points of f are ±1 ∈ C.
Theorem 3. Let f ∈M be parabolic, and g ∈M be loxodromic; if

either σ(f, g) ≥ 2 ·
cosh

τ(g)
2

cosψ(f, g) + 1

sinh
τ(g)

2
or α(g) ≤ |ψ(f, g)| < π

2 and σ(f, g) ≥ 2 · 1

sinh
τ(g)

2

,

then the group 〈f, g〉 is discrete, nonelementary and 〈f, g〉 = 〈f〉 ∗ 〈g〉.

1The research was partially supported by the grants RFBR-12-01-00210 and N.Sh.-921.2012.1.
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Theorem 4. Let f ∈M be parabolic, g ∈M be elliptic of order n ≥ 2, and

σ(f, g) ≥ 2 ·
cos

π

n
| sinψ(f, g)|+ 1

sin
π

n

;

then the group 〈f, g〉 is discrete, nonelementary and 〈f, g〉 = 〈f〉 ∗ 〈g〉.
Let f, g ∈ M be parabolic. After a preliminary conjugation we may assume that f has the form

f(z) = z + ξeiη, where ξ = ξ(f, g) > 0 and η = η(f, g) ∈ (−π2 ; π2 ], and that g has the form g(z) = z
z + 1.

Theorem 5. Let f, g ∈M be parabolic, and

ξ(f, g) ≥ 2 · (cos η(f, g) + 1);

then the group 〈f, g〉 is discrete, nonelementary and 〈f, g〉 = 〈f〉 ∗ 〈g〉.
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Collapsing three-dimensional Alexandrov spaces
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We report that the topologies of collapsing three-dimensional Alexandrov spaces without boundaries
are determined. The talk is based on a joint work with Takao Yamaguchi [MY].

An Alexandrov space is a geodesic space having a notion of curvature bound. Such a space is a gen-
eralization of Riemannian manifold and is naturally appeared in converging and collapsing phenomenon
of Riemannian manifolds. We recall the definition of Alexandrov spaces. We say that a complete metric
space M is an Alexandrov space of curvature bounded from below by −1 if it is a geodesic space and any
geodesic triangle 4 in M is not thiner than a comparison triangle 4̃ in the hyperbolic plane H2. Here,
4̃ denotes the triangle consisting of edges of the same length as 4.

For n ∈ N and D > 0, let us denotes by Alex(n, D) the set of all isometry classes of n-dimensional
Alexandrov spaces of curvature ≥ −1 and diameter ≤ D. Let {Mi}i=1,2,... ⊂ Alex(n, D) be a sequence
of n-dimensional Alexandrov spaces. Due to Gromov’s compactness theorem, there exists a subsequence
{Mn(i)} of {Mi} converging to an X ∈ Alex(k, D) in the Gromov-Hausdorff topology, for some k ≤ n.
From now on, we consider a converging sequence {Mi} ⊂ Alex(n, D). We say that {Mi} ⊂ Alex(n, D)
converging to X is collapsing if dim X < dim Mi = n. According to Perelman’s stability theorem, if {Mi}
converges and does not collapse to X, i.e. dim X = dim Mi, then Mi is homeomorphic to X for large i.
A purpose of collapsing theory is finding an answer to the following problem.

Problem. When a sequence {Mi} ⊂ Alex(n, D) of Alexandrov spaces collapses to an Alexandrov space
X, is there any geometric relation between Mi and X for large i?

Recently, we determine the topologies of collapsing three-dimensional Alexandrov spaces without
boundaries.

Main Result [MY]. Let {Mi} ⊂ Alex(3, D) be a sequence of three-dimensional Alexandrov spaces of
curvature ≥ −1 and of diameter ≤ D. Suppose that all Mi have no boundary. We assume that {Mi}
collapses to some Alexandrov space X ∈ Alex(k,D) with k ≤ 2. Then, without exceptional cases, we
determine the topology of Mi in terms of the topology of X for large i.

This result is a generalization of the works of Shioya-Yamaguchi [SY] and Fukaya-Yamaguchi [FY].
They determined the topologies of collapsing three-dimensional closed Riemannian manifolds having
uniformly a lower curvature bound and an upper diameter bound, up to Poincaré conjecture.

In the talk, we concentrate to introduce the following result in our main result.

Theorem [MY]. Let {Mi} ⊂ Alex(3, D) and each Mi has no boundary. Suppose that {Mi} collapses to
an Alexandrov surface X ∈ Alex(2, D) and X has no boundary. Then, Mi is a generalized Seifert fibered
space over X for large i.

Here, a generalized Seifert fibered space is a generalized notion of usual Seifert fibered space. It is a
“singular circle bundle” over a surface which may have a singular fiber homeomorphic to an interval. In
other words, it is considered as a circle bundle over a surface in the orbifold-sense.

If time permits, we will talk another result in our main result.
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We study some aspects of knots and links in lens spaces. Namely, if we consider lens spaces as a
quotient of the unit ball B3 with suitable identification of boundary points, then we can project the links
on the equatorial disk of B3, obtaining a regular diagram for them. The main results are: a complete
finite set of Reidemeister type moves establishing equivalence, up to ambient isotopy; a Wirtinger type
presentation for the fundamental group of the complement of the link; a diagrammatic method giving
the torsion of the first homology group of the link. We also compute Alexander polynomial and twisted
Alexander polynomials of this class of links, and we show their correlation with Reidemeister torsion.
Furthermore, we prove that the twisted Alexander polynomials of a local link vanish and its Alexander
polynomial gives information about the order of the torsion of the link homology.
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Let k : C → R be a smooth given function. A k-loop is a closed curve u in C having prescribed
curvature k(p) at every point p ∈ u. We use variational methods to provide sufficient conditions for
the existence of k-loops. Then we show that a breaking symmetry phenomenon may produce multiple
k-loops, in particular when k is radially symmetric and somewhere increasing.

If k > 0 is radially symmetric and non increasing we prove that any embedded k-loop is a circle,
that is, round circles are the only convex loops in C whose curvature is a non increasing function of the
Euclidean distance from a fixed point. Our proof uses the Osserman construction for the four vertex
theorem, which is based on an essential way on the Alexandrov moving planes idea. Several uniqueness
(up to homothety) results are available for similar geometrical problems, starting from the pioneering
paper [1] by Alexandrov.

Our uniqueness result is sharp, as there exist radially increasing curvatures k > 0 which have embedded
k-loops that are not circles.

References

[1] A.D. Alexandrov, ”Uniqueness theorems for surfaces in the large. I”, Vestink Leningrad Univ., 11,
5–17 (1956). Amer. Math. Sci. Transl. Ser 2, , 21, 341–354 (1962).

77
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This talk is devoted to some recent results on Killing vector fields of constant length on Riemannian
manifolds, that are obtained mainly in our joint with Prof. V.N. Berestovskii papers [1-3].

Recall that a smooth vector field X on a Riemannian manifold (M, g) is called Killing if LXg = 0. A
vector field X on a (complete) Riamannian manifold (M, g) is Killing if and only if it generates a flow on
M , that consists of isometries of (M, g).

It is easy to see, that a Killing vector field X on a Riemannian manifold (M, g) has constant length if
and only if every integral curve of the field X is a geodesic in (M, g).

Recall that Clifford-Wolf translation in a Riemannian manifold (M, g) is an isometry moving all
points in M one and the same distance. It should be noted, that Killing vector fields of constant length
are closely related with Clifford-Wolf translations on Riemannian manifolds [1]. In particular, if a one-
parameter isometry group γ(t) on (M, g), generated by a Killing vector field X, consists of Clifford-Wolf
translations, then X has constant length.

In the paper [2], nontrivial Killing vector fields of constant length and corresponding flows on smooth
complete Riemannian manifolds are investigated. It is proved that such a flow on symmetric space is free
or induced by a free isometric action of the circle S1. Moreover, it is proved in [2], that a one-parameter
isometry group γ(t), generated by a Killing vector field X of constant length on a symmetric space (M, g),
consists of Clifford-Wolf translations.

The following theorem plays a key role in the study of Clifford-Wolf homogeneous Riemannian man-
ifolds [3].

Theorem 1 ([3]). For any Killing field of constant length Z on a Riemannian manifold (M, g) the
equality

(∇ZR)(·, Z)Z = 0

holds at every point of M , where R is the curvature tensor of (M, g).

An inner metric space (M,ρ) is called Clifford-Wolf homogeneous if for every two points y, z in M
there exists a Clifford-Wolf translation of the space (M,ρ) moving y to z. Obviously, every Euclidean
space En is Clifford-Wolf homogeneous. Since En can be treated as a (commutative) additive vector
group with bi-invariant scalar product, the following example can be considered as a generalization.

Let G be a Lie group supplied with a bi-invariant Riemannian metric ρ. In this case both the group of
left shifts L(G) and the group of right shifts R(G) consist of Clifford-Wolf isometries of (G, ρ). Therefore,
(G, ρ) is Clifford-Wolf homogeneous. With using of Theorem 1, the following remarkable result was
obtained.

Theorem 2 ([3]). Every simply connected Clifford-Wolf homogeneous Riemannian manifold is a
direct metric product of an Euclidean space, odd-dimensional spheres of constant curvature and simply
connected compact simple Lie groups supplied with bi-invariant Riemannian metrics (some of these factors
may absent).

Finally, we clarify connections between Killing fields of constant length on a Rimannian geodesic orbit
manifold (M, g) and the structure of its full isometry group. A Riemannian manifold (M, g) is called a
manifold with homogeneous geodesics or a geodesic orbit manifold, if any geodesic γ of M is an orbit of a
one-parameter subgroup of the full isometry group of (M, g). This terminology was introduced in [4] by
O. Kowalski and L. Vanhecke, who initiated a systematic study of such spaces.

Geodesic orbit Riemannian manifold may be considered as a natural generalization of symmetric
spaces, classified by É. Cartan. Indeed, a simply connected symmetric space can be defined as a Rieman-
nian manifold (M, g) such that any geodesic γ ⊂M is an orbit of one-parameter group gt of transvections,
that is one-parameter group of isometries which preserves γ and induces the parallel transport along γ.
If we remove the assumption that gt induces the parallel transport, we get the notion of a geodesic orbit
manifold.

The class of geodesic orbit Riemannian manifolds is much larger then the class of symmetric spaces.
For example, any homogeneous space M = G/H of a compact Lie group G admits a metric gM such
that (M, gM ) is a a geodesic orbit Riemannian manifold. It is sufficient to take the metric gM which is



induced with a bi-invariant Riemannian metric g on the Lie group G such that (G, g) → (M = G/H, gM )
is a Riemannian submersion with totally geodesic fibres. Such homogeneous space (M = G/H, gM ) is
called a normal homogeneous space. More generally, any naturally reductive manifold is geodesic orbit.
Recall, that a Riemannian manifold (M, gM ) is called naturally reductive if it admits a transitive Lie
group G of isometries with a bi-invariant pseudo-Riemannian metric g, which induces the metric gM on
M = G/H. An important class of geodesic orbit Riemannian manifolds consists of weakly symmetric
spaces, introduced by A. Selberg [5]. Recall, that a Riemannian manifold (M, g) is a weakly symmetric
space, if any two points p, q ∈M can be interchanged by an isometry of (M, g).

The Lie algebra of the full isometry group of a Riemannian manifold (M, g) is naturally identified
with the Lie algebra of Killing fields g on (M, g). The following result is useful for a study of geodesic
orbit Rimannian manifolds.

Theorem 3 ([6]). Let (M, g) be a geodesic orbit Rimannian manifold, g is its Lie algebra of Killing
fields. Suppose that a is an abelian ideal of g. Then any X ∈ a has constant length on (M, g).

On the ground of Theorem 3 one can give (see [6]) a new proof of one result of C. Gordon [7]: Every
Riemannian geodesic orbit manifold of nonpositive Ricci curvature is a symmetric space.

The project was supported in part by the State Maintenance Program for the Leading Scientific
Schools of the Russian Federation (grant NSh-921.2012.1).
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Birkhäuser, 1996.



Nontriviality of the Jones Polynomial

A. R. Nizami

University of Education Division of Science and Technology, University of Education, Township,
Lahore-Pakistan

e-mail: arnizami@ue.edu.pk

Using a simple recurrence relation, we give a new method to compute the Jones polynomials of closed
braids. We show that in any sequence of braids, there are a few trivial Jones polynomials.
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In the present talk, I would like to introduce an approximation of harmonic maps via exponentially
harmonic maps. More precisely, several convergences, as ε → 0, of sequences of critical points of the
exponential energy functional

Eε(u) :=
∫

M

eε|du|2 − 1
ε

dµg

is discussed. Such a critical point is known to always exist in a given homotopy class of continuous maps
between closed Riemannian manifolds and is known to have full regularity.

In the case that the target manifold has nonpositive sectional curvature, the following is obtained ([1])
and then the existence theorem (due to Eells-Sampson) of harmonic maps into a nonpositively curved
manifold is reproved.

Theorem A. Let (M, g) and (N,h) be compact and connected Riemannian manifolds without boundary.
Assume that (N,h) has nonpositive sectional curvature. For every ε > 0, let uε : (M, g) → (N,h) be a
smooth map which is a critical point of Eε with respect to its smooth variation and has uniformly bounded
energy

Eε(uε) =
∫

M

eε|duε|2 − 1
ε

dµg ≤ E0

with a constant E0 > 0. Then there exist a positive sequence ε(k) → 0 as k → ∞ and a harmonic map
u : (M, g)→ (N,h) such that the sequence {uε(k)}∞k=1 converges uniformly with all derivatives to u:

uε(k) → u in C∞(M,N) as k →∞.

If one tries to remove the curvature assumption on (N,h) in Theorem A, then the uniform convergence
may fail and blow-up phenomena for {uε}ε>0 may occur; their analysis is difficult in the case of dimM ≥ 3.
In the case that the domain is a surface, the following result ([2]) which corresponds to the one due
to Sacks-Uhlenbeck is obtained, and then the existence theorem (due to Lemaire, Schoen-Yau, Sacks-
Uhlenbeck, et. al. ) of harmonic maps into a manifold satisfying π2(N) = 0 is reproved.

Theorem B. Let (M, g) and (N,h) be compact and connected Riemannian manifolds without boundary.
Assume that M is 2-dimensional. Let {uε}ε>0 be as in Theorem A. Then there exist a positive sequence
ε(k) → 0 as k → ∞, finitely many points {p1, . . . , pl} ⊆ M and a harmonic map u : (M, g) → (N,h)
such that the sequence {uε(k)}∞k=1 converges uniformly with all derivatives to u outside {p1, . . . , pl}:

uε(k) → u in C∞loc(M \ {p1, . . . , pl}, N) as k →∞.

If a sequence {uε}ε>0 of critical points of Eε from a higher-dimensional (≥ 3) manifold is considered,
some existence results for higher-dimensional harmonic maps are expected, such as

“ there exists a singular set Σ ⊆M whose (dimM−2)-dimensional Hausdorff measure is finite,
out of which {uε}ε>0 subconverges uniformly to a harmonic map ”.

Also, the time-evolution equations for exponentially harmonic maps are expected to have several
applications. If time permits, I would also touch on them.
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Conformally flat Riemannian manifolds are studied by many authors (see [1,2]). The spectrum of a
sectional curvature operator of the conformally flat Riemannian manifolds is considered in this paper.
The following results are obtained.
i) A structure theorem about the spectrum of a sectional curvature operator of the conformally flat
Riemannian manifolds is proved. In the case of the conformally flat homogeneous Riemannian spaces
some calculating formulas for the spectrum are given .
ii) The spectrum of a sectional curvature operator of the 4-dimensional Lie groups with left-invariant
(half)conformally flat Riemannian metrics is investigated.
iii) The case of the locally homogeneous Riemannian 3-manifolds is studied too. Full classification of
the signatures for the spectrum of a sectional curvature operator is obtained and δ-pinch of the sectional
curvature is investigated for the Lie groups with left-invariant Riemannian metrics.

The research was supported by the State Maintenance Program for Young Russian Scientists and the
Leading Scientific Schools of the Russian Federation (Grant NSh-921.2012.1) and FCP “Scientific and
pedagogical persons of innovative Russia” 2009-2013(No 02.740.11.0457).
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Let X and Y be metric spaces. A mapping f : X → Y is called an isometry if f satisfies

dY

(
f(x), f(y)

)
= dX(x, y)

for all x, y ∈ X, where dX(·, ·) and dY (·, ·) denote the metrics in the spaces X and Y , respectively. For
some fixed number r > 0, suppose that f preserves distance r; i.e., for all x, y in X with dX(x, y) = r,
we have dY

(
f(x), f(y)

)
= r. Then r is called a conservative (or preserved) distance for the mapping f .

Aleksandrov [1] posed the following problem:
Aleksandrov problem: Examine whether the existence of a single conservative distance for some

mapping T implies that T is an isometry.
The aim of this article is to generalize the Aleksandrov problem to the case of linear n-normed spaces.
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The very natural functionals on a set of convex bodies in the k-dimensional Euclidean space are
quermass integrals (Minkovski functionals) Wi, i = 0, 1, ..., k (see, for example, [1, section 6.1.6]). Let A
is a convex body, i. e. a closed and convex dot set, in 3-dimensional Euclidean space E3. For the convex
body A the following quermass integrals (Minkovski functionals) is true: W0(A) = V (A) is the volume,
W1(A) = F (A)/3, W2(A) = M(A)/3, W3(A) = const = 4π/3, where F (A) is the surface area, and M(A)
is the integral mean curvature .

Let’s remind values of quermass integrals for a rectangular parallelepiped P = ABCDA′B′C ′D′ in E3

with edge lengths |AB| = a, |AD| = b, |AA′| = c, where 0 ≤ a ≤ b ≤ c. Well-known formulas for volume
W0(P ) = V (P ) = abc and the area of a surface F (P ) = 2(ab+ ac+ bc) = 3W1(P ) are supplemented by
the formulas W3(P ) = 4π/3 and M(P ) = π(a+ b+ c) = 3W2(P ) [4].

For the parallelepiped P we will denote a surface of this parallelepiped by ∂(P ) (its boundary in a
natural topology of 3-dimensional Euclidean space). Let d(M,N) is a geodesic (intrinic) distance between
points M ∈ ∂(P ) and N ∈ ∂(P ), i. e. minimal length of poligonal lines, connecting the points M and N ,
in ∂(P ).

By D(P ) we will denote a geodesic (intrinic, in other terminology) diameter of the parallelepiped P
(more precisely, of the surfaces of a parallelepiped) is the maximal intrinic distance between pair of points
on the surfaces of a parallelepiped.

An interesting problem of finding extremal values of quermass integrals (excepting a trivial case of a
constant W3 = 4π/3) for rectangular parallelepiped P = ABCDA′B′C ′D′ with a given intrinsic diameter.
For convenience we will also consider degenerate parallelepipeds with a = 0.

The maximal surface area was found in [3] Yu.G. Nikonorov and Yu.V. Nikonorova (a minimal surface
area, obviously, is equal to 0 and it is attained exactly by a degenerate parallelepiped with b = a = 0), it
is attained by a parallelepiped with the relation a : b : c = 1 : 1 :

√
2 for edge lengths. In particular, for

any parallelepiped P inequality ab+ ac+ bc ≤ 1+2
√

2
6 (D(P ))2 is true.

The approximate computings made by the author for volume allow to assume that maximal volume
is attained by a parallelepiped with the relation a : b : c = 1 : 1 :

√
2 for edge lengths, as well as in a

case with the surface area (the minimal volume is equal to 0 and is attained in accuracy by degenerate
parallelepipeds).

The main result of this research is the following:
Theorem Among all rectangular parallelepipeds with given intrinsic diameter the maximal integral

mean curvature is attained by a parallelepiped with the relation a : b : c = 0 : 1 : 1 for edge lengths, and
the minimal integral mean curvature is attained by a parallelepiped with the relation a : b : c = 0 : 0 : 1
for edge lengths. In other words, for any rectangular parallelepiped P the following inequality holds:

πD(P ) ≤M(P ) ≤ π
√

2D(P ),

where D(P ) is the geodesic diameter, and M(P ) is the integral mean curvature of the parallelepiped P .

The research was supported by the State Maintenance Program for Young Russian Scientists and the
Leading Scientific Schools of the Russian Federation (Grant NSh-921.2012.1).
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[2] Yu.G. Nikonorov, Yu.V. Nikonorova, “On the intrinsic distance on the surface of a parallelepiped”,
Tr. Rubtsovsk. Ind. Inst., No. 7, 222 – 228 (2000).

[3] Yu.G. Nikonorov, Yu.V. Nikonorova “The intrinsic diameter of the surface of a parallelepiped”, Dis-
crete and Computational Geometry, No. 40, 504–527 (2008).

82



[4] L.A. Santalo, Integral geometry and geometric probability, Science, Moscow, (1983).

[5] M.N. Vyaliy, “The shortest paths on the surface of a parallelepiped”, Mat. Prosvesch., 3 No. 9, 203
– 206 (2005).

83



Nonlocal symmetries, pseudo-spherical surfaces and peakon equations

E. Reyes
Department of Mathematics Universidad de Santiago de Chile Casilla 307 Correo 2 Santiago, Chile

e-mail: ereyes@fermat.usach.cl

In this talk I summarize some recent work on (nonlocal) differential equations appearing in the theory
of equations of pseudo-spherical type and in some modern approaches to cosmology and string theory.
Specifically, I present results on the existence and uniqueness of solutions to the so-called “modified”
Camassa-Holm and Hunter-Saxton equations (which depend on inverses of second order differential oper-
ators), and I also show that the centerless Virasoro algebra appears as an algebra of (nonlocal) symmetries
for the standard Camassa-Holm and Hunter-Saxton equations. Furthermore, I consider the generalized
bosonic string equation (an equation formulated on compact Riemannian manifolds which depends on
an exponential of a second order differential operator) and I explain how to prove existence of smooth
solutions.

The Camassa-Holm and Hunter-Saxton equations appear in fluid theory, and their “modified” versions
can be derived geometrically usign the theory of equations of pseudo-spherical type. The “bosonic” string
equation is an euclidean version of an equation of interest for supersymmetric string theory.
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The basic geometric structure in h-projective geometry is the family of h-planar curves associated to
a given Kähler metric. These curves were introduced in [3] and can be seen as generalisations of geodesics
on Kähler manifolds. A diffeomorphism of the manifold is then called an h-projective transformation,
if it preserves the set of h-planar curves. Since the h-projective transformations form a group, which
contains the isometries of the given Kähler metric as a subgroup, it is natural to ask in which cases both
groups are essentially different from each other.

The result which I want to present in my talk is a classical conjecture attributed to Yano and Obata
and was obtained together with V. S. Matveev in the joint work [2]: the complex projective space with
Fubini-Study metric is the only compact Kähler manifold (up to isomorphism and multiplication of the
metric with a constant) in which the dimension of the group of h-projective transformations is bigger
than the dimension of the group of isometries.

One part of the proof of this statement also uses results of the joint work [1].
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The talk is devoted to geometric analysis on closed manifolds endowed with two complementary
distributions D and D⊥. We investigate flows of metrics on codimension-one foliations (when D is
tangent to the leaves), which yield hyperbolic and parabolic PDEs (see [1], [2]), examples represent flows
on a surface of revolution, which yield convection-diffusion PDEs for the geodesic curvature of parallels
(D-curves) and solitary solutions – non-linear waves. For distributions of arbitrary dimensions (when D⊥

is tangent to the fibres of a fiber bundle), we introduce conformal flows of metrics restricted to D with
the speed proportional to (i) the divergence of the mean curvature vector field H of D; (ii) the mixed
scalar curvature Scmix of the distributions. For (i), the flow is reduced to the heat flow of the 1-form dual
to H, see [3]. For (ii), the vector field H satisfies the Burgers type PDE (on the fibers) with a unique
stationary solution, see [4]. We prescribe in some cases the mean curvature vector field H and Scmix.
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The strong elliptic maximum principle for vector bundles and applications to minimal
maps

Andreas Savas-Halilaj
Leibniz Universität Hannover, Welfengarten 1, Hannover, 30167, Germany

e-mail: savasha@math.uni-hannover.de

Based on works by E. Hopf [1], H.F. Weinberger [2], R. Hamilton [3, 4] and L.C. Evans [5], we state
and prove the strong elliptic maximum principle for smooth sections in vector bundles over Riemannian
manifolds and give some applications in Geometric Analysis. Moreover, we use this maximum principle
to obtain various rigidity theorems and Bernstein type theorems for minimal graphs generated from maps
between Riemannian manifolds. This is a joint work with Knut Smoczyk.
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Metric geometry of nonregular weighted Carnot–Carathéodory spaces and applications
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We investigate local and metric geometry of weighted Carnot-Carathéodory spaces which are a wide
generalization of sub-Riemannian manifolds (see e.g. [1, 2, 3, 6, 7, 8, 9, 11, 12, 13, 18] and references
therein) and naturally arise in nonlinear control theory [5], harmonic analysis [17], subelliptic equations
[4] etc.

For such spaces the intrinsic Carnot-Carathéodory metric might not exist, and some other new effects
take place, in particular we construct examples when different formal degree structures lead to different
combinations of regular and nonregular (or singular) points on the space, though the algebraic structure
induced by the commutator relations remains the same. These difficulties lead to necessity of developing
new methods to study geometry of such spaces.

We describe the local algebraic structure of a C-C space, endowed with a certain quasimetric, first
introduced in [12] for simplifying the computations, and compare local geometries of the initial C-C space
and its tangent cone at some fixed (possibly nonregular) point. We prove analogs of such classical results
as the Theorem on divergence of integral lines, the Local approximation theorem and the Tangent cone
theorem w.r.t. the considered quasimetric. The obtained estimates can be applied to constructing motion
planning algorithms for nonlinear control systems and to the theory of subelliptic equations.

The notion of the tangent cone to a quasimetric space, extending the Gromov’s notion for metric
spaces, was introduced and studied recently in [14]. Note that a straightforward generalization of the
Gromov-Hausdorff convergence theory would make no sense for quasimetric spaces, since the Gromov-
Haussdorff distance between any two quasimetric spaces would be equal to zero.

The main results of the present work are new even for the case of sub-Riemannian manifolds. Moreover,
they yield new proofs of the Local approximation theorem and the Tangent cone theorem for the intrinsic
C-C metric (if it exists) and w.r.t. the Gromov’s convergence, proved for Hörmander vector fields in
[2, 6, 9, 11]. The methods of proofs heavily rely on results of [10, 19] for the case of regular C-C
spaces, and on methods of submersion of a C-C space into a regular one [13, 2, 4, 7, 9], as well as on
obtaining new geometric properties of the considered quasimetric and of a similar quasimetric induced
by nilpotentizations of the weighted vector fields defining the C-C space. In contrast to the proof of the
Local approximation theorem in [2], we do not need special polynomial “privileged” coordinates and do
not use Newton-type approximation methods.

This talk is based on the paper [15], which is to appear, and its preliminary short version [16].
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Geometry and Topology of some overdetermined elliptic problems
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Let Ω ⊂ R2 a domain that support a solution to the overdetermined elliptic problem
∆u+ f(u) = 0 in Ω
u > 0 in Ω
u = 0 on ∂Ω
〈∇u, ν〉 = α on ∂Ω

(1)

where f has Lipschitz regularity, ν is the outward normal vector, and α is a constant. By a classical
result due to J. Serrin, the only bounded domains where (1) can be solved are round balls, [4]. The
proof of Serrin is based on the moving plane method, a method introduced some years before by A. D.
Alexandrov to prove that the only compact constant mean curvature hypersurfaces embedded in Rn are
the spheres, see [1].
The link between overdetermined elliptic problems and the theory of constant mean curvature hypersur-
faces is very strong, and this is true also in the unbounded case, see for example [3].
In this talk we will show some geometric and topological properties for regular (unbounded) domains
Ω ⊂ R2 that support a solution to the overdetermined elliptic problem (1). Our principal ideas come
from the theory of constant mean curvature surfaces in R3, and our principal tool is the Alexandrov mov-
ing plane method, adapted to overdetermined problems and used in the non trivial case of unbounded
domains. In particular, we will show that if Ω has finite topology and there exists a positive constant
R such that Ω does not contain balls of radius R, then any end of Ω stays at bounded distance from a
straight line. As a corollary of this result, we will prove that under the hypothesis that R2\Ω is connected
and there exists a positive constant λ such that f(t) ≥ λt for all t ≥ 0, then Ω is a ball. Such result gives
a partial answer to a conjecture of Berestycki-Caffarelli-Nirenberg in the plane.
The subject of this talk is based on a joint work with A. Ros, [2].
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Lobachevsky 3-space
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A polyhedron (more precisely, a polyhedral surface) is said to be flexible if its spatial shape can be
changed continuously due to changes of its dihedral angles only, i.e., if every face remains congruent to
itself during the flex.

A suspension is a polyhedron with two distinguished vertices (called north and south poles) which
don’t have a common edge, such that all remaining vertices of the polyhedron (called the vertices of the
equator) are connected by edges with both poles, and the edges connecting vertices of the equator form
a cycle.

In 1897 R. Bricard [1] described all flexible octahedra in Euclidean 3-space. The Bricards octahedra
were the first examples of flexible polyhedra (with self-intersections). The Bricards octahedra are special
cases of Euclidean flexible suspensions. In 1974 R. Connelly [2] proved that some combination of the
lengths of all edges of the equator of a flexible suspension in Euclidean 3-space is equal to zero (each
length is taken either positive or negative in this combination). The method applied by R. Connelly, is
to reduce the problem to the study of an analytic function of complex variable in neighborhoods of its
singular points.

In 2001 S. N. Mikhalev [3] reproved the above-mentioned result of R. Connelly by algebraic meth-
ods. Moreover, S. N. Mikhalev proved that for every spatial quadrilateral formed by edges of a flexible
suspension and containing its both poles there is a combination of the lengths (taken either positive or
negative) of the edges of the quadrilateral, which is equal to zero.

Applying R. Connelly’s method to Lobachevsky 3-space we get:
Theorem. Let P be a nondegenerate flexible suspension in Lobachevsky 3-space with the poles S and

N , and with the vertices of the equator Pj , j = 1, ..., V . Then

V∑
j=1

σj,j+1|PjPj+1| = 0,

where σj,j+1 ∈ {+1,−1}, |PjPj+1| is the length of the edge PjPj+1, j = 1, ..., V , and by definition

PV PV +1
def= PV P1, σV,V +1

def= σV,1.
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[2] R. Connelly, An Attack on Rigidity, Cornell University, Preprint (1974). There is a Russian translation
in the book: A.N. Kolmogorov and S.P. Novikov (eds.), Investigations in the metric theory of surfaces,
Moscow: Mir, (1980), P. 228–238.

[3] S. N. Mikhalev, “Several necessary metric conditions of flexibility of suspensions” (in Russian), Vestnik
MSU, Ser. I., 3, 15–21 (2001). There is an English translation in Moscow Univ. Math. Bull., 56, No. 3,
14-20 (2001).

92



Quasi-isometric invariants of the fundamental group of an orthogonal graph-manifold
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A graph-manifold is called orthogonal, if all of its gluing maps are just permutations of coordinates.
Kapovich and Leeb proved that the fundamental group of any 3-dimensional graph-manifold is quasi-
isometric to the fundamental group of some flip graph-manifold, which is an orthogonal graph-manifold
of dimension 3.

We will discuss certain quasi-isometric invariants of fundamental groups of such manifolds.
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Symmetric Polytopes with nonsymmetric faces
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We consider the closed convex symmetric polyhedra in three-dimensional Euclidean space with isolated
asymmetric faces and polyhedra with isolated asymmetric zones.

We prove some theorems on the classification of the polyhedron.
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Triangulations and spherical cone metrics
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Given a triangulation of a 3-dimensional pseudomanifold in which no edge has valence more than 5,
we naturally get a spherical cone metric of curvature bounded below by 1 in the sense of Alexandrov,
leading immediately to diameter and volume bounds. An enumeration shows there are exactly 4761
such triangulations of the 3-sphere. We investigate these geometrically, focusing first on the family with
unbranched cone axes. Most of these are Seifert-fibered, arising as lifts of spherical cone metrics on “bad”
2D orbifolds.
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Displacement convexity of generalized relative entropies
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The notion “displacement convexity” is the convexity of a functional on the space of probability
measures equipped with a certain distance function called the Wasserstein distance function. We first
generalize the relative entropy on the Wasserstein space over a weighted Riemannian manifold from
the viewpoint of information geometry. Here the generalized relative entropy can be considered as the
summation of an internal energy and a potential energy. We then classify generalized relative entropies
by behavior of internal energies. The main theorem of this talk is that the displacement convexity of all
the entropies in this class is equivalent to the combination of the nonnegative weighted Ricci curvature
and the convexity of the potential function of the generalized relative entropies. As applications, we
derive appropriate variants of the Talagrand, the HWI and the logarithmic Sobolev inequalities as well
as the concentration of measures from the displacement convexity of the generalized relative entropy. We
also analyze the gradient flow of this generalized relative entropy.

This is a joint work with Shin-ichi Ohta.
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On the filling radius of positively curved Alexandrov spaces
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In this talk, I will talk about the main result of [Yo] and its extension. Here, we are concerned with
the metric invariant Fill Rad, the filling radius, of Alexandrov spaces with positive lower curvature bound.
For the definition of the filling radius, we refer to the seminal paper [Gr] by M. Gromov.

In order to state the main theorem of [Yo], we need the following definition.

Definition ([Wi]) For any metric space X = (X, d), we define its spread, denoted Spread(X), as the in-
fimum of R > 0 for which there is a subset Y ⊂ X of Diam(Y ) ≤ R such that d(x, Y ) ≤ R for any x ∈ X.

Spread was used by M. Katz to find the exact value of the filling radius of the round sphere Sn of
constant curvature 1;

2Fill Rad(Sn) = Spread(Sn) = `n := arccos
(
−1

n + 1

)
.

It turns out that `n is the spherical distance between vertices of a regular (n + 1)-simplex inscribed in
Sn ⊂ Rn+1, and the set Y := {p1, . . . , pn+2} ⊂ Sn of its vertices gives Spread(Sn) = Diam(Y ) = `n.

The main theorem of [Yo] is the following comparison theorem for the spread of finite-dimensional
Alexandrov spaces of curvature ≥ 1.

Theorem ([Yo]) For any n-dimensional Alexandrov space X of curvature ≥ 1, either Spread(X) <
Spread(Sn) or X is isometric to the round sphere Sn.

This generalizes Wilhelm’s theorem in [Wi] where he proved the above theorem for closed Riemannian
manifolds of sectional curvature ≥ 1.

As in [Wi], the above theorem yields the following corollary.

Corollary ([Yo]) For any n-dimensional Alexandrov space X of curvature ≥ 1 with ∂X = ∅, either
Fill Rad(X) < Fill Rad(Sn) or X is isometric to the round sphere Sn.

Since any finite-dimensional Alexandrov space X with a lower curvature bound admits a fundamental
homology class with Z2-coefficient, provided it has empty boundary ∂X = ∅, due to T. Yamaguchi and
Grove–Petersen, and hence its filling radius Fill Rad(X) is defined.
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Morse index of a cyclic polygon
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A polygonal linkage is a sequence of real positive numbers L = (l1, . . . , ln), which can be realized as
edge lengths of a planar polygon.

A configuration of a linkage L is a sequence of points on a plane P = (p1, p2, . . . , pn), pi = (xi, yi),
such that |pi, pi+1| = li (the numeration is cyclic, i.e. pn+1 = p1). The first two vertices are fixed:
p1 = (0, 0) p2 = (l1, 0).

The set M(L) of all such configurations is the moduli space of the polygonal linkage L. Generically,
it is a smooth manifold of dimension n− 3.

On the space M(L) we define the signed area function:

A(P ) = (x1y2 − x2y1) + . . .+ (xny1 − x1yn).

Generically, function A(P ) is a Morse function. It was proven in [1], that the critical points of signed
area function are exactly the cyclic configurations of L (a configuration is called cyclic if all its vertices
lie on a circle).

For a cyclic configuration we use the following notations:
m(P ) is the Morse index of the function A in the point P.
O is the center of the circumscribed circle.
αi is the half of the angle between the vectors

−−→
Opi and

−−−→
Opi+1. The angle is defined to be positive,

orientation is not involved.

εi =
{

1, if the center O lies to the left of pipi+1;
−1, if the center O lies to the right of pipi+1.

e(P ) is the number of positively oriented edges in P .
ω(P ) is the winding number of P with respect to the center O.

δ(P ) =
n∑

i=1

εi tanαi;

We prove a following explicit formula for the Morse index of the signed area function:
For a generic cyclic configuration P of a linkage L,

m(P ) =
{
e(P )− 1− 2ω(P ) if δ(P ) > 0;
e(P )− 2− 2ω(P ) otherwise.

Further, we give full classification of all possible local maxima of signed area function:

A configuration P is a local maximum of the function A iff one of the following terms fulfill:

1. P is the convex positively oriented configuration.

2. P has only negatively oriented edges and all of them cross each other.

3. The following three terms are fulfilled:

• every two negatively oriented edges of P cross each other;

• no positively oriented edges of P cross each other;

• no positively oriented edge of P cross negatively oriented edges of P .

4. The following four terms are fulfilled:

• δ(P ) > 0;

• every two negatively oriented edges of P cross each other;

• no positively oriented edges of P cross each other;

• only one positively oriented edge of P cross negatively oriented edges of P .
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Recent results will be presented on the investigation of the structure of conformal foliations of codi-
mension q ≥ 3.

Let (M,F) be an arbitrary smooth foliation. Remind that a subset of a manifold M is called a
saturated whenever it is the union of some leaves of a foliation (M,F). By definition, an attractor of a
foliation (M,F) is nonempty saturated subsetM, if there exists a saturated open neighborhood Attr(M)
such that the closure of every leaf from Attr(M) includes M. Here Attr(M) is named as an attractor
basin. If an addition M = Attr(M), then the attractor M is called global.

The following theorem was proved without assumption that the foliation (M,F) is complete [1]. The
manifold M may be noncompact.

Theorem 1 Every codimension q ≥ 3 conformal foliation (M,F) either is Riemannian or has an
attractor that is a minimal set of (M,F), and the restriction of the foliation to the attraction basin is a
(Conf(Sq), Sq)-foliation.

A foliation is said to be proper, if every of its leaves is an embedded submanifold of the foliated
manifold. The leaf L of a foliation (M,F) is called closed if L is a closed subset of M .

Corollary Each proper non-Riemannian codimension q ≥ 3 conformal foliation has a closed leaf that
is an attractor.

Moreover when the foliated manifold M is compact we have proved the following assertion [1].

Theorem 2 Every conformal foliation (M,F) on a compact manifold M either a Riemannian foliation
or a (Conf(Sq), Sq)-foliation with a finite family of minimal sets. They all are attractors of this foliation.

A sufficient condition for the existence of a global attractor of a conformal foliation has been found.
The structure of the global attractors and foliations (M,F) have been investigated [2].

Tarquini [3] and also Frances and Tarquini [4] posed the following question:
Is every codimension q ≥ 3 conformal foliation on a compact manifold either a Riemannian foliation

or a (Conf(Sq), Sq)-foliation?
Tarquini and later Tarquini with Frances gave positive answers to this question under some additional

assumptions. Theorem 2 implies a positive answer to the Frances and Tarquini question in the general
case.

Examples of conformal foliations with exceptional and exotic global attractions are constructed.
Applications of the previous results to problems of the local and global leaf stability in sense of

Ehresmann and Reeb are considered.
The investigations was supported by the Russian Foundation for Basic Research, grant N 10-01-00457,

and the Russian Federation Ministry of Education and Science, Project N 1.1907.2011.
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