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Polar representations

I H compact connected Lie group acting on
V real vector space with H-invariant inner product

I π : H → O(V ) representation

I v ∈ V , Σv ⊂ V cross-section of action at v

I Σv minimal ⇐⇒ dim H · v maximal

Definition. π : H → O(V ) polar if all orbits intersect a minimal
cross-section orthogonally

Examples.

I standard representation π : SO2 → O(R2) is polar

I M = G/K Riemannian symmetric space, o ∈ M with
K · o = o, isotropy representation π : K → O(ToM) is polar

Dadok 1985: Polar representations on Rn are orbit equivalent to
isotropy representations of Riemannian symmetric spaces
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Polar actions

M connected Riemannian manifold, H ⊂ I (M) connected subgroup

Definition. The action of H on M is polar if there exists a
connected closed submanifold Σ of M such that

I ∀p ∈ M : Σ ∩ H · p 6= ∅
I ∀p ∈ Σ : TpΣ ⊂ νp(H · p)

Such a submanifold Σ is called a section of the action.

Fact. Sections are totally geodesic submanifolds

Definition. A polar action is hyperpolar if it admits a flat section.

Problem. Classification of hyperpolar/polar actions on Riemannian
symmetric spaces

Sn and RHn: apply Dadok’s result
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Compact symmetric spaces

Podestà, Thorbergsson 1999: Classification of polar actions on
projective spaces

Kollross 2002: Classification of hyperpolar actions on irreducible
Riemannian symmetric spaces of compact type and rank ≥ 2

Every polar action on an irreducible Riemannian symmetric spaces
of compact type and rank ≥ 2 is hyperpolar

I Podestà-Thorbergsson 2002: SOn+2/SOnSO2, n ≥ 3

I Biliotti-Gori 2005: SUn+k/S(UnUk), n ≥ k ≥ 2

I Biliotti 2006: Hermitian symmetric spaces

I Kollross 2007: Simple isometry group

I Kollross 2009: G2, F4, E6, E7, E8

I Lytchak 2011: Cohomogeneity is ≥ 3

I Kollross-Lytchak 2011: Cohomogeneity is 2



Compact vs noncompact

Some observations:

I Cohomogeneity one actions: Every Riemannian symmetric
space of noncompact type admits cohomogeneity one actions
(not true for compact type)

I Polar and hyperpolar actions: Every Riemannian symmetric
space of noncompact type admits polar actions which are not
hyperpolar (not true for compact type and higher rank)

I Concept of duality between symmetric spaces of compact type
and of noncompact type is useful only for special situations,
e.g. actions by algebraic reductive subgroups (Kollross 2011)

I In the compact case one can restrict to actions of compact
groups (well understood!), whereas in the noncompact case
one needs to consider noncompact groups (not well
understood!)
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Current state of affairs

regular foliation singular foliation

cohom 1 explicit classification general construction

hyperpolar explicit classification ?

polar ? ?
CHn: classification CHn: classification

Joint work with

I José Carlos D́ıaz-Ramos (Santiago de Compostela)

I Hiroshi Tamaru (Hiroshima)



The general setting

I M = G/K connected irreducible Riemannian symmetric space
of noncompact type
G noncompact semisimple real Lie group
K maximal compact subgroup of G
o ∈ M with K · o = o

I H connected closed subgroup of G acting on M polarly



Parabolic subalgebras (I)

I g = k⊕ p Cartan decomposition

I a maximal abelian subspace of p

I restricted root space decomposition

g = g0 ⊕

(⊕
α∈Σ

gα

)

I Λ set of simple roots for Σ

I Φ subset of Λ, ΣΦ = Σ ∩ span{Φ}
I lΦ = g0 ⊕

(⊕
α∈ΣΦ

gα

)
, nΦ =

⊕
α∈Σ+\Σ+

Φ
gα

lΦ reductive subalgebra, nΦ nilpotent subalgebra

I qΦ = lΦ ⊕ nΦ parabolic subalgebra (Chevalley
decomposition)

I Every parabolic subalgebra of g is conjugate to qΦ for some
subset Φ ⊂ Λ
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Parabolic subalgebras (II)

I lΦ = mΦ ⊕ aΦ with aΦ split component of lΦ
mΦ reductive subalgebra, aΦ abelian subalgebra

I qΦ = mΦ ⊕ aΦ ⊕ nΦ (Langlands decomposition)

I MΦ · o = BΦ semisimple symmetric space with rank equal to
|Φ|, totally geodesic in M, boundary component of M with
respect to maximal Satake compactification

I AΦ · o = Er−|Φ| Euclidean space, totally geodesic in M

I LΦ · o = FΦ = BΦ × Er−|Φ| totally geodesic in M

I M = BΦ × Er−|Φ| × NΦ (horospherical decomposition)

I The action of NΦ on M is polar

I The action of NΦ on M is hyperpolar ⇐⇒ Φ = ∅
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Examples of hyperpolar foliations

I V linear subspace of Em

=⇒ Fm
V = {p + V | p ∈ Em} homogeneous hyperpolar

foliation of Em

I F ∈ {R,C,H,O}, M = G/K = FHn

s = a⊕ (gα 	 `)⊕ g2α, ` line in gα
=⇒ Fn

F homogeneous codimension one foliation of FHn with
unique minimal leaf

I Fn1
F1
× · · · × Fnk

Fk
×Fm

V homogeneous hyperpolar foliation of
F1Hn1 × · × FkHnk × Em
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Examples of hyperpolar foliations (II)

I M = G/K symmetric space of noncompact type

I Φ orthogonal set of simple roots, k = |Φ|
I qΦ = mΦ ⊕ aΦ ⊕ nΦ Langlands decomposition of parabolic

subalgebra qΦ of g

I FΦ
∼= F1Hn1 × · · · × FkHnk︸ ︷︷ ︸

MΦ·o

×Er−k︸ ︷︷ ︸
AΦ·o

I Fn1
F1
× · · · × Fnk

Fk
×F r−k

V homogeneous hyperpolar foliation of
FΦ

I FΦ,V = Fn1
F1
× · · · × Fnk

Fk
×F r−k

V × NΦ homogeneous
hyperpolar foliation of M = FΦ × NΦ

I F∅,{0} horocycle foliation of M
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Classification of homogeneous hyperpolar foliations

Berndt-DiazRamos-Tamaru 2010: Let M be a symmetric space
of noncompact type. Every homogeneous hyperpolar foliation on
M is isometrically congruent to FΦ,V for some orthogonal set Φ of
simple roots and some linear subspace V ⊂ Er−|Φ|.



The symmetric space SLr+1(R)/SOr+1

I Dynkin diagram

α1 α2 αr−1 αr

I Φ ⊂ Λ = {α1, . . . , αr} orthogonal, k = |Φ|

I horospherical decomposition:
SLr+1(R)/SOr+1

∼= RH2 × . . .× RH2︸ ︷︷ ︸
k factors

×Er−k × NΦ

I NΦ corresponds to the set of all upper block diagonal matrices
with certain 2× 2 and 1× 1 diagonal blocks, diagonal entries
are 1
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k factors
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I On each RH2 select the foliation

I On Er−k select a foliation by parallel affine subspaces

I On NΦ select the foliation with one leaf NΦ

I The product foliation is hyperpolar, and every homogeneous
hyperpolar foliation of SLr+1(R)/SOr+1 arises in this way
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Cohomogeneity one actions

Berndt-Tamaru 2012: Let M = G/K be a Riemannian symmetric
space of noncompact type. Assume that H acts on M with
cohomogeneity one. Then one of the following statements holds:

1. The orbits of H form a Riemannian foliation on M

2. There is a totally geodesic singular orbit

3. The action of H is orbit equivalent to the canonical extension
of a cohomogeneity one action on a boundary component of
M

4. The action of H is orbit equivalent to one which is obtained
by the “nilpotent construction”



Homogeneous foliations of codimension one

I M symmetric space of noncompact type

I MF = set of all homogeneous codimension one foliations on
M up to isometric congruence

I r = rank of M

I Aut(∆) ∈ {I ,Z2,S3} automorphism group of the Dynkin
diagram ∆ associated to M

MF
∼= (RP r−1 ∪ {1, . . . , r})/Aut(∆)



The two foliations on hyperbolic spaces

I horosphere foliation
I foliation with exactly one minimal leaf S

I M = RHn: S = RHn−1 totally geodesic
I M = CHn: S = ruled real hypersurface associated to a

horocycle in a totally geodesic RH2 ⊂ CHn



Duality and triality

MF depends only on the rank and on possible duality or
triality principles on the symmetric space

Example: r = 8, Aut(∆) = I

MF = RP7 ∪ {1, . . . , 8}

for the symmetric spaces

SOC
17/SO17 ,SpR

8 /U8 , SpC
8 /Sp8 , SOH

16/U16 , SOH
17/U17

E 8
8 /SO16 , EC

8 /E8

and for the hyperbolic Grassmannians

G ∗8 (Rn+16) (n ≥ 1) , G ∗8 (Cn+16) (n ≥ 0) , G ∗8 (Hn+16) (n ≥ 0)



Totally geodesic singular orbit

F is a totally geodesic singular orbit of a cohomogeneity one action
on M ⇐⇒

I F reflective (Leung 1974) and rank F⊥ = 1, or

I F is one of the following totally geodesic non-reflective
submanifolds:

F M dim F dim M

CH2 G 2
2 /SO4 4 8

SL3(R)/SO3 G 2
2 /SO4 5 8

G 2
2 /SO4 SOo

3,4/SO3SO4 8 12

SL3(C)/SU3 GC
2 /G2 8 14

GC
2 /G2 SOC

7 /SO7 14 21



Canonical extension

Basic example:
Extension of SO2-action on R2 to (SO2 × R)-action on R3

I HΦ ⊂ I o(BΦ) ⊂ MΦ acting on BΦ with cohomogeneity one

I h = hΦ ⊕ aΦ ⊕ nΦ subalgebra of qΦ

H acts on M with cohomogeneity one

Rank reduction - Such a cohomogeneity one action can be
constructed by a canonical extension of a
cohomogeneity one action on a boundary component



Canonical extension

Basic example:
Extension of SO2-action on R2 to (SO2 × R)-action on R3

I HΦ ⊂ I o(BΦ) ⊂ MΦ acting on BΦ with cohomogeneity one

I h = hΦ ⊕ aΦ ⊕ nΦ subalgebra of qΦ

H acts on M with cohomogeneity one

Rank reduction - Such a cohomogeneity one action can be
constructed by a canonical extension of a
cohomogeneity one action on a boundary component



Canonical extension

Basic example:
Extension of SO2-action on R2 to (SO2 × R)-action on R3

I HΦ ⊂ I o(BΦ) ⊂ MΦ acting on BΦ with cohomogeneity one

I h = hΦ ⊕ aΦ ⊕ nΦ subalgebra of qΦ

H acts on M with cohomogeneity one

Rank reduction - Such a cohomogeneity one action can be
constructed by a canonical extension of a
cohomogeneity one action on a boundary component



Nilpotent construction

Skip the construction here, too technical

Only two examples known which arise through this construction
method and none of the others:

I Cohomogeneity one action on G 2
2 /SO4 with 6-dimensional

singular orbit

I Cohomogeneity one action on GC
2 /G2 with 12-dimensional

singular orbit



Nilpotent construction

I Λ = {α1, . . . , αr}, {H1, . . . ,H r} dual basis of Λ in a

I Φj = Λ \ {αj}: Put qj = qΦj
, nj = nΦj

, etcetera

I nνj =
⊕

α∈Σ+\Σ+
j ,α(H j )=ν gα

I nj =
⊕

ν>0 n
ν
j gradation generated by n1

j

Assume that

I v ⊂ n1
j ; define nj ,v = nj 	 v subalgebra of nj

I No
Lj

(nj ,v) = θNo
Lj

(v) acts transitively on Fj = Bj × E
I No

Lj∩K (v) acts transitively on the unit sphere in v if dim v ≥ 2

Then

Hj ,v = No
Lj

(nj ,v)Nj ,v acts on M with cohomogeneity one



Nilpotent construction - An example (I)

I M = G 2
2 /SO4, dim M = 8, rankM = 2

I root system Σ is of type G2:

α1 α2

jt

I Σ+ = {α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2}
I Λ = {α1, α2}
I Φ1 = Λ \ {α1} = {α2}



Nilpotent construction - An example (II)

I Σ+ = {α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2}
I n1

1 = gα1 ⊕ gα1+α2
∼= R2

I n2
1 = g2α1+α2

∼= R
I n3

1 = g3α1+α2 ⊕ g3α1+2α2
∼= R2

I n1 = n1
1 ⊕ n2

1 ⊕ n3
1

I l1 = g−α2 ⊕ g0 ⊕ gα2
∼= sl2(R)⊕ R

I k1 = kα2
∼= so2

I h1,n1
1

= g−α2 ⊕ g0 ⊕ gα2 ⊕ g2α1+α2 ⊕ g3α1+α2 ⊕ g3α1+2α2

I H1,n1
1

acts on G 2
2 /SO4 with cohomogeneity one and singular

orbit H1,n1
1
· o with codimension 2



Polar foliations of complex hyperbolic spaces

I CHn = SUn,1/S(UnU1) = G/K

I g = g−2α ⊕ g−α ⊕ g0 ⊕ gα ⊕ g2α restricted root space
decomposition

I g = k⊕ a⊕ n Iwasawa decomposition, n = gα ⊕ g2α

I CHn = AN solvable Lie group with left-invariant metric

I V = {0} or V = a; w ⊂ gα ∼= Cn−1 real subspace

I sV ,w = (a	 V )⊕ (n	w) subalgebra of a⊕ n

I SV ,w corresponding subgroup of AN

Berndt-DiazRamos 2012:

I The orbits of SV ,w form a homogeneous polar foliation of CHn

I Every homogeneous polar foliation of CHn is holomorphically
congruent to one of these foliations



Polar foliations of complex hyperbolic spaces

I CHn = SUn,1/S(UnU1) = G/K

I g = g−2α ⊕ g−α ⊕ g0 ⊕ gα ⊕ g2α restricted root space
decomposition

I g = k⊕ a⊕ n Iwasawa decomposition, n = gα ⊕ g2α

I CHn = AN solvable Lie group with left-invariant metric

I V = {0} or V = a; w ⊂ gα ∼= Cn−1 real subspace

I sV ,w = (a	 V )⊕ (n	w) subalgebra of a⊕ n

I SV ,w corresponding subgroup of AN

Berndt-DiazRamos 2012:

I The orbits of SV ,w form a homogeneous polar foliation of CHn

I Every homogeneous polar foliation of CHn is holomorphically
congruent to one of these foliations



Proof relies on following result (Gorodski 2004 for compact
case):

Let M = G/K be a Riemannian symmetric space of noncompact
type and H be a connected closed subgroup of G whose orbits
form a regular foliation F of M. Consider the corresponding
Cartan decomposition g = k⊕ p and define

h⊥p = { ξ ∈ p : 〈ξ,Y 〉 = 0 for all Y ∈ h }.

Then the action of H on M is polar if and only if

I h⊥p is a Lie triple system in p, and

I h is orthogonal to the subalgebra [h⊥p , h
⊥
p ]⊕ h⊥p of g.

In this case, let H⊥p be the connected subgroup of G with Lie

algebra [h⊥p , h
⊥
p ]⊕ h⊥p . Then the orbit Σ = H⊥p · o is a section of
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The case of codimension one

I horosphere foliation

I foliation with exactly one minimal leaf S = ruled real
hypersurface associated to a horocycle in a totally geodesic
RH2 ⊂ CHn



Polar actions on CH2

I N horosphere in CH2; n = gα ⊕ g2α; N is a 3-dim Heisenberg
group

I S ruled real hypersurface in CH2 generated by a horocycle in
RH2 ⊂ CH2; s = a⊕ gRα ⊕ g2α

I N ∩ S is a Euclidean plane E2 embedded in N as a minimal
surface and in CH2 as a real surface with nonzero constant
mean curvature; n ∩ s = gRα ⊕ g2α

Berndt-DiazRamos 2012: Every polar action on CH2 is orbit
equivalent to the action of the invariance group of one of the
following geometric objects in CH2:

I Cohom 1: {o}, CH1, RH2, N, S

I Cohom 2: {o} ⊂ CH1 (full flag), RH1, horocycle in CH1, E2
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Outline of proof

I Possible cohomogeneity is 1 or 2

I Cohomogeneity 1: known by earlier work

I Assume cohomogeneity 2

I 0-dimensional orbit: group is compact and action has a fixed
point, only possibility is S(U1U1U1)

I 1-dimensional orbit, no fixed point: Lie-theoretical arguments,
technical

I regular foliation: known by earlier work


